Delay-dependent robust output feedback stabilization of uncertain state-delayed systems with saturating actuators

Ammar Haurani, Hannah H. Michalska, Benoit Boulet

Abstract. The robust output feedback stabilization problem for state-delayed systems with time-varying delays and saturating actuators is addressed here. The systems considered are continuous-time, with parametric uncertainties entering all the matrices in the system representation. A saturating control law is designed and a region of initial conditions is specified within which local asymptotic stability of the closed-loop system is ensured. The designed controller is dependent on the time-delay and its rate of change. The controller is constructed in terms of the solution to a set of matrix inequalities.

1. Introduction

In recent years, much work has been devoted to the analysis and synthesis of controllers for state-delayed systems with or without parametric uncertainties; see [1] for earlier work. To the authors best knowledge, the issue of output feedback stabilization of uncertain state-delayed systems with saturating control was only addressed in [2].

In this context, the contribution of this paper can be summarized as follows:

• A delay-dependent robust output feedback stabilization problem is addressed for state-delayed systems in full generality, including actuators constraints and normbounded parametric uncertainties entering all the matrices in the system representation.

• In attempt to make the approach the least conservative, unlike in [2], the most efficient descriptor model transformation and Lyapunov-Krasovskii functional are employed, as in [3].

• The least conservative model for the actuator saturation; see [4], as delivered by the differential inclusions approach is employed here.

• The value of the time-delay as well as its rate of change are taken into account in the design method presented and further permit to reduce the conservativeness of the approach.

• The method developed here is applied to an example system which was previously used in [5], and shows that the new design yields less conservative results, in that stabilization is ensured for a larger set of initial conditions.

2. Problem statement

Consider the following uncertain time-delay system: $\dot{x}(t) = A(t)x(t) + A_{t}(t)x(t-h(t)) + B(t)u_{t}(t)$

$$y(t) = C(t)x(t) + D(t)u_{sat}(t), \quad u_{sat}(t) = sat(u(t)),$$

$$sat(u(t)) = [sat(u_1(t)) \quad sat(u_2(t)) \quad \dots \quad sat(u_m(t))]$$

 $x(t_0 + \psi) = \phi(\psi), \forall \psi \in [-h_{\max}, 0], (t_0, \phi) \in R^+ \times C_{h_{\max}, n}^w$ (1) where $x(t) \in R^n$ is the state vector, $y(t) \in R^r$ is the output vector, $u(t) \in R^m$ is the control input vector to the actuator (generated from the designed controller), $u_{sat}(t) \in R^m$ is the control input vector to the plant. The time-delay *h* is a function of time and is assumed to be continuously differentiable, with its amplitude and rate of change bounded as follows:

 $0 \le h(t) \le h_{\max}$, $0 \le \dot{h}(t) \le \beta < 1$, for all $t \ge 0$ (2) where h_{\max} and α are given positive constants. The uncertain matrices A(t), $A_h(t)$, B(t), C(t) and D(t)are:

$$A(t) = A + \Delta A(t), A_h(t) = A_h + \Delta A_h(t), B(t) = B + \Delta B(t),$$

$$C(t) = C + \Delta C(t), D(t) = D + \Delta D(t)$$
(3)

where the matrices A, A_h , B, C and D are real, and are assumed to be known exactly. The matrices $\Delta A(t)$, $\Delta A_h(t)$, $\Delta B(t)$, $\Delta C(t)$ and $\Delta D(t)$ are realvalued, represent the norm-bounded parameter uncertainties, and are assumed to be of the following form:

$$\begin{bmatrix} \Delta A(t) & \Delta B(t) \\ \Delta C(t) & \Delta D(t) \end{bmatrix} = \begin{bmatrix} H_A \\ H_C \end{bmatrix} F(t) \begin{bmatrix} E_A & E_B \end{bmatrix},$$

$$\Delta A_h(t) = H_h F_h(t) E_h$$
(4)

where $F(t) \in R^{i \times j}$ and $F_h(t) \in R^{i_h \times j_h}$ are real, uncertain and time-varying matrices with Lebesgue measurable entries which, additionally, meet the following requirements: $F(t)F^T(t) \le I$ and $F_h(t)F_h^T(t) \le I$. The matrices H_A , H_C , H_h , E_A , E_B and E_h are known and real, and characterize the way in which the uncertain parameters in F(t) and $F_h(t)$ enter the nominal matrices A, A_h , B, C and D.

Finally, the following is assumed to hold:

Assumption 1: $(A + A_h, B)$ is stabilizable and (C, A) is detectable.

Assumption 2: The input vector is subject to amplitude constraints, i.e. $u \in U_0 \subset \mathbb{R}^m$, with

$$U_0 \triangleq \left\{ u \in \mathbb{R}^m ; -\overline{u}_i \le u_i \le \overline{u}_i , \overline{u}_i > 0, i = 1...m \right\}.$$
(5)

The results to be presented are concerned with providing sufficient conditions for the design of an observer-based dynamic output feedback law for system (1). This law is assumed to take the following form:

$$u(t) = K\hat{x}(t) \tag{6}$$

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu_{sat}(t) + L(y(t) - C\hat{x}(t) - Du_{sat}(t))$$
(7)

where $\hat{x}(t) \in \mathbb{R}^n$ is the observer state vector, $K \in \mathbb{R}^{m \times n}$ and $L \in \mathbb{R}^{n \times r}$ are the constant controller and observer gains, respectively. Using (1), (4) and (7), permits to write,

$$\begin{bmatrix} \dot{x}(t) \\ \dot{x}(t) \end{bmatrix} = \left\{ \begin{bmatrix} A & 0 \\ LC & A - LC \end{bmatrix} + \begin{bmatrix} H_A \\ LH_C \end{bmatrix} F(t) \begin{bmatrix} E_A & 0 \end{bmatrix} \right\} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \left\{ \begin{bmatrix} A_h & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} H_h \\ 0 \end{bmatrix} F_h(t) \begin{bmatrix} E_h & 0 \end{bmatrix} \right\} \begin{bmatrix} x(t-h(t)) \\ \dot{x}(t-h(t)) \end{bmatrix} + \left\{ \begin{bmatrix} B \\ B \end{bmatrix} + \begin{bmatrix} H_A \\ LH_C \end{bmatrix} F(t) E_B \right\} u_{sat}(t)$$
(8)

Finally, introducing the following definitions,

$$\xi(t) \triangleq \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}, \ \hat{A} \triangleq \begin{bmatrix} A & 0 \\ LC & A - LC \end{bmatrix}, \ \hat{A}_{h} \triangleq \begin{bmatrix} A_{h} & 0 \\ 0 & 0 \end{bmatrix},$$
$$\Delta \hat{A}(t) \triangleq \hat{H}F(t)\hat{E} \triangleq \begin{bmatrix} H_{A} \\ LH_{C} \end{bmatrix}F(t)[E_{A} & 0], \ \hat{B} \triangleq \begin{bmatrix} B \\ B \end{bmatrix},$$
$$\Delta \hat{A}_{h}(t) \triangleq \hat{H}_{h}F_{h}(t)\hat{E}_{h} \triangleq \begin{bmatrix} H_{h} \\ 0 \end{bmatrix}F_{h}(t)[E_{h} & 0],$$
$$\Delta \hat{B}(t) \triangleq \hat{H}F(t)E_{B} \triangleq \begin{bmatrix} H_{A} \\ LH_{C} \end{bmatrix}F(t)E_{B}, \ \hat{A}(t) \triangleq \hat{A} + \Delta \hat{A}(t),$$
$$\hat{A}_{h}(t) \triangleq \hat{A}_{h} + \Delta \hat{A}_{h}(t), \ \hat{B}(t) \triangleq \hat{B} + \Delta \hat{B}(t), \ \hat{K} = \begin{bmatrix} 0 & K \end{bmatrix}$$
(9)

permits to re-write equation (8) in yet more aggregated compact form,

$$\dot{\xi}(t) = \hat{A}(t)\xi(t) + \hat{A}_{h}(t)\xi(t-h(t)) + \hat{B}(t)u_{sat}(t),$$
with $u_{sat}(t) = sat(\hat{K}\xi(t)).$
(10)

The robust output feedback stabilization problem with saturating actuators:

Find a matrix $K \in \mathbb{R}^{m \times n}$, a matrix $L \in \mathbb{R}^{n \times r}$ and a set of initial conditions $S_0 \subset \mathbb{R}^{2n}$ such that the closed-loop system (10) is asymptotically stable.

3. Main result

The following theorem provides sufficient conditions for robust output feedback stabilization of the uncertain timedelay system (10) with control saturation.

Theorem 1. Consider the system (10). Suppose that there exist, $n \times n$ -matrices: P_{i11} , P_{i12} , P_{i21} , P_{i22} ; i = 1,...,3, W_{i11} , W_{i12} , W_{i21} , W_{i22} ; i = 1,...,4, R_{i11} , R_{i12} , R_{i21} , R_{i22} ; i = 1,...,3, $S = S^T > 0$, an $m \times n$ matrix K and an $n \times r$ matrix L, and a vector $\underline{\alpha} \in \mathbb{R}^m$, and a positive scalar γ , which together with some suitable positive scalars ε_i ; i = 1,...,3, satisfy the following matrix conditions:

$$\begin{bmatrix} P_{111} & P_{112} \\ P_{121} & P_{122} \end{bmatrix} > 0, \ P_{111} = P_{111}^T, \ P_{112} = P_{121}^T, \ P_{122} = P_{122}^T$$
(11)

$$\begin{bmatrix} R_{311} & R_{312} \\ R_{321} & R_{322} \end{bmatrix} > 0, \ R_{311} = R_{311}^T, \ R_{312} = R_{321}^T, \ R_{322} = R_{322}^T \quad (12)$$

$$\begin{bmatrix} R_{111} & R_{112} & R_{211} & R_{212} \\ R_{121} & R_{122} & R_{221} & R_{222} \\ R_{211}^T & R_{221}^T & R_{311} & R_{312} \\ R_{212}^T & R_{222}^T & R_{321} & R_{322} \end{bmatrix} > 0, \ R_{111} = R_{111}^T, \ R_{112} = R_{121}^T,$$

$$R_{122} = R_{122}^T \quad (13)$$

$$\begin{bmatrix} \Omega_{1,j} & \Omega_2 \\ \Omega_2^T & \Omega_3 \end{bmatrix} < 0, \qquad \forall j = 1, ..., 2^m$$
(14)

$$\begin{bmatrix} P_{111} & P_{112} & 0\\ P_{121} & P_{122} & \underline{\alpha}_i K_{(i)}^T\\ 0 & \underline{\alpha}_i K_{(i)} & \gamma \overline{u}_i^2 \end{bmatrix} \ge 0, \quad \forall i = 1, ..., m$$
(15)

$$\underline{\alpha}_i \in (0,1], \qquad \forall i = 1,...,m$$
(16)

where $K_{(i)}$ is the *i*-th row of K, and where,

$$\Omega_{1,j} = \begin{bmatrix} \Psi_{111} & \Psi_{112,j} & \Psi_{211} & \Psi_{212} & h_{\max} \left(W_{111}^T + P_{111}^T \right) & h_{\max} \left(W_{121}^T + P_{121}^T \right) \\ \Psi_{122,j} & \Psi_{221,j} & \Psi_{222,j} & h_{\max} \left(W_{112}^T + P_{112}^T \right) & h_{\max} \left(W_{122}^T + P_{122}^T \right) \\ \Psi_{311} & \Psi_{312} & h_{\max} W_{211}^T & h_{\max} W_{211}^T \\ \Psi_{322} & h_{\max} W_{212}^T & h_{\max} W_{212}^T \\ & & -h_{\max} R_{111} & -h_{\max} R_{112} \\ & & & -h_{\max} R_{122} \end{bmatrix}$$

$$\begin{array}{c|c} h_{\max} \left(W_{311}^{T} + P_{211}^{T} \right) & h_{\max} \left(W_{321}^{T} + P_{221}^{T} \right) & -W_{311}^{T} A_{h} - \varepsilon_{3} E_{h}^{T} E_{h} \\ h_{\max} \left(W_{312}^{T} + P_{212}^{T} \right) & h_{\max} \left(W_{322}^{T} + P_{222}^{T} \right) & -W_{312}^{T} A_{h} \\ h_{\max} \left(W_{411}^{T} + P_{311}^{T} \right) & h_{\max} \left(W_{421}^{T} + P_{321}^{T} \right) & -W_{411}^{T} A_{h} \\ h_{\max} \left(W_{412}^{T} + P_{312}^{T} \right) & h_{\max} \left(W_{422}^{T} + P_{322}^{T} \right) & -W_{412}^{T} A_{h} \\ -h_{\max} R_{211} & -h_{\max} R_{212} & 0 \\ -h_{\max} R_{221} & -h_{\max} R_{222} & 0 \\ -h_{\max} R_{311} & -h_{\max} R_{312} & 0 \\ -h_{\max} R_{311} & -h_{\max} R_{322} & 0 \\ & -(1 - \beta) S + \varepsilon_{3} E_{h}^{T} E_{h} \end{array} \right)$$

$$\Omega_{2} = \begin{bmatrix} P_{211}^{T}H_{A} + P_{221}^{T}LH_{C} & P_{211}^{T}H_{h} & W_{311}^{T}H_{h} \\ P_{212}^{T}H_{A} + P_{222}^{T}LH_{C} & P_{212}^{T}H_{h} & W_{312}^{T}H_{h} \\ P_{311}^{T}H_{A} + P_{321}^{T}LH_{C} & P_{311}^{T}H_{h} & W_{411}^{T}H_{h} \\ P_{312}^{T}H_{A} + P_{322}^{T}LH_{C} & P_{312}^{T}H_{h} & W_{412}^{T}H_{h} \end{bmatrix}$$
(18)
$$\Omega_{3} = diag \left\{ -\varepsilon_{1}I, -\varepsilon_{2}I, -\varepsilon_{3}I \right\}$$
(19)

$$\Psi_{111} = (A + A_h)^T P_{211} + P_{211}^T (A + A_h) + (LC)^T P_{221} + P_{221}^T LC + W_{311}^T A_h + A_h^T W_{311} + S + \varepsilon_1 E_A^T E_A + (\varepsilon_2 + \varepsilon_3) E_h^T E_h$$

$$\Psi_{112,j} = (A + A_h)^T P_{212} + (LC)^T P_{222} + P_{211}^T B\Gamma_j(\underline{\alpha}) K$$

+ $P_{221}^T (A - LC + B\Gamma_j(\underline{\alpha}) K) + A_h^T W_{312} + \varepsilon_1 E_A^T E_B \Gamma_j(\underline{\alpha}) K$
$$\Psi_{122,j} = (B\Gamma_j(\underline{\alpha}) K)^T P_{212} + P_{212}^T B\Gamma_j(\underline{\alpha}) K$$

+ $(A - LC + B\Gamma_j(\underline{\alpha}) K)^T P_{222} + P_{222}^T (A - LC + B\Gamma_j(\underline{\alpha}) K)$

$$+ \varepsilon_{1} \left(E_{B} \Gamma_{j} \left(\underline{\alpha} \right) K \right)^{T} E_{B} \Gamma_{j} \left(\underline{\alpha} \right) K$$

$$\Psi_{211} = P_{111}^{T} - P_{211}^{T} + \left(A + A_{h} \right)^{T} P_{311} + \left(LC \right)^{T} P_{321} + A_{h}^{T} W_{411} ,$$

$$\Psi_{212} = P_{121}^{T} - P_{221}^{T} + \left(A + A_{h} \right)^{T} P_{312} + \left(LC \right)^{T} P_{322} + A_{h}^{T} W_{412}$$

$$\Psi_{221,j} = P_{112}^{T} - P_{212}^{T} + \left(B\Gamma_{j} \left(\underline{\alpha} \right) K \right)^{T} P_{311} + \left(A - LC + B\Gamma_{j} \left(\underline{\alpha} \right) K \right)^{T} P_{321}$$

$$\Psi_{222,j} = P_{122}^{T} - P_{222}^{T} + \left(B\Gamma_{j} \left(\underline{\alpha} \right) K \right)^{T} P_{312} + \left(A - LC + B\Gamma_{j} \left(\underline{\alpha} \right) K \right)^{T} P_{322}$$

$$\Psi_{311} = -P_{311} - P_{311}^{T} + h_{\max} \hat{A}_{h11,\max}^{T} R_{311} \hat{A}_{h11,\max} ,$$

$$\Psi_{312} = -P_{312} - P_{321}^{T} , \qquad \Psi_{322} = -P_{322} - P_{322}^{T}$$

$$Under = these conditions = sustame (10) is = logglible + loggl$$

Under these conditions, system (10) is locally asymptotically stable for any initial condition $\phi(\sigma)$ in the

ball
$$\Phi(\sigma) = \left\{ \phi \in C^w_{h_{\max},n}; \|\phi\|_c^2 \le \sigma \right\}$$
, with $\sigma = \frac{1}{\gamma \pi_2}$ (20)

where,
$$\pi_{2} = \lambda_{\max} \left(\begin{bmatrix} P_{111} & P_{112} \\ P_{121} & P_{122} \end{bmatrix} \right) + \frac{h_{\max}}{(1 - \beta)} \lambda_{\max} \left(S \right) + \frac{3}{2} h_{\max}^{2} \lambda_{\max} \left(\hat{A}_{h11,\max}^{T} R_{311} \hat{A}_{h11,\max} \right)$$
 (21)

4. Numerical example.

Consider system (1) with the following state space matrices:

$$A = \begin{bmatrix} 0.1 & -0.1 \\ 0.1 & -3 \end{bmatrix}, B = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, H_A = \frac{1}{20} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
$$E_A = \begin{bmatrix} 1 & 1 \end{bmatrix}, E_B = \begin{bmatrix} 1 & 1 \end{bmatrix}, \overline{u}_1 = 5, \overline{u}_1 = 2$$
(22) with all the other matrices being equal to zero. It is exactly the same example that was used previously in [5], where the authors using relaxation techniques achieved an initial state set (assuming zero initial conditions for \hat{x})

$$D_0 = \left\{ x : x^T Z x \le 1, \ Z = 10^{-6} \begin{bmatrix} 290.5 & -7.966 \\ -7.966 & 0.500 \end{bmatrix} \right\}$$

The corresponding volume of this set was computed as $\log(Vol(D_0)) = \log(\sqrt{\det(Z)}) = 11.61$. In an attempt to achieve a larger set of initial conditions guaranteeing asymptotic stability of the closed-loop system, the following relaxation schemes were used in the present paper:

LMIR 1: Given K, L, $\underline{\alpha}_1$ and $\underline{\alpha}_2$, solve for all the P matrices and γ , the problem $Min(wTrace(P_1) + \gamma)$, such that the LMIs of Theorem 1 are satisfied, where w is a column vector whose four entries are weights multiplying each diagonal entry of matrix P_1 to form its trace.

LMIR 2: Given all the *P* matrices, *K*, $\underline{\alpha}_1$ and $\underline{\alpha}_2$, solve for *L* and γ the problem $Min(\gamma)$, such that the LMIs of Theorem 1 are satisfied.

Using the above relaxation schemes, the achieved set of initial conditions (assuming zero initial conditions for \hat{x}),

is
$$S_c = \left\{ x : x^T \gamma P_{111} x \le 1, \ \gamma P_{111} = 10^{-6} \begin{bmatrix} 183.3 & -4.396 \\ -4.396 & 0.355 \end{bmatrix} \right\},$$

and the corresponding computed volume is $\log(Vol(S_c)) = \log(\sqrt{\det(\gamma P_{111})}) = 11.90$.

Figure 1 shows the sets of initial conditions achieved in [5] and in the present paper, where it is seen that there is a substantial increase in the size of the set of initial conditions guaranteeing asymptotic stability.

figure 1: Set S_c of initial conditions achieved in this paper as compared to set D_0 of [5]

5. Conclusion

The problem formulation employed here is believed to be the first and the most general considered so far with reference to the delay-dependent robust output feedback stabilization of state-delayed systems with saturating actuators. A major innovation of the approach adopted here is that the stabilizing control design is made dependent on both the value of the time-delay as well as on its rate of change. As it was demonstrated by way of an example, the result of Theorem 1 ensures stability for larger sets of initial conditions than previous results obtained in the literature.

References

- De Souza, C. E., & Li, Xi (1995). LMI Approach to Delay-Dependent Robust Stability and Stabilization of Uncertain linear Delay Systems. *The 34th IEEE Conference on Decision and Control 2*, 2023-2028.
- [2] Su, H., Lam, J., Hu, J., & Chu, J. (2001). Output Feedback Stabilization of Uncertain Time-Delay Systems Containing Saturating Actuators. *Dev. Chem. Eng. Mineral Process.*, 9(1/2), 183-190.
- [3] Fridman, E., & Shaked, U. (2002). A Descriptor System Approach to H_∞ Control of Linear Time-Delay Systems. *IEEE Transactions on Automatic Control*, 47 (2), 253-270.
- [4] Gomes da Silva, J. M., Tarbouriech, S., & Reginatto R. (2002). Conservativity of ellipsoidal stability regions estimates for input saturated linear systems. *IFAC 2002, Barcelona, Spain.*
- [5] Henrion, D., Tarbouriech, S., & Garcia, G. (1999). Output Feedback Stabilization of Uncertain Linear Systems with Saturating Controls: an LMI Approach. *IEEE Transactions on Automatic Control, 44(11)*, 2230-2237.