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Abstract— This paper mainly deals with the problem of
persistent bounded disturbance rejection performance and
stability for Lurie systems of the neutral delay type. Using
Lyapunov-Krasovskii functional method, we simultaneously
develop suf£cient conditions on persistent bounded distur-
bance rejection performance and stability (delay-dependent
and delay-independent) in terms of linear matrix inequalities
(LMIs). Similarly, we study the corresponding problem for
Lurie systems of the neutral type with uncertainties. Finally
a numerical example is given to illustrate the ef£ciency of the
proposed result.

I. INTRODUCTION

Neutral type delay systems have received much attention
in recent years, see, e.g., [12], [16], and the references
therein. The systems that can be described by neutral type
systems include steam or water pipes, lumped parameter
networks interconnected by transmission lines, systems of
turbojet engine, etc. The effect of small delays on the
stability properties of some closed-loop neutral systems
has been considered in [13] and the references therein.
Recently, [16], [17] have developed suf£cient conditions on
delay-independent stability of neutral delay systems; delay-
dependent results have developed in [9], [12]. Furthermore,
H∞ control has been considered in [15], [19]. However,
what most papers concern focuses on stability or H∞
control, there are few papers simultaneously deal with
persistent bounded disturbance rejection performance and
absolute stability for neutral type systems.

On the other hand, the absolute stable problem, formu-
lated by Lurie and coworkers in 40’s, has been a well
studied and fruitful area of research as presented in [2].
Many results in the theory of stability and control, such
as Popov’s criterion, the circle criterion, the positive-real
lemma [6] are all closely related to the problem. Some of
these tests, however, involve graphical constructions which
induce dif£culties. The problem of absolute stability for
time-delay Lurie systems has received attention see, e.g.,
[5]. In our paper, some algebra criteria are obtained by
using the direct Lyapunov-Krasovskii functional method
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to absolute stability and performance problem for Lurie
systems of the neutral type.

Disturbance rejection problem induced by signal input
(energy-bounded or peak-bounded) [3], [4] is one major
issue in control systems. Since many objectives in control
engineering practice involve signal peak and the disturbance
signals of the plants are persistent bounded in most cases,
many papers have dealt with the problem of persistent
bounded disturbance rejection without delay (see, e.g.,
[6], [10], [14], and the references therein). [7], [8] have
researched the optimal L1 and l1 control problem for con-
tinuous and discrete linear systems, respectively. Moreover
[14] has discussed this problem for nonlinear systems. [10],
[11] have studied disturbance rejection problem for Lurie
system, but little attention has been drawn to the problem of
persistent bounded disturbance rejection for delay systems.

Based on above researches, this paper considers the
persistent bounded disturbance rejection problem for Lurie
systems of the neutral type. organization of the paper is
as follows. The preliminary results are given in Section 2.
The main work is in Section 3: for both of delay-dependent
and delay-independent cases, we give suf£cient conditions
on guaranteeing stability and achieving ρ-performance for
Lurie systems of the neutral type. Then similar analysis
has been developed for the system with uncertainties. An
example is given in Section 4 to illustrate the ef£ciency and
feasibility of our proposed approach. The last section gives
conclusion of this paper.

In this paper, R is the set of all real numbers, Rn is the
set of all n-tuples of real numbers, and Rm×n is the set
of all real matrices with m rows and n columns. Denote
by AT the transpose of a matrix A. I denotes the unit
matrix of appropriate dimension. Cn,τ = C([−τ, 0],Rn)
denotes Banach space composed of continuous vector-
valued functions from [−τ, 0] to Rn. Given a linear operator
H : L∞ → L∞, we de£ne the induced L∞ norm of H to
be

‖H‖i∞ := sup
‖w‖∞≤1

‖Hw‖∞

see [1] for more details.



II. PRELIMINARIES

Consider Lurie systems of the neutral delay type with
adding exogenous disturbance:














ẋ− Eẋ(t− τ) = Ax(t) +Ad x(t− τ) + bu+Bω,
x(t0 + s) = ψ(s), s ∈ [−τ, 0],
y = cTx,
z = Cx+Dω,

(1)
where x ∈ Rn, ω ∈ Rp are the state and exogenous
disturbance input vectors, y ∈ R, z ∈ Rm are measured
output and controlled output vectors, respectively. u belongs
to a class of sector nonlinearities, that is, u = φ(y) satis£es
µ ≥ φ(y)/y ≥ 0 for y ∈ R, µ > 0 (denoted u ∈ F [0, µ]).
τ > 0 is a given constant scalar. (t0, ψ) ∈ R+×Cn,τ , ψ(·) is
a given continuous differentiable initial function on [−τ, 0].
A,Ad, E,B,C,D are all constant matrices with compatible
dimensions. b, c are n-dimensional vectors. The L∞ norm
is de£ned by ‖w‖∞ =: supt ‖w(t)‖2. Assume that the
admissible disturbance set is W =: {w : R→ BRp, w is
measurable }, where BRp = {ω ∈ Rp : ‖ω‖2 ≤ 1}.

The origin-reachable set (R∞(0)) of system (1) is a set
that the state of the system can reach from the origin for
all admissible disturbances. A set S is said to be a positive
invariant set for a dynamical system, if x(t0) ∈ S implies
the trajectory x(t) of system (1) remains in S for all t > t0.
An attractor Ω of system (1) is a set that satis£es for any
u ∈ F [0, µ] and ω ∈ W , the state trajectories of system (1)
initiating from any point outside of Ω eventually enter and
remain in it. Obviously, an attractor is positively invariant.

For system (1), de£ne performance set by:

Ω(ρ) =: {x : ‖z‖∞ = ‖Cx+Dω‖ ≤ ρ, ∀ω ∈ W}.

System (1) is said to have ρ-performance if ‖z‖∞ ≤ ρ for
all w ∈ W . By the de£nition of performance set, in order
to show that system (1) has ρ-performance, we only need
to prove that Ω(ρ) contains R∞(0).

Lemma 1. [18] For any positive scalar α and symmetric
positive de£nite matrix Q ∈ Rn×n, the following inequal-
ities hold.

2xT y ≤ 1
α
xTx+ αyT y,

2xT y ≤ xTQ−1x+ yTQy,

where x ∈ Rn, y ∈ Rn.
To guarantee that the difference operator <: C[−τ, 0]→

Rn given by <(xt) = x(t)− Ex(t− τ) +
∫ t

t−τ
Adx(υ)dυ

is stable, we assume [12]

τ |Ad|+ |E| < 1,

where | · | is any matrix norm.

III. MAIN RESULTS

A. Analysis of Persistent Bounded Disturbance Rejection
for Lurie Systems of The Neutral Type

In this section, suf£cient conditions are given on guar-
anteeing the absolute stability (delay-dependent & delay-

independent) and achieving persistent bounded disturbance
rejection performance.

We £rst consider the delay-independent case.
Theorem 1. If there exist symmetric positive de£nite

matrices P, Q ∈ Rn×n, and positive scalars α, β, γ
satisfying the following matrix inequality:

















(

ATP + PA+ αP +Q
+βµ2ccT + γµ2ccT

)

Pb PB

bTP −βI 0
BTP 0 −αI

AT
d P − E

TPA 0 −ETPB
0 0 0

PAd −A
TPE 0

0 0
−BTPE 0

−AT
d PE − E

TPAd −Q ETPb
bTPE −γI













< 0, (2)





αP 0 CT

0 (ρ2 − α)I DT

C D I



 > 0, (3)

then for any τ > 0 the ellipsoid ΩP = {x : xTPx ≤
1} is an attractor of system (1), Ω(ρ) ⊂ ΩP and system
(1) has absolute ρ-performance. Furthermore, inequality (2)
guarantees absolute stability of the system.

Proof: Let us consider the following Lyapunov-
Krasovskii functional:

V (xt) = (x(t)− Ex(t− τ))TP (x(t)− Ex(t− τ))
+
∫ τ

0
xT (t− s)Qx(t− s)ds.

The time derivative of V (xt) along the trajectory of system
(1) is given by

V̇ (xt) = 2(Ax+Adxτ + bu+Bω)TP (x− Exτ )
+xTQx− xTτ Qxτ

= xT (ATP + PA+Q)x+ 2xTPBω + 2xTPbu
+2xTPAdxτ + xTτ (−A

T
d PE − E

TPAT
d −Q)xτ

−2ωTBTPExτ − 2xTτ E
TPbu− 2xTATPExτ .

By Lemma 1 and the property of φ(y), the following
inequalities hold.

2xTPbu ≤ 1
β
xTPbbTPx+ βuTu

≤ 1
β
xTPbbTPx+ βµ2xT ccTx,

−2xTτ E
TPbu ≤ 1

γ
xTτ E

TPbbTPExτ + γµ2xT ccTx.

It follows that

V̇ (x) ≤ XTΩX − αxTPx+ αωTω,

where

X =
[

xT ωT xTτ
]T
,

Ω =





ν PB PAd −A
TPE

BTP −αI −BTPE

Ad
TP − ETPA −ETPB Σ



 ,

ν = ATP + PA+ 1
β
PbbTP + αP +Q

+βµ2ccT + γµ2ccT ,
Σ = −AT

d PE − E
TPAT

d −Q+ 1
γ
ETPbbTPE.



Because xTPx > 1 outside of ΩP , we obtain V̇ (x) < 0, if
the following matrix inequality holds,





ν PB PAd −A
TPE

BTP −αI −BTPE

Ad
TP − ETPA −ETPB Σ



 < 0.

By Schur complement, it is equivalent to (2). By the
de£nition of attractor, the ellipsoid ΩP = {x : xTPx ≤ 1}
is an attractor of system (1).

Furthermore, for any u ∈ F [0, µ], the negativity of the
Lyapunov functional derivation does not use any informa-
tion about the delay size and in conclusion, the absolute
stability property holds for any positive delay.

On the other hand, by Schur complement, inequality (3)
is equivalent to the following inequality

[

αP − CTC −CTD
−DTC (ρ2 − α)I −DTD

]

> 0.

From it we obtain

0 < α < ρ2,
αxTPx+ (ρ2 − α)ωTω − ‖Cx+Dω‖2 > 0.

It’s obvious that if xTPx ≤ 1 and ωTω ≤ 1, then we have
‖Cx+Dω‖2 ≤ ρ. It follows that ΩP ⊂ Ω(ρ). Because ΩP

is a closed attractor which contains origin, it is a positive
invariant set. While origin reachable set is the smallest
positive invariant closed set that contains origin, we have
R∞(0, µ) ⊂ ΩP ⊂ Ωρ. Thereby when the controller u in
system (1) takes values from the nonlinear sector F [0, µ],
the closed system has ρ-performance. Because for any
u ∈ F [0, µ], V̇ /(1)(x) < 0 is guaranteed, ΩP is attractable
for any u ∈ F [0, µ], and thus we have R∞(0) ⊂ ΩP ⊂ Ωρ.
That is to say system (1) has absolute ρ-performance.

Now, we consider the delay-dependent case for the sys-
tem under consideration.

Theorem 2. For Lurie system of the neutral type (1),
given a positive scalar Γ, if there exist symmetric positive
de£nite matrices P, Q1, Q2 ∈ Rn×n , positive scalars
α, β satisfying (3) and the following matrix inequality:





















Ψ Pb Γ(A+Ad)
TP ΓµcbTP µcbTP

bTP −β 0 0 0
ΓP (A+Ad) 0 −ΓQ1 0 0
ΓµPbcT 0 0 −ΓQ1 0
µPbcT 0 0 0 −Q2

−ETP (A+Ad) 0 0 0 0
BTP 0 0 0 0
0 0 0 0 0

−(A+Ad)
TPE PB 0

0 0 0
0 0 0
0 0 0
0 0 0

−ETQ2E −ETPB 0
−BTPE −αI ΓBTP

0 ΓPB −ΓQ1

























< 0, (4)

where Ψ = (A + Ad)
TP + P (A + Ad) + 3ΓAT

dQ1Ad +
αP + 2ETQ2E + βµ2ccT , then for any τ : 0 ≤ τ ≤ Γ
the ellipsoid ΩP = {x : xTPx ≤ 1} is an attractor of
system (1), ΩP ⊂ Ω(ρ) and system (1) has absolute ρ-
performance. Moreover inequality (4) guarantees that it is
absolutly stable.

Proof: Let

z(xt) = x(t)− Ex(t− τ) +
∫ t

t−τ
Adx(υ)dυ,

ż(xt) = (A+Ad)x(t) +Bω + bu.

Take the following Lypunov-Krasovskii functional:

V (xt) = V1(xt) + V2(xt) + V3(xt),
V1(xt) = zT (xt)Pz(xt),

V2(xt) = 3
∫ t

t−τ

∫ t

s
xT (υ)AT

dQ1Adx(υ)dυds,

V3(xt) = 2
∫ t

t−τ
xT (υ)ETQ2Ex(υ)dυ.

The time derivative of V (x) along the trajectory of system
(1) is given by

V̇ (x) = V̇1(x) + V̇2(x) + V̇3(x)
= 2((A+Ad)x+Bω + bu)TP (x− Exτ+

∫ t

t−τ
Adx(υ)dυ) + 3τxTAT

dQ1Adx+ 2xTETQ2Ex

−3
∫ t

t−τ
xT (υ)AT

dQ1Adx(υ)dυ − 2xTτ E
TQ2Exτ

= xT ((A+Ad)
TP + P (A+Ad) + 3τAT

dQ1Ad+
2ETQ2E)x+ 2xTPBω + 2xTPbu− 2uT bTPExτ
−2xT (A+Ad)

TPExτ − 2ωTBTPExτ+

2xT (A+Ad)
TP

∫ t

t−τ
Adx(υ)dυ − 2xTτ E

TQ2Exτ

+2ωTBTP
∫ t

t−τ
Adx(υ)dυ + 2uT bTP

∫ t

t−τ
Adx(υ)dυ

−3
∫ t

t−τ
xT (υ)AT

dQ1Adx(υ)dυ.

By Lemma 1, the following inequalities hold.

2xTPbu ≤ 1
β
xTPbbTPx+ βµ2xT ccTx,

−2ubTPExτ ≤ xTµ2cbTPQ−12 PbcTx+ xTτ E
TQ2Exτ ,

2ωTBTP
∫ t

t−τ
Adx(υ)dυ ≤ τωTBTPQ−11 PBω + Q̃,

2uT bTP
∫ t

t−τ
Adx(υ)dυ ≤ τµ2xT cbTPQ−11 PbcTx+ Q̃,

2xT (A+Ad)
TP

∫ t

t−τ
Adx(υ)dυ

≤ τxT (A+Ad)
TPQ−11 P (A+Ad)x+ Q̃,



where

Q̃ =

∫ t

t−τ

xT (υ)AT
dQ1Adx(υ)dυ.

Hence we have

V̇ (x) ≤ XT
1 Ω1X1 − αx

TPx+ αωTω,

where
X1 =

[

xT xTτ ωT
]T
,

Ω1 =





Λ −(A+Ad)
TPE PB

−ETP (A+Ad) −ETQ2E −ETPB
BTP −BTPE Υ



 ,

with

Λ = (A+Ad)
TP + P (A+Ad) + 3τAT

dQ1Ad

+2ETQ2E + αP + 1
β
PbbTP + βµ2ccT

+µ2cbTPQ−12 PbcT + τµ2cbTPQ−11 PbcT

+τ(A+Ad)
TPQ−11 P (A+Ad),

Υ = τBTPQ−11 PB − αI.

Since xTPx > 1 for x 6∈ ΩP , we obtain V̇ (x) < 0, if
Ω1 < 0. By Schur complement, it is equivalent to (4) where
Γ is replaced by τ . Thus the ellipsoid ΩP is an attractor of
system (1) for given τ : 0 ≤ τ ≤ Γ.

As the proof of Theorem 1, for given τ : 0 ≤ τ ≤ Γ,
system (1) has absolute ρ-performance and systems (1) is
absolutely stable.

B. Analysis of Persistent Bounded Disturbance Rejection
for Lurie System of The Neutral Type with Structured
Uncertainty

Let us consider Lurie system of the neutral type with
structured uncertainty:






















ẋ− Eẋ(t− τ) = Ax(t) +Ad x(t− τ) +B1p+Bω + bu,
x(t0 + s) = ψ(s), s ∈ [−τ, 0],
y = cTx,
z = Cx+Dω,
q = C1x+D11p,
p = ∆q,

(5)

where C1 and D11 are matrices with compatible dimen-
sions, p and q are uncertain input and output of the plant.
∆ is the structured uncertainty between p and q, i.e., ∆ has
the structural property:

∆ ∈∆ =: {∆ : ∆ = diag(∆1, · · · ,∆k, δ1I, · · · , δlI)},

where k, l ∈ N, δj ∈ R, ∆i is full block and |δj | ≤
1, ‖∆i‖ ≤ 1, for i = 1, · · · , k, j = 1, · · · , l. Other
variables and matrices are de£ned as that of system (1) and

the performance set is de£ned as before. Such description
of uncertainty can be £nd in [6].

The set of symmetric matrix corresponding to arbitrary
blocked diagonal structure ∆ can be described by:

S∆ =: {S : S = ST , S∆ = ∆S, ∀ ∆ ∈∆}.

Similarly, the set of antisymmetric matrix corresponding to
arbitrary blocked diagonal structure ∆ can be described by:
(see [10] for more details)

T∆ =: {T : T T = −T, T∆ = ∆TT, ∀ ∆ ∈∆}.

To study the performance problem, we give other de£ni-
tions. A robust attractor Ω of system (5) with respect to W
and ∆ is a set that satis£es for any ‖∆‖ ≤ 1 and ω ∈ W ,
the state trajectory of system (5) initiating from any point
outside of Ω eventually enters and remains in it. Similarly
we can de£ne robust positive invariant set. Obviously, a
robust attractor is robust positively invariant.

Lemma 2 [10]. If S, Ŝ ∈ S∆ and T ∈ T∆, then Y =
ST Ŝ ∈ T∆. Furthermore, if S−1 exists, then S−1 ∈ S∆.

From the property mentioned above, it’s easy to say that
for all S ∈ S∆, S > 0, T ∈ T∆, and for any blocked
diagonal structure ∆, if ∆ ∈ ∆ and p = ∆q, then the
following inequality holds.

[

q
p

]T [

S TT

T −S

] [

q
p

]

≥ 0. (6)

Just as before, we £rst present a suf£cient condition on
guaranteeing delay-independent stability and achieving ρ-
performance.

Theorem 3. If there exist a symmetric positive de£nite
matrices P ∈ Rn×n, a symmetric matrix S ∈ S∆, an
antisymmetric matrix T ∈ T∆ and positive scalars α, β
satisfying (3) and the following matrix inequality:




















Φ Pb PAd −A
TPE 0

bTP −β 0 0

Ad
TP − ETPA 0 −AT

d PE − E
TPAd ETPbT

0 0 bPE −γ
BTP 0 −BTPE 0

BT
1 P + TC1 0 −BT

1 PE 0
SC1 0 0 0

PB PB1 + CT
1 T

T CT
1 S

0 0 0
−ETPB −ETPB1 0

0 0 0
−αI 0 0
0 −S + TD11 +DT

11T
T DT

11S
0 SD11 −S





















< 0, (7)



where Φ = ATP +PA+αP +βµ2ccT +γµ2ccT , then for
any τ > 0 the ellipsoid ΩP = {x : xTPx ≤ 1} is a robust
attractor of system (5), ΩP ⊂ Ω(ρ) and system (5) has
robust absolute ρ-performance. Moreover (7) guarantees
that system (5) is robustly absolutely stable.

Proof: Let us consider the following Lyapunov func-
tional:

V̄ (xt) = V (xt)+

∫ t

0

[

q(s)
p(s)

]T [

S TT

T −S

] [

q(s)
p(s)

]

ds,

where

V (xt) = (x(t)− Ex(t− τ))TP (x(t)− Ex(t− τ)).

By (6), we have V̇ (xt) < 0 if ˙̄V (xt) < 0. The time
derivative of V̄ (x) along the trajectory of system (5) is
given by

˙̄V (x) = 2(Ax+Adxτ +Bω +B1p+ bu)TP (x− Exτ )

+

[

q
p

]T [

S TT

T −S

][

q
p

]

= xT (ATP + PA)x+ 2xTPBω + 2xTPAdxτ
+2xTPB1p+ 2xTPbu− 2xTATPExτ
−2xTτ A

T
d PExτ − 2ωTBTPExτ − 2pTBT

1 PExτ

−2uT bTPExτ +

[

q
p

]T [

S TT

T −S

][

q
p

]

.

By Lemma 1, the following inequalities hold.

2xTPbu ≤ 1
β
xTPbbTPx+ βµ2xT ccTx,

−2ubTPExτ ≤
1
γ
xTτ E

TPbT bPExτ + γµ2xT ccTx.

Hence we have

˙̄V (x) ≤ XT
2 Ω2X2 − αx

TPx+ αωTω,

where

X2 =
[

xT xTτ ωT pT
]T

Ω2 =









Π PAd −A
TPE

AT
d P − E

TPA Θ
BTP −BTPE

BT
1 P +DT

11SC1 + TC1 −BT
1 PE









PB PB1 + CT
1 SD11 + CT

1 T
T

−ETPB −ETPB1
−αI 0
0 DT

11SD11 + TD11 +DT
11T

T − S









with

Π = ATP + PA+ αP + CT
1 SC1 +

1
β
PbbTP

+βµ2ccT + γµ2ccT ,
Θ = −AT

d PE − E
TPAT

d + 1
γ
ETPbT bPE.

Because xTPx > 1 for x 6∈ ΩP , we obtain V̇ (x) < 0,
if Ω2 < 0. By Schur complement, it is equivalent to (7).
It’s obvious that the ellipsoid ΩP = {x : xTPx ≤ 1} is a
robust attractor of system (5).

As the proof of Theorem 1, system (5) has robust
absolute ρ-performance and is robustly absolutely stable.

For the delay-dependent case, similar analysis is given.
Theorem 4. Given a positive scalar Γ > 0, if there exist

symmetric positive de£nite matrices P, Q1, Q2 ∈ Rn×n,
a symmetric matrix S ∈ S∆, an antisymmetric matrix T ∈
T∆, positive scalars α, β satisfying (3) and the following
matrix inequality:
























Ξ $ π PB 0 PB1 + CT
1 T

T

∗ −ΓQ1 0 0 0 0
∗ ∗ −ETQ2E −ETPB 0 −ETPB1

∗ ∗ ∗ −αI ΓBTP 0
∗ ∗ ∗ ∗ −ΓQ1 0
∗ ∗ ∗ ∗ ∗ ξ
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

0 CT
1 S Pb µcbTP ΓµcbTP

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ΓBT
1 P DT

11S 0 0 0
−ΓQ1 0 0 0 0

∗ −S 0 0 0
∗ ∗ −β 0 0
∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ −ΓQ1

























< 0, (8)

where
Ξ = (A+Ad)

TP + P (A+Ad) + 4ΓAT
dQ1Ad + 2ETQ2E

+αP + βµ2ccT ,

ξ = −S + TD11 +DT
11T

T , $ = Γ(A+Ad)
TP,

π = −(A+Ad)
TPE,

then for any τ : 0 ≤ τ ≤ Γ the ellipsoid ΩP = {x :
xTPx ≤ 1} is a robust attractor of system (5), ΩP ⊂ Ω(ρ)
and system (5) has robust absolute ρ-performance. More-
over (7) guarantees that the system is robustly absolutely
stable.

Proof: The proof of Theorem 4 can be easily obtained
from Theorem 2 and Theorem 3 and is thus omitted.

IV. AN ILLUSTRATIVE EXAMPLE

To illustrate the ef£ciency of our proposed approach, now
we consider both of delay-independent and delay-dependent
case for system (1). We choose the following parameters:

A =

[

−5 −1
1 −5

]

, B =

[

−0.1 1
1 0

]

,



Ad =

[

−0.02 0.01
0.01 −0.02

]

, C =

[

1 0.2
1 0

]

,

D =

[

0.2 −0.01
−0.3 0.2

]

, E =

[

0.01 0.1
0 0.01

]

,

b =

[

0.3
0.4

]

, c =

[

0.1
−0.1

]

, α = 0.9,

ρ = 1.1, and µ = 2.
For delay-independent case we obtain P, Q, β, γ that

satisfy Theorem 1:

P =

[

3.4468 0.0948
0.0948 3.0140

]

, Q =

[

9.2443 1.5439
1.5439 8.7514

]

,

β = 17.4333, γ = 18.5293.

Hence we can obtain a robust attractor ΩP , system (1)
has absolute ρ-performance with ρ = 1.1 and is delay-
independently stable for any τ > 0.

For delay-dependent case, with the same parameters, We
obtain Γ ≤ 14.0999 and for Γ = 14.0999 we have the
following solution to Theorem 2:

P =

[

1.3721 0.5132
0.5132 1.2202

]

, Q1 =

[

642.9098 634.0728
634.0728 795.8060

]

,

Q2 = 105 ×

[

0.0310 −0.2672
−0.2672 2.3249

]

,

β = 0.5732. Hence if the delay size is smaller than Γ,
system (1) is delay-dependently stable for given τ : 0 ≤
τ ≤ Γ and it has absolute ρ-performance with ρ = 1.1.

V. CONCLUSIONS

For Lurie systems of the neutral type, using Lyapunov-
Krasovskii functional method, we studied the problem
of absolute stability and persistent bounded disturbance
rejection performance for delay-dependent and delay-
independent case. Suf£cient conditions on this problem
were given in terms of LMIs. For Lurie system of the neutral
type with uncertainty, similar analysis was given. Finally, a
numerical example was given to illustrate the ef£ciency of
the proposed approach.
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