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Abstract— We present a complexity measure for studying
the structural complexity of multi-agent robot formations. We
base this measure on the total information flow in the system,
which is due to sensory perception and communication among
agents. We show that from an information theoretic point of
view, perception and communication are fundamentally the
same. We show how the information flows depends on different
protocols and that the broadcast protocol corresponds to the
worst case complexity for a given formation.

I. I NTRODUCTION

When designing control strategies for distributed, multi-
agent robot systems, it is vitally important that the number
of prescribed local interactions is managed in a scalable
manner. In other words, it should be possible to add new
robots to the system without causing a significant increase in
the communication and computational burdens of the indi-
vidual robots. On the other hand, an additional requirement
when designing multi-agent coordination strategies should
be that enough local interactions are present in order to
ensure the proper execution of the task at hand.

Hence, a fundamental question that arises when studying
such multi-agent systems is how to properly define the
notion of “complexity”. The traditional, algorithmic notion
of the complexity of a system is related to how difficult
it is to describe it. Therefore, most of the measures of
complexity are closely related to theAlgorithmic Informa-
tion Content (AIC) in a system [1]. However, as noted
in the molecular chemistry literature [2], [3], [4], there
is an inherent difference betweendescriptive complexity
and structural complexity, where the latter measures the
interactions, size, and asymmetry in the physical structure.
A similar program can be carried out within the context of
formation control. It is clear that when talking about robot
formations, any measure of the complexity of the forma-
tions should take into account the size of the formation,
the number of communication links or interactions in the
formation, and possibly also the degree of symmetry in the
formation.

Molecular chemists have mainly described the structural
complexity of molecules by defining measures on their
corresponding graphs [2]. Fortunately, there is a corre-
sponding notion of formation graphs, induced by robot
formations, [5], [6], [7], [8], [9], [10], where the structural
information in the formation is captured. Therefore, it seems
appropriate to study the structural complexity of multi-agent
robot formations with reference to their graphs. We will

frequently refer to our work onconnectivity graphs[5],
[6], [7] of robot formations in order to make this notion
concrete.

When formulating a measure of complexity for robot
formations, it need not produce an absolute order on all
connectivity graphs (although the order has to be observed
in its own class e.g. among all rings, all stars, all complete
graphs). This means that we are more interested in relative
complexity. For this program to be considered successful,
we should thus at least be able to differentiate betweenvery
complexformations andvery simpleones.

Given the above mentioned considerations, we will define
a complexity measure of robot formations, related to the
complexity of its connectivity graphs. This paper is orga-
nized as follows: We will first introduce connectivity graphs
of formations in Section II. Following this, we will discuss
the equivalence between perception and communication
from an information theoretic point of view, in Section
III. Then, we will propose a definition of the intrinsic
complexity of robot formations, in Section IV and explain
its relation to the complexity of graphs.

II. FORMATIONS AND CONNECTIVITY GRAPHS

In order to see how a graph-based complexity measure
is appropriate when studying multi-agent formation, we, in
this section, recall some previous results and definitions
of connectivity graphs. The technical details can be found
in [5], [6], [7] but we include this treatment for the sake
of clarity. Throughout this paper it will be assumed that
the robots are planar, and that they can interact with
neighboring robots (through perception or communication)
that are no further thanδ away.

The configuration spaceCN (R2) of the robot formation
is made up of all orderedN -tuples inR

2, with the property
that no two points coincide. The evolution of the formation
can be represented as a trajectoryF : R+ → CN (R2),
usually written asF(t) = (X1(t),X2(t), . . . XN (t)) to
signify time evolution. The spatial relationship between
robots can be represented as a graph in which the vertices
of the graph represent the robots, and the pair of vertices on
each edge tells us that the corresponding robots are within
sensor rangeδ of each other.1

Definition 2.1 (Connectivity Graph of a Formation):
Let GN denote the space of all possible graphs that can

1Here,δ is used to signify the limited effective range of the sensors as
well as the range within which a communication channel is available.



be formed onN vertices V = {v1, v2, . . . , vN}. Then
we can define a functionΦN : CN (R2) → GN , with
ΦN (F(t)) = G(t), whereG(t) = (V, E(t)) ∈ GN is the
connectivity graphof the formationF(t). Furthermore,
vi ∈ V represents roboti at positionXi, andE(t) denotes
the edges of the graph, witheij(t) = eji(t) ∈ E(t) if and
only if ‖Xi(t) − Xj(t)‖ ≤ δ, i 6= j.

The movements of the individual robots in the formation
may result in the removal or addition of edges in the
graph. Therefore,G(t) is a dynamic structure. It is clear
that different formations can produce a wide variety of
graphs withN vertices. This includes graphs that have
disconnected subgraphs, or totally disconnected graphs with
no edges. However, the problem of switching between dif-
ferent formations or of finding interesting structures within
a formations can only be tackled if no “sub-formations”
of robots are completely isolated from the rest of the
formation. This means that the connectivity graphG(t) of
the formationF(t) should always remainconnected(in the
sense of connected graphs) for all time.

III. PERCEPTIONVS. COMMUNICATION

Any measure of how complex a certain formation is has
to capture the amount of information that flows between the
different agents in a meaningful manner. This exchange of
information between agents is due to the two types of local
interactions among agents, one due to sensory perception of
neighboring robots and the other due to the communication
channels. When defining complexity measures, one thus
either has to unify these two types of local interactions, or
define two different complexity costs associated with them.
Hence, it is natural to ask whether these interactions differ
fundamentally from each other. If we can show that there
is no fundamental difference, it will simplify our task of
characterizing complexity in terms of local interactions by
not explicitly mentioning the cause of the interactions. We
briefly explore this issue in this section.

Since we are interested in this issue from an information
theoretic point of view, we pose the following problem in
an information theoretic setting. LetX,Y be two random
variables. We will denote byI(X;Y ), the amount of
information gained aboutX by knowingY . The entropy of
each random variable will be denoted byH(X) andH(Y )
respectively, andI(X;Y ) = H(X)−H(X|Y ) = H(Y )−
H(Y |X) [11], [12]), whereX|Y andY |X are conditional
random variables. If a variableZ of M components is
defined over a finite field, we will refer to its space as
the lattice Zk1

× Zk2
· · · × ZkM

⊂ R
M to emphasize

quantization.
Problem 3.1:Suppose the state of a systemX =

[x1, x2, . . . xM ]T ∈ R
M is measured by sensorS, providing

the measurementsZ = [z1, z2 . . . zM ]T ∈ Zk1
× Zk2

· · · ×
ZkM

⊂ R
M , whereki ∈ N for 1 ≤ k ≤ M . Knowledge

aboutX is also transmitted by a remote agent over a com-
munication channelC as a vectorY = [y1, y2, . . . yM ]T ∈

ZN1
× ZN2

· · · × ZNM
⊂ R

N , where Ni ∈ N for 1 ≤
i ≤ N . Here, the statexi is assumed to be described by
yi. Each componentyi of Y is encoded independently of
other components, and each symbol in each component
is equally likely. i.e.pi(yi) = 1

Ni
. Then, we would like

to ask the following question: Does there always exist a
virtual sensorS′ which provides the same information as
the communication channelC?
The answer to this question is affirmative as show below:

Proposition 3.1:For any communication linkC that sat-
isfies the assumptions in Problem 3.1, there always exists a
virtual sensorS′ that provides the same information as the
communication channel.
Proof: By the setup in Problem 3.1, we have

I(X;Y ) = log2(

N
∏

i=1

Ni).

We construct our equivalent ”virtual sensor”S ′ as follows.
Let the virtual sensor give measurementsZ ′ ∈ ZN1

×
ZN2

· · · × ZNM
⊂ R

M , with resolutions

∆z′i =
max(yi) − min(yi)

Ni

f(z′i − xi) = f(xi|i∆z′) =
1

∆zi

Then it can be directly verified that

I(X;Z ′) = H(X;Y ) = log2(

N
∏

i=1

Ni).

However, we would like to show the opposite as well,
namely the problem of creating a ”virtual” communication
channelC′ equivalent to a given sensor. IfI(X;Z) is the
amount of information gained aboutX by measurementZ,
and there exists a positive integerk such that

k = 2I(X;Y ) ∈ Z
+,

then we can build a virtual communication channelC′ using
any factorization ofk

k = k1.k2. . . . .kK , ki ∈ Z
+.

However, it is usually the case thatI(X;Y ) is a non-
integer due to the choice of real valued continuous, non-
constant distributions. Therefore it may not always be
possible to construct the virtual channel, using this “trick”.
But it is clear that the two modes of interaction have no fun-
damental difference from an information-exchange point of
view. Therefore, we assume that we can talk about sensors
and communications channels interchangeably. Note that
this similarity is information theoretic and not not physical.
There are many issues regarding occlusions and multi-hop
protocols that must be taken into account to show physical
equivalence.



IV. COMPLEXITY OF ROBOT FORMATIONS

We now consider the problem of defining a complexity
measure for multi-agent robot formations. As explained
above, it makes sense to relate the complexity measure
to the total amount of information flowing in the system.
It should further be noted that this information exchange
among agents is a dynamic quantity and depends on the
distributed algorithm executed by the system.

A multi-agent formation is an evolving structure in both
time and space. In space, it is dynamic due to the motion
of the robots, which leads to the establishment of new
interactions and the termination of old ones. This spatial
relationship can be captured by a connectivity graph as ex-
plained in Section II. However, the establishment of a local
interaction does not mean that this interaction is present
for all time. The information exchange at a particular time
depends onprotocols (e.g. [13], [14]), which may make
the information interchange not only non-constant, but also
non-deterministic. Therefore, it would be appropriate to
refer to a quantity describing the time rate of information
exchange. We call this quantity, theinformation flow, and
refer to the complexity of a formation as the total informa-
tion flow in the system.

A. Protocols and Information Flows

SupposeXj ∈ R
N is a state associated with an agent

j, which agenti wants to acquire by perception or com-
munication. LetZj,i ∈ Zk1

× Zk2
· · · × ZkN

⊂ R
N be the

measurement of a sensorS by agenti. Information about
Xj is also transmitted by agentj over a communication
channelC as Yj,i ∈ Zp1

× Zp2
· · · × ZpN

⊂ R
N , where

pi ∈ N for 1 ≤ i ≤ N . If we considerXj , Zj,i andYj,i as
random processes, then we can define theinformation flow,
as the time rate of information exchange taking place at a
certain agent, i.e.

Fi,j(t) =
dI(Xj ;Zj,i, Yj,i)

dt
. (1)

There are several technical difficulties associated with
the definition in Equation (1). The random processes are
always discrete in time, because both the perception and
communication process are discrete. In the most general
case, the packets arrive (or measurements are taken) ac-
cording to someprotocol, which defines the time of arrival.
The situation is further complicated by the fact that the
information exchange may be completely asynchronous,
both among different agents as well as between measure-
ments and communication of the same state for one agent.
The actual communication exchange takes place as a burst
after possibly long unequal intervals. But, in this paper,
we assume that the information flow for a single exchange
should be considered as the information gained between two
consecutive exchanges, averaged over the time interval.

With these considerations, we assume that if the informa-
tion flow is well defined according to a particular protocol,

then we can define the intrinsic structural complexity of a
formation as follows.

Definition 4.1 (Structural Complexity of a Formation):
The structural complexity of a formationF =
(X1,X2, . . . XN ) ∈ CN (R2) is defined as:

C(F) =
∑

j

∑

i6=j

Fi,j(Xj),

where eachFi,j is defined according to some given com-
munication protocol.

Since, the presence of protocols implies that every inter-
action is not active during a certain time period, the intrinsic
complexity is bounded above by a quantity that assumes that
all interactions are active for all time. This bound is in-fact
a complexity associated with abroadcast protocol, defined
below.

Definition 4.2 (Synchronous Periodic Broadcast Protocol):
Suppose each agentj transmits its stateXj , j 6= i to all
other agents asYj after every∆t seconds. The timeYj

takes to reach agenti is some integer multipleki,j of ∆t,
whereki,j is the number of ”hops” in the communication.
Also, let the measurementZj,i of remote stateX be
periodically taken every∆t seconds. Then this protocol
of communication among agents is called theSynchronous
Periodic Broadcast Protocol.

If ∆t is the minimum permissible time for information
exchange in the system (due to either bandwidth, sensor
update interval, or algorithm execution cycle), then we
can easily see that protocols of synchronous information
exchange that are more selective than the broadcast protocol
would result in a decrease of the total information flow. If
we denote the complexity of a formation, associated with
the broadcast protocol asCB(F), then

CB(F) ≥ CP (F),

whereCP (F) is the complexity for some arbitrary protocol.
CB(F) therefore gives the worst case complexity associated
with a particular formation. The information flow of a
remote stateXj at agenti, according to this protocol, is

Fi,j(Xj) =
I(Xj ;Zj,i)

∆t
+

I(Xj ;Yj)

ki,j∆t
bits/sec, i 6= j.

From the discussion in Section III, it is clear that it
is always possible to create a virtual sensorS ′ such that
I(Xj ;Yj) = I(Xj ;Zj

′). Therefore, we will refer to the
information flows with reference to sensors only, and write
the information flow as

Fi,j(Xj) =
I(Xj ;Zj,i)

kij∆t
, (2)

whereZj,i = [Zj,i, Z
′
j ], in order to emphasize that we are

referring to sensors only.



B. Complexity and Connectivity Graphs

We now study the interesting relationship between the
structural complexity defined above and an alternative de-
scription of complexity based on connectivity graphs of
formations. The first interesting connection can be seen
from the definition of the broadcast protocol. The number
kij defined as the number of hops in the communication
between agents hints at the network topology between the
agents. But,the connectivity graphs defined in Section
II is exactly this network topology.Furthermore, it may
be reasonable to ask ifkij is a unique number for any
two agents, since the same information my be exchanged
by different hopping paths. This corresponds to different
paths in the connectivity graph. Since the information flow
in Equation 2 depends onkij , it must be made clear
what path we are using. But, since we are interested in
distributed multi-agent algorithms, it cannot be assumed
that global information about the network topology (i.e. the
connectivity graph of the formation) is available all the time
to all agents, so that the hopping paths are unique2. Instead,
in the broadcast scenario, the information aboutXj reaches
a remote agenti via all possible hopping paths between
them, so that

Fi,j(Xj) =

Pij
∑

p=1

I(Xj ;Zj,i)

kp,ij∆t
,

where Pij is the total number of paths, andkp,ij is the
length of an individual path,p. If kij is the smallest path
between the agents, i.e. a geodesic in the corresponding
connectivity graph, then

Fi,j(Xj) ≤ deg(vj)
I(Xj ;Zj,i)

kij∆t
.

This is the case since even though multiple paths may
reach a robot instar(vj), only one information exchange
takes place between that robot and robotj. Furthermore the
complexityCB(F) is bounded above as

CB(F) ≤
∑

j

∑

i6=j

deg(vj)
I(Xj ;Zj,i)

kij∆t
.

We now assume that the states exchanged by all agents
are of the same type and encoded in the same way. There-
fore I(Xj ;Zi,j) = γ, i.e. the mutual information is constant
for all i, j. Also, note thatkij = 1 if vi, vj make an edge
in the connectivity graph i.e. when agentj can be directly
sensed (or communicated with) without an additional hop.
We can also write this in standard graph theory notation as
vj ∈ star(vi) [15], [16]. Using this notation, we have:

CB(F) ≤
γ

∆t

∑

i









∑

vj∈

star(vi)

deg(vj) +
∑

vj 6∈

star(vi)

deg(vj)

kij









.

2Network discovery may be possible eventually, but not guaranteed for
all time.

Fig. 1. δ-chain and complete graph for7 vertices.

It should further be noted that ifvj ∈ star(vi), the exact
path of communication isalwaysknown, and the broadcast
to other nodes is not necessary. Therefore we can make this
bound tighter

CB(F) ≤
γ

∆t

∑

i



deg(vi) +
∑

vj 6∈star(vi)

deg(vj)

kij



 ,

where
∑

vj∈star(vi)
1 = deg(vi). Compare this to the com-

plexity defined on a graphG, in the context of molecular
chemistry [4], given as

C(G) =
∑

vi∈V



deg(vi) +
∑

vj∈V,vi 6=vj

deg(vj)

d(vi, vj)



 ,

whered : V × V → R
+ is some distance function defined

between vertices. Therefore, we get

CB(F) ≤
γ

∆t
C(ΦN (F)),

whereΦN (F) is the connectivity graph of the formation.
This relationship leads to the following interesting observa-
tion: The complexity of the connectivity graph of a forma-
tion is a (tight) upper bound for the worst case complexity
associated with an arbitrary protocol of communication in a
multi-agent formation. Therefore the study of the structural
complexity of robot formations is closely related to the
complexity of their connectivity graphs.

C. Simple and Complex Connectivity Graphs

The complexity measure on connectivity graphs gives a
good comparison between different formations. While it
is difficult to produce an absolute order on all possible
connectivity graphs, it distinguishes simple graphs from the
more complex. We will prove below that the complete graph
is the most complex connectivity graph for a fixed set of
vertices, whereas aδ-chain [5], which is the line graph (i.e.
a Hamiltonian path on all vertices), is the least complex
connected connectivity graph. (See Fig 1.)



The conclusion that the complete graph is the most
complex graph is not surprising and conforms to our in-
tuition, as it has the maximum number of local interactions
between any set of vertices. The characterization of the
most simple graph is however an interesting result and
gives the justification of theδ-chaining algorithms that we
have developed as a benchmark problem in our study of
distributed algorithms [5], [6], [7].

Consider a connectivity graphGN = (V, E) on N
vertices, with the complexity measure

C(GN ) =
∑

vi∈V



deg(vi) +
∑

vj 6∈star(vi)

deg(vj)

kij



 .

If we add another vertexvN+1 to GN , we get a graph on
N +1 verticesGN+1. We can also form new edges between
vN+1 and vertices inV so that the complexity of the new
graph is perturbed as

C(GN+1) =
∑

vi∈V

(deg(vi) + ∆deg(vi)

+
∑

vj 6∈star(vi)
vj∈V

deg(vj) + ∆deg(vj)

kij + ∆kij

+
deg(vN+1)

ki,N+1
)

+ deg(vN+1) +
∑

vm 6∈star(vN+1)

deg(vm) + ∆deg(vm)

kmj + ∆kmj

,

where ∆deg(vi) is the change of degree at vertexvi

caused by the addition of a new vertex, and∆kmj is
the corresponding decrease in the shortest path between
vertexesvm andvj .

It can be seen that adding a vertex alwaysincreasesthe
complexity of the graph, as all perturbations are additive.
It is therefore straightforward to capture the minimum or
maximum perturbation that can be done by adding a vertex.

Theorem 4.1:If G is a connected connectivity graph then
the complexity ofG is bounded above and below as

C(δN ) ≤ C(G) ≤ C(KN ),

where δN is the δ-chain on N vertices, andKN is the
complete graph.

Proof: We prove the theorem by induction. Suppose it
is true thatC(G) ≤ C(KN ) for G ∈ GN,δ. Note that
for any vertexvi in the graph,deg(vi) ≤ N . For KN ,
deg(vi) = N for all vertices. Therefore the maximum
number by which any degree can be perturbed inKN is
1. The perturbation will be maximized if all degrees are
perturbed by1. Similarly, in KN , kij = 1 for all pairs of
vertices. The maximum perturbation will take place when
the relationkij = 1 still holds for all pairs after addition of
new vertex, i.e. all vertices are directly connected. It canbe
easily seen that this can only be accomplished by adding
edges between all vertices inKN and the new vertex to
make the graphKN+1. This proves thatC(G) ≤ C(KN )
for all N .

Fig. 2. Different ways to add a new vertex toδ5

We repeat the induction argument for the lower bound as
well. Suppose it is true thatC(δN ) ≤ C(G) and we look
at the perturbation equation ofδN for minimum increase.
(See fig 2.) Since all terms in the perturbation equation
are non-decreasing, it would be least perturbed, if each
individual term is minimally increased. In order to produce
a connected graph,deg(vN+1) ≥ 1. (If connectedness was
not required, we would have added another vertex with0
degree). For minimum increase, setdeg(vN+1) = 1. This
would also mean that∆deg(vi) = 0 for all vi in δN except
one. This corresponds to addition of exactly one edge to
the old graph,δN . However this edge can be added to
any of theN vertices. Note that this edge addition may
disturb the shortest pathskij between node pairsvi, vj .
(The paths cannot be lengthened by edge addition). If that
happens, terms of the formdeg(v)/k will get bigger. The
only way to avoid this is to add the edges to either end
of the chain. Therefore∆kij = 0 for all 1 ≤ i, j ≤ N .
This also maximizeski,N+1 for all 1 ≤ i ≤ N so that
deg(vN+1)/ki,N+1 = 1/ki,N+1 are minimized for alli ≤
N . This shows that if the edge is added to a vertex which
is not an end point, it results in an addition of degrees as
well as a decrease inkij for some vertices, again resulting
in increase of complexity. Therefore, the optimal way to
add the edge is to add the edge at its ends, which results
in another delta chainδN+1.

The consequence of this theorem is that theδ-chain is
the simplest formation that can be formed over a fixed
number of agents. This perhaps explains why humans like to
make queues and birds fly inV -formations, both of which
are essentiallyδ-chains and require minimum coordination
among individuals. We will use this result in the future to
justify various δ-chaining algorithms that are part of our



current investigations of connectivity graphs.

V. CONCLUSIONS

In this paper, we have presented a complexity measure for
studying the structural complexity of robot formations. We
have based this complexity measure on the number of local
interactions in the system due to perception and communi-
cation. We showed that from an information theoretic point
of view, perception and communication are fundamentally
the same and should therefore not be discriminated when
defining local interactions. We also showed that the broad-
cast protocol corresponds to the worst case complexity for a
given formation and serves as an upper bound. We further
noted that this upper bound is remarkably similar to the
complexity measure of graphs defined in the context of
molecular chemistry. This complexity measure on graphs
was further explored to characterize the most complex and
most simple graphs for a fixed number of vertices. We found
that the complete graph and theδ-chain are the extremal
complexity graphs.
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