Robust Stabilization for Singular Systems with Time-Delays and Saturating Controls

Wu-Neng Zhou, Ren-Quan Lu, Hong-Ye Su, and Jian Chu, Member, IEEE

Abstract

We studied the delay-dependent stabilization problem for a class of uncertain singular system with time-delays and saturating controls. Theorems derived give sufficient conditions for delay-dependent stabilization of the singular systems with a combination of saturating controls and multiple time-delays in both state and control; we assumed the delays to be constant bounded but unknown, moreover, the uncertainties are also described to be unknown but bounded and the nonlinear terms included in the systems are fallen into a set. Under these sufficient conditions, the solution of the uncertain singular system is regular, impulse free, and locally asymptotically stable for all admissible uncertainties. Furthermore, the results based on several Linear Matrix Inequalities (LMIs) are developed to guarantee stability and be computed effectively. Finally, we advance an example to demonstrate the superiority of this method.

I. INTRODUCTION

CONYTOL of singular systems has been extensively studied in the past years due to the fact that singular systems better describe physical systems than regular ones. A great number of results based on the theory of regular systems (or state-space systems) have been extended to the area of singular systems [1]-[2]. Recently, robust stability and robust stabilization for uncertain singular systems with time-delays have been considered [3]-[5].

Moreover, the problem of stabilizing linear systems with saturating controls has been widely studied these last years because of its practical interest [6] and [7]. However, to the best of our knowledge, the problems of robust stabilization for uncertain singular system included both time-delays and

[^0]saturating controls have not been fully investigated yet.
In this paper, we concerned with the delay-dependent robust stabilization of a continuous-time subject to multiple time-delays in both state and control, saturating controls and nonlinear terms. The synthesis problem addressed is to design a memoryless state feedback control law such that the resulting closed-loop system is regular, impulse free and stable for all admissible uncertainties, and a sufficient condition for the existence of such a control law is presented in terms of several linear matrix inequalities (LMIs).

II. SYSTEM DESCRIPTION AND DEFINITIONS

Consider the following uncertain singular systems with time-delays and saturating controls described by

$$
\begin{align*}
& (\Sigma): E \dot{x}(t)=\left(A_{0}+\Delta A_{0}(x, t)\right) x(t)+\sum_{i=1}^{k}\left(A_{i}+\Delta A_{i}(x, t)\right) \\
& \times x\left(t-h_{i}(t)\right)+E_{10} f(\sigma(t))+B_{10} w(t) \\
& +\left(B_{20}+\Delta B_{20}(x, t)\right) u^{\prime}(t) \tag{1}\\
& +\sum_{i=1}^{k}\left(B_{2 i}+\Delta B_{2 i}(x, t)\right) u^{\prime}\left(t-g_{i}(t)\right), \\
& u^{\prime}(t)=\operatorname{sat}(u(t)), x(t)=\phi(t), t \in[-\tau, 0], \sigma(t)=C x(t) \\
& \operatorname{sat}(u(t))=\left[\begin{array}{llll}
\operatorname{sat}\left(u_{1}(t)\right) & \operatorname{sat}\left(u_{2}(t)\right) & \cdots & \operatorname{sat}\left(u_{m}(t)\right)
\end{array}\right],
\end{align*}
$$

where $x(t) \in R^{n}$ is the state vector, $u(t) \in R^{m}$ is control input vector to the actuator (emitted from the designed controller), $u^{\prime}(t) \in R^{m}$ is the control input vector to the plant, $w(t) \in R^{p}$ is the disturbance input vector from $L_{2}[0, \infty)$. The matrix $E \in R^{n \times n}$ may be singular, we shall assume that $\operatorname{rank} E=r \leq n$. The matrices $A_{0}, A_{i}, E_{10}, B_{10}, B_{20}$ and $B_{2 i}$ are known real constant matrices with appropriate dimensions. The matrices $\Delta A_{0}(\bullet), \Delta A_{i}(\bullet), \Delta B_{20}(\bullet)$ and $\Delta B_{2 i}(\bullet)$ are time-invariant matrices representing norm-bounded parameter uncertainties, and are assumed to be of the following form:

$$
\begin{gather*}
{\left[\begin{array}{llll}
\Delta A_{0}(\bullet) & \Delta A_{i}(\bullet) & \Delta B_{20}(\bullet) & \Delta B_{2 i}(\bullet)
\end{array}\right]} \\
=G F(x, t)\left[\begin{array}{llll}
H_{1} & H_{2 i} & H_{3} & H_{4 i}
\end{array}\right] \tag{2}
\end{gather*}
$$

where $G, H_{1}, H_{2 i}, H_{3}$ and $H_{4 i}$ are known real constant matrices with appropriate dimensions. The uncertain matrix $F(x(t), t)$ with Lebesgue measurable elements satisfies

$$
\begin{equation*}
F^{T}(x(t), t) F(x(t), t) \leq I \tag{3}
\end{equation*}
$$

The input vector is assumed to satisfy actuator limitations, i.e. $u(t) \in U \subset R^{m}$ with

$$
\begin{equation*}
U=\left\{u(t) \in R^{m} ;-u_{0(i)} \leq u_{(i)}(t) \leq u_{0(i)}, u_{0(i)}>0, i=1, \cdots, m\right\} \tag{4}
\end{equation*}
$$

The actuator is described by the nonlinearity

$$
\operatorname{sat}\left(u_{(i)}(t)\right)= \begin{cases}u_{0(i)} & \text { if } u_{(i)}(t)>u_{0(i)} \tag{5}\\ u_{(i)}(t) & \text { if }-u_{0(i)} \leq u_{(i)}(t) \leq u_{0(i)} \\ -u_{0(i)} & \text { if } u_{(i)}(t)<-u_{0(i)}\end{cases}
$$

$h_{i}(t)$ and $g_{i}(t)$ are unknown scalars denoting the delays in the state and control, respectively, and it is assumed that there exist positive numbers h, g and τ such that

$$
\begin{equation*}
0 \leq h_{i}(t), g_{i}(t) \leq h, g \leq \tau \tag{6}
\end{equation*}
$$

for all $t, i=1, \cdots, k . \phi(t)$ is smooth vector-valued continuous initial function defined in the Banach space C_{τ}. In this paper, every nonlinear term is assumed to be of the form as follows

$$
\begin{align*}
& f_{j}(\bullet) \in K_{j}\left[0, k_{j}\right]=\left\{f_{j}\left(\sigma_{j}\right) \mid f_{j}(0)=0,0<\sigma_{j} f_{j}\left(\sigma_{j}\right)\right. \\
& \left.\quad \leq k_{j} \sigma_{j}^{2}\left(\sigma_{j} \neq 0\right)\right\}, j=1,2, \cdots, n \tag{7}
\end{align*}
$$

where k_{j} are positive scalars.
The nominal unforced singular delay systems (1) can be written as

$$
\begin{equation*}
E \dot{x}(t)=A_{0} x(t)+\sum_{i=1}^{k} A_{i} x\left(t-h_{i}(t)\right)+E_{10} f(\sigma(t)) \tag{8}
\end{equation*}
$$

Using the Leibniz-Newton formula [7], then the singular delay system (8) can be written as

$$
\begin{align*}
E \dot{x}(t)= & \left(A_{0}+\sum_{i=1}^{k} A_{i}\right) x(t)+E_{10} f(\sigma(t)) \\
& -\sum_{i=1}^{k} A_{i} \int_{-h_{i}(t)}^{0}\left[A_{0} x(t+\theta)+\sum_{i=1}^{k} A_{i}\right. \tag{9}\\
& \left.\times x\left(t-h_{i}(t)+\theta\right)+E_{10} f(\sigma(t+\theta))\right] d \theta \\
x(t)= & \phi(t), t \in[-2 \tau, 0]
\end{align*}
$$

Throughout this paper, we shall use the following concepts and introduce the following useful lemmas.

Definition 1. The singular delay systems (8) is said to be regular and impulse free if the pair $\left(E, A+\sum_{i=1}^{k} A_{i}\right)$ is regular and impulse free ${ }^{[3]}$.

Lemma 1 (Krasovskii theorem [1]). The singular delay systems (8) is said to be locally asymptotically stable if there exists a positive definite symmetric matrix P, positive scalars $\pi_{1}, \pi_{2}, \pi_{3}, v$ and γ, for any initial condition $\phi(t)$ $\in C_{\tau}^{v}$, the trajectories of the singular delay systems (8) remain confined in the set $\Omega(P, E, \gamma)=\left\{x(t) \in R^{n} \mid\right.$ $\left.x^{T}(t) P^{-1} E x(t)<\gamma^{-1}, \gamma>0\right\}$, whereas, for a continuous function $\quad V(x(t), t): R^{n} \times R^{+} \rightarrow R \quad$ such that

$$
\begin{aligned}
& \pi_{1}\|x(t)\|^{2} \quad \leq V(x(t), t) \leq \pi_{2}\|x(t)\|^{2} \quad, \quad \text { and } \quad \text { if } \\
& \dot{V}(x(t), t) \leq-\pi_{3}\|x(t)\|^{2}, V(x(t), t) \leq V(\phi(0), 0) .
\end{aligned}
$$

Definition 2. The uncertain singular systems (Σ) is said to be robustly stable if the systems (Σ) with $u(t) \equiv 0, u\left(t-g_{i}(t)\right) \equiv 0, w(t) \in L_{2}[0, \infty)$ is regular, impulse free and locally asymptotically stable for all admissible uncertainties.

Definition 3. The uncertain singular delay systems (Σ) is said to be robustly stabilizable if there exists a linear state feedback control law $u(t)=\Lambda x(t), \Lambda \in R^{m \times n}$ such that the resultant closed-loop system is robustly stable in the sense of Definition 3. In this case, $u(t)=\Lambda x(t)$ is said to be a robust state feedback control law for system (Σ).

Lemma 2 [8]. Given vector x, y, a positive definite symmetric matrix R with appropriate dimensions, then for any scalar $\varepsilon>0$, we have

$$
\pm 2 x^{T} y \leq \varepsilon x^{T} R x+\varepsilon^{-1} y^{T} R^{-1} y
$$

Lemma 3 [8]. Given matrices A, Θ, Ξ, Γ and $F(\sigma)$ of appropriate dimensions and with Θ symmetrical and $F(\sigma)$ satisfying $F^{T}(\sigma) F(\sigma) \leq I$. Then we have:
a) If the following inequality holds,

$$
\Theta+\Gamma F(\sigma) \Xi+(\Gamma F(\sigma) \Xi)^{T}<0
$$

if and only if there exists a scalar $\varepsilon>0$ such that

$$
\Theta+\varepsilon \Gamma \Gamma^{T}+\varepsilon^{-1} \Xi^{T} \Xi<0
$$

b) For any symmetric matrix $P>0$ and scalar $\varepsilon>0$ such that $\varepsilon I-\Xi P \Xi^{T}>0$, then

$$
\begin{aligned}
& (A+\Gamma F(\sigma) \Xi) P(A+\Gamma F(\sigma) \Xi)^{T} \\
& \leq A P A^{T}+A P \Xi^{T}\left(\varepsilon I-\Xi P \Xi^{T}\right)^{-1} \Xi P A^{T}+\varepsilon \Gamma \Gamma^{T}
\end{aligned}
$$

III. ANALYSIS OF ROBUST STABILITY

A. Analysis of robust Stability of Systems (8)

The main result is derived as follows, it gives the sufficient condition of robust stability for the singular delay system (8).The proof of it is similar to [2] and [9] and is omitted.

Theorem 1. If there exists a series of positive definite symmetric $Q, Q_{1 i}, Q_{2 i}, Q_{3 i}, i=1 \cdots k$, a matrix P, and the scalars ε, γ and τ such that

$$
\begin{gather*}
E P^{T}=P E^{T} \geq 0 \tag{10a}\\
M=\left[\begin{array}{cccc}
W & \tau N_{1} & \tau N_{2} & \tau N_{3} \\
\tau N_{1}^{T} & \tau \Omega_{1} & 0 & 0 \\
\tau N_{2}^{T} & 0 & \tau \Omega_{2} & 0 \\
\tau N_{3}^{T} & 0 & 0 & \tau \Omega_{3}
\end{array}\right]<0 \tag{10b}\\
{\left[\begin{array}{cc}
Q & P^{T} \\
P & I
\end{array}\right] \geq 0} \tag{10c}
\end{gather*}
$$

where

$$
\begin{gathered}
W=\left(A_{0}+\sum_{i=1}^{k} A_{i}\right) P^{T}+P\left(A_{0}+\sum_{i=1}^{k} A_{i}\right)^{T} \\
+\tau \sum_{i=1}^{k} A_{i}\left(Q_{1 i}+Q_{2 i}+Q_{3 i}\right) A_{i}^{T}+\varepsilon E_{10} E_{10}^{T}+\varepsilon^{-1} P C^{T} K^{T} K C P^{T} \\
N_{1}=\left[P A_{0}^{T} \quad \cdots P A_{0}^{T}\right], N_{2}=\left[P A_{1}^{T} \quad P A_{2}^{T} \quad \cdots P A_{k}^{T}\right], \\
N_{3}=\left[P C^{T} K^{T} E_{10}^{T} P C^{T} K^{T} E_{10}^{T} \cdots P C^{T} K^{T} E_{10}^{T}\right], \\
\Omega_{1}=-\operatorname{diag}\left\{Q_{11}, Q_{12}, \cdots, Q_{1 k}\right\}, K=\operatorname{diag}\left\{k_{1}, \cdots k_{n}\right\}, \\
\Omega_{2}=-\operatorname{diag}\left\{Q_{21}, Q_{22}, \cdots, Q_{2 k}\right\}, \Omega_{3}=-\operatorname{diag}\left\{Q_{31}, Q_{32}, \cdots, Q_{3 k}\right\},
\end{gathered}
$$ then the singular delay system (8) is regular, impulse free and locally asymptotically stable for any initial condition belonging to the set $\Phi_{0}=\left\{\phi(t)\|\phi(t)\|^{2} \leq \delta\right\}$ with $\delta=\lambda_{\text {min }}(Q) / \gamma \pi_{2}$

where

$$
\begin{aligned}
\pi_{2}= & \lambda_{\max }\left(E P^{T}\right)+\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P A_{0}^{T} Q_{1 i}^{-1} A_{0} P^{T}\right] \\
& +\frac{3 k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P A_{i}^{T} Q_{2 i}^{-1} A_{i} P^{T}\right] \\
& \left.+\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P C^{T} K^{T} E_{10}^{T} Q_{3 i}^{-1} E_{10} K C P^{T}\right]\right)
\end{aligned}
$$

B. Disturbance-Free Case (with $w(t)=0$)

When $w(t)=0$, for the uncertain singular system (Σ), introduce the control law $u(t)=2 \Lambda x(t)$, where the control law gain matrix $\Lambda \in R^{m \times n}$ is to be found, and the closed-loop system is

$$
\begin{align*}
\left(\Sigma^{\prime}\right): E \dot{x}(t)= & \left(A_{0 \Delta}+B_{20 \Delta} \Lambda\right) x(t)+\sum_{i=1}^{k} A_{i \Delta} x\left(t-h_{i}(t)\right) \\
& +E_{10} f(\sigma(t))+\sum_{i=1}^{k} B_{2 i \Delta} \Lambda x\left(t-g_{i}(t)\right) \tag{11}\\
& +B_{20 \Delta} \eta(t)+\sum_{i=1}^{k} B_{2 i \Delta} \eta\left(t-g_{i}(t)\right) \\
x(t)= & \phi(t), t \in[-\tau, 0]
\end{align*}
$$

where $[\bullet]_{\Delta}=[\bullet]+\Delta[\bullet]([\bullet]$ denoting the matrix), and

$$
\eta(t)=\operatorname{sat}(2 \Lambda x(t))-\Lambda x(t)
$$

$$
\eta\left(t-g_{i}(t)\right)=\operatorname{sat}\left(2 \Lambda x\left(t-g_{i}(t)\right)-\Lambda x\left(t-g_{i}(t)\right)\right.
$$

Obviously, the vector function $\eta(t)$ satisfies the following inequality

$$
\begin{align*}
& \eta^{T}(t) \eta(t) \leq x^{T}(t) \Lambda^{T} \Lambda x(t) \tag{12}\\
& \eta\left(t-g_{i}(t)\right) \leq x^{T}\left(t-g_{i}(t)\right) \Lambda^{T} \Lambda x\left(t-g_{i}(t)\right)
\end{align*}
$$

By (4), one has $x(t) \in S\left(u_{0}, 1_{m}\right)$, where

$$
\begin{align*}
S\left(u_{0}, 1_{m}\right) & =\left\{x(t) \in R^{n} \mid\left\{u(t) \in R^{m} ;-u_{0(i)}\right.\right. \tag{13}\\
& \left.\leq \Lambda_{(i)} x(t) \leq u_{0(i)}, i=1, \cdots, m\right\}
\end{align*}
$$

Using the same method as theorem 1 and taking into (12), (13) and [7], furthermore introducing the idea of generalized quadratic stability and generalized quadratic stabilization in [3], one can deduce the following corollary.

Corollary 1 (Disturbance-free case). If there exist a series of positive definite symmetric $Q, Q_{1 i}, Q_{2 i}, Q_{3 i}$, $Q_{4 i}, Q_{5 i}, Q_{6 i}, R_{1 i}, R_{2 i}, R_{3 i}, R_{4 i}, R_{5 i}, R_{6 i}, i=1 \cdots k$, a matrix P, and the scalars $\varepsilon_{2}, \varepsilon_{3 i}, \gamma, i=1, \cdots, k$ and τ such that $M_{\Delta}<0, \Xi_{1} \geq 0, \Xi_{2} \leq 0$ and the expression of $E P^{T}=P E^{T} \geq 0$ hold, then the uncertain singular delay system (1) is regular, impulse free and locally asymptotically stable for any initial condition belonging to the set $\Phi_{0}=\left\{\phi(t)\|\phi(t)\|^{2} \leq \delta\right\}$ with $\delta=\frac{\lambda_{\text {min }}(Q)}{\gamma \pi_{2}}$,
where

$$
\begin{aligned}
\pi_{2}= & \lambda_{\max }\left(E P^{T}\right)+k \tau \lambda_{\max }\left(P \Lambda^{T} \Lambda P^{T}\right)+\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P \left(A_{0 \Delta}\right.\right. \\
& \left.\left.+B_{20 \Delta} \Lambda\right)^{T}\left(Q_{1 i}^{-1}+R_{1 i}^{-1}\right)\left(A_{0 \Delta}+B_{20 \Delta} \Lambda\right) P^{T}\right] \\
& +\frac{3 k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P A_{i \Delta}^{T}\left(Q_{2 i}^{-1}+R_{2 i}^{-1}\right) A_{i \Delta} P^{T}\right] \\
& +\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P C^{T} K^{T} E_{10}^{T}\left(Q_{3 i}^{-1}+R_{3 i}^{-1}\right) E_{10} K C P^{T}\right] \\
& +\frac{3 k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P\left(B_{2 i \Delta} \Lambda\right)^{T}\left(Q_{4 i}^{-1}+R_{4 i}^{-1}\right)\left(B_{2 i \Delta} \Lambda\right) P^{T}\right] \\
& +\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P\left(B_{20 \Delta} \Lambda\right)^{T}\left(Q_{5 i}^{-1}+R_{5 i}^{-1}\right)\right. \\
& \left.\times\left(B_{20 \Delta} \Lambda\right) P^{T}\right]+\frac{3 k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[P\left(B_{2 i \Delta} \Lambda\right)^{T}\right. \\
& \left.\times\left(Q_{6 i}^{-1}+R_{6 i}^{-1}\right)\left(B_{2 i \Delta} \Lambda\right) P^{T}\right]
\end{aligned}
$$

and

$$
\begin{gather*}
\Xi_{1}=\left[\begin{array}{cc}
P^{-1} E & \Lambda_{i}^{T} \\
\Lambda_{i} & \gamma u_{0 i}^{2}
\end{array}\right] \geq 0 \tag{14a}\\
\Xi_{2}=\left[\begin{array}{cc}
Q & P^{T} \\
P & I
\end{array}\right] \leq 0 \tag{14b}
\end{gather*}
$$

and M_{Δ} is shown in the next page, where $N_{3}, \Omega_{1}, \Omega_{2}$ and Ω_{3} are the same as theorem 1, and

$$
\begin{aligned}
W_{\Delta} & =\left(A_{0 \Delta}+\sum_{i=1}^{k} A_{i \Delta}+B_{20 \Delta} \Lambda+\sum_{i=1}^{k} B_{2 i \Delta} \Lambda\right) P^{T}+P\left(A_{0 \Delta}\right. \\
& \left.+\sum_{i=1}^{k} A_{i \Delta}+B_{20 \Delta} \Lambda+\sum_{i=1}^{k} B_{2 i \Delta} \Lambda\right)^{T}+\tau \sum_{i=1}^{k} A_{i \Delta}\left(Q_{1 i}\right. \\
& \left.+Q_{2 i}+Q_{3 i}+Q_{4 i}+Q_{5 i}+Q_{6 i}\right) A_{i \Delta}^{T}+\tau \sum_{i=1}^{k} B_{2 i \Delta} \Lambda\left(Q_{1 i}\right. \\
& \left.+Q_{2 i}+Q_{3 i}+Q_{4 i}+Q_{5 i}+Q_{6 i}\right)\left(B_{2 i \Delta} \Lambda\right)^{T} \\
& +\varepsilon_{1} E_{10} E_{10}^{T}+\varepsilon_{1}^{-1} P C^{T} K^{T} K C P^{T}+\varepsilon_{2} B_{20 \Delta} B_{20 \Delta}^{T} \\
& +\varepsilon_{2}^{-1} P \Lambda^{T} \Lambda P^{T}+\sum_{i=1}^{k} \varepsilon_{3 i} B_{2 i \Delta} B_{2 i \Delta}^{T}+\sum_{i=1}^{k} \varepsilon_{3 i}^{-1} P \Lambda^{T} \Lambda P^{T} \\
& N_{1 \Delta}=\left[P\left(A_{1 \Delta}+B_{20 \Delta} \Lambda\right)^{T} \cdots P\left(A_{1 \Delta}+B_{20 \Delta} \Lambda\right)^{T}\right], \\
N_{20} & =\left[P A_{1 \Delta}^{T} P A_{1 \Delta 2}^{T} \cdots P A_{k \Delta}^{T}\right]
\end{aligned}
$$

$N_{4 \Delta}=\left[P\left(B_{21 \Delta} \Lambda\right)^{T} \cdots P\left(B_{2 k \Delta} \Lambda\right)^{T}\right]=N_{6 \Delta}$,
$N_{5 \Delta}=\left[P\left(B_{20 \Delta} \Lambda\right)^{T}\right.$
$\Omega_{j}=-\operatorname{diag}\left\{Q_{j 1}, Q_{j 2}, \cdots, Q_{j k}\right\}, j=4,5,6$,
$\Omega_{j}^{\prime}=-\operatorname{diag}\left\{R_{j 1}, R_{j 2}, \cdots, R_{j k}\right\}, j=1,2, \cdots, 6$.
$M_{\Delta}=\left[\begin{array}{ccccccccccccc}W_{\Delta} & \tau N_{1 \Delta} & \tau N_{2 \Delta} & \tau N_{3} & \tau N_{4 \Delta} & \tau N_{5 \Delta} & \tau N_{6 \Delta} & \tau N_{1 \Delta} & \tau N_{2 \Delta} & \tau N_{3} & \tau N_{4 \Delta} & \tau N_{5 \Delta} & \tau N_{6 \Delta} \\ \tau N_{1 \Delta}^{T} & \tau \Omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{2 \Delta}^{T} & 0 & \tau \Omega_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{3}^{T} & 0 & 0 & \tau \Omega_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{4 \Delta}^{T} & 0 & 0 & 0 & \tau \Omega_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{5 \Delta}^{T} & 0 & 0 & 0 & 0 & \tau \Omega_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{6 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\ \tau N_{1 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{1}^{\prime} & 0 & 0 & 0 & 0 & 0 \\ \tau N_{2 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{2}^{\prime} & 0 & 0 & 0 & 0 \\ \tau N_{3}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{3}^{\prime} & 0 & 0 & 0 \\ \tau N_{4 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{4}^{\prime} & 0 & 0 \\ \tau N_{5 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{5}^{\prime} & 0 \\ \tau N_{6 \Delta}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{6}^{\prime}\end{array}\right]<0$
(14c)
In the following we shall discuss how to solve the control law gain matrix Λ in the following analysis by using LMI technology. Assume that there exist scalars $\beta_{0}, \beta_{i}, \beta_{j i}, \delta_{j i}>0$ and positive definite symmetric matrices $T_{0}, T_{i}, T_{j i}, P_{j i}$ such that the following inequalities are satisfied:

$$
\begin{align*}
& B_{20} B_{20}^{T}+B_{20} H_{4}^{T}\left(\beta_{0} I-H_{3} H_{3}^{T}\right)^{-1} H_{3} B_{20}^{T}+\beta_{0} G G^{T} \leq T_{0} \tag{15}\\
& B_{2 i} B_{2 i}^{T}+B_{2 i} H_{4 i}^{T}\left(\beta_{i} I-H_{4} H_{4 i}^{T}\right)^{-1} H_{4 i} B_{2 i}^{T}+\beta_{i} G G^{T} \leq T_{i} \tag{16}\\
& A_{i} Q_{j i} A_{i}^{T}+A_{i} Q_{j i} H_{2 i}^{T}\left(\beta_{j i} I-H_{2 i} Q_{j i} H_{2 i}^{T}\right)^{-1} H_{2 i} Q_{j i} A_{i}^{T} \tag{17}\\
& \quad+\beta_{i k} G G^{T} \leq T_{j i} \\
& \quad B_{2 i} Z_{j i} B_{2 i}^{T}+B_{2 i} Z_{j i} H_{4 i}^{T}\left(\delta_{j i} I-H_{4 i} Z_{j i} H_{4 i}^{T}\right)^{-1} \\
& \quad \times H_{4 i} Z_{j i} B_{2 i}^{T}+\delta_{j i} G G^{T} \leq P_{j i} \tag{18}
\end{align*}
$$

where $Z_{j i} \geq \Lambda Q_{j i} \Lambda^{T}, j=1, \cdots, 6, i=1, \cdots, k$, and

$$
\begin{align*}
& \beta_{0} I-H_{3} H_{3}^{T}>0, \beta_{i} I-H_{4 i} H_{4 i}^{T}>0, \\
& \beta_{i j} I-H_{2 i} Q_{j i} H_{2 i}^{T}>0, \delta_{j i} I-H_{4 i} Z_{j i} H_{4 i}^{T}>0 \tag{19}
\end{align*}
$$

Using Lemma $3 b$, we have

$$
\begin{align*}
& B_{20 \Delta} B_{20 \Delta}^{T} \leq T_{0}, B_{2 i \Delta} B_{2 i \Delta}^{T} \leq T_{i}, \\
& A_{i \Delta} Q_{j i} A_{i \Delta}^{T} \leq T_{j i}, B_{2 i \Delta} \Lambda Q_{j i} \Lambda^{T} B_{2 i \Delta}^{T} \leq P_{j i} \tag{20}
\end{align*}
$$

By Corollary 1, (2) and (20), it follows that

$$
\begin{equation*}
M_{\Delta}=\tilde{M}+\Theta_{1} F(x(t), t) \Theta_{2}+\left(\Theta_{1} F(x(t), t) \Theta_{2}\right)^{T}<0 \tag{21}
\end{equation*}
$$

where $\Theta_{1}=\operatorname{diag}\{G, G, \cdots, G\}, \Theta_{2}=\left[\begin{array}{cccc}\tilde{\Theta}_{2} & 0 & \cdots & 0\end{array}\right]$, and

$$
\begin{aligned}
& \tilde{\Theta}_{2}^{T}= {\left[P\left(H_{1}+\sum_{i} H_{2 i}+H_{3} \Lambda+\sum_{i} H_{4 i} \Lambda\right)^{T}, \tilde{\Theta}_{21}^{T}, \tilde{\Theta}_{21}^{T}\right], } \\
& \tilde{\Theta}_{21}^{T}= {\left[P\left(H_{1}+H_{3} \Lambda\right)^{T}, \cdots, P\left(H_{1}+H_{3} \Lambda\right)^{T}, P H_{21}^{T}, \cdots,\right.} \\
& P H_{2 k}^{T}, 0, \cdots, 0, P \Lambda^{T} H_{41}^{T}, \cdots, P \Lambda^{T} H_{4 k}^{T}, P \Lambda^{T} H_{3}^{T}, \\
&\left.\cdots, P \Lambda^{T} H_{3}^{T}, P \Lambda^{T} H_{41}^{T}, \cdots, P \Lambda^{T} H_{4 k}^{T}\right], \\
& \tilde{M}^{\prime}=\tilde{W}^{\prime}-\tau N_{1}\left(\Omega_{1}^{-1}+\Omega_{1}^{\prime-1}\right) N_{1}^{T}-\tau N_{2}\left(\Omega_{2}^{-1}+\Omega_{2}^{\prime-1}\right) N_{2}^{T} \\
&- \tau N_{3}\left(\Omega_{3}^{-1}+\Omega_{3}^{\prime-1}\right) N_{3}^{T}-\tau N_{4}\left(\Omega_{4}^{-1}+\Omega_{4}^{\prime-1}\right) N_{4}^{T} \\
&-\tau N_{5}\left(\Omega_{5}^{-1}+\Omega_{5}^{\prime-1}\right) N_{5}^{T}-\tau N_{6}\left(\Omega_{6}^{-1}+\Omega_{6}^{\prime-1}\right) N_{6}^{T} .
\end{aligned}
$$

where the matrix N_{i} is the matrix $N_{i \Delta}(i=1, \cdots, 6)$ without uncertainty in corollary 1 , and

$$
\begin{aligned}
\tilde{W}^{\prime}= & \left(A_{0}+\sum_{i=1}^{k} A_{i}+B_{20} \Lambda+\sum_{i=1}^{k} B_{2 i} \Lambda\right) P^{T}+P\left(A_{0}+\sum_{i=1}^{k} A_{i}\right. \\
& \left.+B_{20} \Lambda+\sum_{i=1}^{k} B_{2 i} \Lambda\right)^{T}+\varepsilon_{1} E_{10} E_{10}^{T}+\varepsilon_{1}^{-1} P C^{T} K^{T} K C P^{T} \\
& +\tau \sum_{j=1}^{6} \sum_{i=1}^{k} P_{j i}+\tau \sum_{j=1}^{6} \sum_{i=1}^{k} T_{j i}+\varepsilon_{2} T_{0}+\varepsilon_{2}^{-1} P \Lambda^{T} \Lambda P^{T} \\
& +\sum_{i=1}^{k} \varepsilon_{3 i} T_{i}+\sum_{i=1}^{k} \varepsilon_{3 i}^{-1} P \Lambda^{T} \Lambda P^{T}
\end{aligned}
$$

By Lemma $3 a$ and (21), we can obtain that there exists a scalar $\alpha>0$ such that

$$
\begin{equation*}
\tilde{M}^{\prime}+\alpha \Theta_{1} \Theta_{1}^{T}+\alpha^{-1} \Theta_{2}^{T} \Theta_{2}<0 \tag{22}
\end{equation*}
$$

For simplicity we introduce the matrix $\Upsilon \in R^{n \times(n-r)}$ satisfying $E \Upsilon=0$ and rank $\Upsilon=n-r$. It's easy to see that there exist invertible matrices L_{1} and $L_{2} \in R^{n \times n}$ from the proof of Theorem 1 such that

$$
\bar{P}=L_{1} P L_{2}^{-T}=\left[\begin{array}{cc}
\bar{P}_{11} & \bar{P}_{12} \\
0 & \bar{P}_{22}
\end{array}\right]
$$

where $\bar{P}_{11}=\bar{P}_{11}^{T} \geq 0, \bar{P}_{12} \in R^{r \times(n-r)}, \bar{P}_{22} \in R^{(n-r) \times(n-r)}$. On the other hand, from $E \Upsilon=0$ and rank $\Upsilon=n-r$, it implies that there exists an invertible matrix $\Gamma \in R^{(n-r) \times(n-r)}$ such that

$$
\Upsilon=L_{2}\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right] \Gamma
$$

Hence

$$
\begin{aligned}
P= & L_{1}^{-1}\left[\begin{array}{cc}
\bar{P}_{11} & \bar{P}_{12} \\
0 & \bar{P}_{22}
\end{array}\right] L_{2}^{T}=\left(L_{1}^{-1}\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] L_{2}^{-1}\right) \\
& \times\left(L_{2}\left[\begin{array}{cc}
\bar{P}_{11} & 0 \\
0 & I_{n-r}
\end{array}\right] L_{2}^{T}\right)+\left(L_{1}^{-1}\left[\begin{array}{l}
\bar{P}_{12} \\
\bar{P}_{22}
\end{array}\right] \Gamma^{-T}\right) \\
& \times\left(\Gamma^{T}\left[\begin{array}{ll}
0 & I_{n-r}
\end{array}\right] L_{2}^{T}\right) \triangleq E X+Y \Upsilon^{T}
\end{aligned}
$$

where

$$
X=L_{2}\left[\begin{array}{cc}
\bar{P}_{11} & 0 \\
0 & I_{n-r}
\end{array}\right] L_{2}^{T}>0, \quad Y=L_{1}^{-1}\left[\begin{array}{c}
\bar{P}_{12} \\
\bar{P}_{22}
\end{array}\right] \Gamma^{-T}
$$

Furthermore
$E P^{T}=E\left(E X+Y \Upsilon^{T}\right)^{T}=E X E^{T}=\left(E X+Y \Upsilon^{T}\right) E^{T}=P E^{T} \geq 0$
Define

$$
\Psi=\Lambda\left(E X+Y \Upsilon^{T}\right)^{T} \triangleq \Lambda \mathrm{Z}^{T}(X, Y)
$$

Without loss of generality, we can assume that $\mathrm{Z}(X, Y)=E X+Y \Phi^{T}$ is invertible. Define matrix $\tilde{M}^{\prime \prime}$, as shown at the top of the next page, where

$$
\begin{aligned}
\tilde{W}^{\prime \prime}= & \left(A_{0}+\sum_{i=1}^{k} A_{i}\right) Z^{T}(X, Y)+B_{20} \Psi+\sum_{i=1}^{k} B_{2 i} \Psi+Z(X, Y) \\
& \times\left(A_{0}+\sum_{i=1}^{k} A_{i}\right)^{T}+\left(B_{20} \Psi+\sum_{i=1}^{k} B_{2 i} \Psi\right)^{T}+\varepsilon_{1} E_{10} E_{10}^{T} \\
& +\varepsilon_{1}^{-1} Z(X, Y) C^{T} K^{T} K C Z^{T}(X, Y)^{T}+\tau \sum_{j=1}^{6} \sum_{i=1}^{k} P_{j i}
\end{aligned}
$$

$$
\begin{align*}
& \tilde{M}^{\prime \prime}=\left[\begin{array}{ccccccccccccc}
\tilde{W}^{\prime \prime} & \tau N_{1} & \tau N_{2} & \tau N_{3} & \tau N_{4} & \tau N_{5} & \tau N_{6} & \tau N_{1} & \tau N_{2} & \tau N_{3} & \tau N_{4} & \tau N_{5} & \tau N_{6} \\
\tau N_{1}^{T} & \tau \Omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{2}^{T} & 0 & \tau \Omega_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{3}^{T} & 0 & 0 & \tau \Omega_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{4}^{T} & 0 & 0 & 0 & \tau \Omega_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{5}^{T} & 0 & 0 & 0 & 0 & \tau \Omega_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{6}^{T} & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
\tau N_{1}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{1}^{\prime} & 0 & 0 & 0 & 0 & 0 \\
\tau N_{2}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{2}^{\prime} & 0 & 0 & 0 & 0 \\
\tau N_{3}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{3}^{\prime} & 0 & 0 & 0 \\
\tau N_{4}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{4}^{\prime} & 0 & 0 \\
\tau N_{5}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{5}^{\prime} & 0 \\
\tau N_{6}^{T} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \tau \Omega_{6}^{\prime}
\end{array}\right] \tag{23}\\
& \tilde{W}^{\prime \prime}=\left(A_{0}+\sum_{i=1}^{k} A_{i}\right) Z^{T}(X, Y)+B_{20} \Psi+\sum_{i=1}^{k} B_{2 i} \Psi+Z(X, Y) \\
& \times\left(A_{0}+\sum_{i=1}^{k} A_{i}\right)^{T}+\left(B_{20} \Psi+\sum_{i=1}^{k} B_{2 i} \Psi\right)^{T}+\varepsilon_{1} E_{10} E_{10}^{T} \\
& +\varepsilon_{1}^{-1} Z(X, Y) C^{T} K^{T} K C Z^{T}(X, Y)^{T}+\tau \sum_{j=1}^{6} \sum_{i=1}^{k} P_{j i} \\
& +\tau \sum_{j=1}^{6} \sum_{i=1}^{k} T_{j i}+\varepsilon_{2} T_{0}+\varepsilon_{2}^{-1} \Psi^{T} \Psi+\sum_{i=1}^{k} \varepsilon_{3 i} T_{i}+\sum_{i=1}^{k} \varepsilon_{3 i}^{-1} \Psi^{T} \Psi \\
& N_{1}=\left[Z(X, Y) A_{0}^{T}+\Psi^{\mathrm{T}} B_{20}^{T} \quad \cdots Z(X, Y) A_{0}^{T}+\Psi^{\mathrm{T}} B_{20}^{T}\right], \\
& N_{2}=\left[\begin{array}{lll}
Z(X, Y) A_{1}^{T} & Z(X, Y) A_{2}^{T} & \cdots Z(X, Y) A_{k}^{T}
\end{array}\right] \text {, } \\
& N_{3}=\left[Z(X, Y) C^{T} K^{T} E_{10}^{T} \quad Z(X, Y) C^{T} K^{T} E_{10}^{T}\right. \\
& \left.\cdots Z(X, Y) C^{T} K^{T} E_{10}^{T}\right] \text {, } \\
& N_{4}=\left[\Psi^{\mathrm{T}} B_{21}^{T} \quad \cdots \Psi^{\mathrm{T}} B_{2 k}^{T}\right]=N_{6}, \\
& N_{5}=\left[\begin{array}{lll}
\Psi^{\mathrm{T}} B_{20}^{T} & \cdots & \Psi^{\mathrm{T}} B_{20}^{T}
\end{array}\right] \text {, } \\
& \Omega_{j}=-\operatorname{diag}\left\{Q_{j 1}, Q_{j 2}, \cdots, Q_{j k}\right\} \text {, } \\
& \Omega_{j}^{\prime}=-\operatorname{diag}\left\{R_{j 1}, R_{j 2}, \cdots, R_{j k}\right\}, j=1,2, \cdots, 6 .
\end{align*}
$$

Through the upper analysis, now we can give the main result in this section.

Theorem 2: If there exist a series of positive definite symmetric $\quad X, Q_{j i}, R_{j i}, Z_{j i}, \bar{Z}_{j i}, T_{0}, T_{i}, T_{j i}, P_{j i}, V_{j i}, Q \quad, \quad$ a matrix $Y, \Psi \quad$ and the scalars $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3 i}, \beta_{0}, \beta_{i}, \beta_{j i}, \delta_{j i}, \alpha, \mu_{j i}, \gamma \quad$ and $\quad \tau \quad, \quad i=1, \cdots, k$, $j=1, \cdots, 6$ satisfying

$$
\begin{gather*}
E X+Y \Upsilon^{T} \geq \bar{Z}_{j i} \tag{24a}\\
\bar{Z}_{j i} \geq Q_{j i} \tag{24b}\\
{\left[\begin{array}{cc}
Z_{j i} & \Psi \\
\Psi^{T} & \bar{Z}_{j i}
\end{array}\right] \geq 0} \tag{24c}\\
{\left[\begin{array}{cc}
B_{20} B_{20}^{T}+\beta_{0} G G^{T}-T_{0} & B_{20} H_{3}^{T} \\
H_{3} B_{20}^{T} & H_{3} H_{3}^{T}-\beta_{0} I
\end{array}\right] \leq 0} \tag{24d}\\
{\left[\begin{array}{cc}
B_{2 i} B_{2 i}^{T}+\beta_{i} G G^{T}-T_{i} & B_{2 i} H_{4 i}^{T} \\
H_{4 i} B_{2 i}^{T} & H_{4 i} H_{4 i}^{T}-\beta_{i} I
\end{array}\right] \leq 0} \tag{24e}\\
{\left[\begin{array}{cc}
A_{i} Q_{j i} A_{i}^{T}+\beta_{j i} G G^{T}-T_{j i} & A_{i} Q_{j i} H_{2 i}^{T} \\
H_{2 i} Q_{j i} A_{i}^{T} & H_{2 i} Q_{j i} H_{2 i}^{T}-\beta_{j i} I
\end{array}\right] \leq 0} \tag{24f}
\end{gather*}
$$

$$
\begin{gather*}
{\left[\begin{array}{cc}
B_{2 i} Z_{j i} B_{2 i}^{T}+\delta_{j i} G G^{T}-P_{j i} & B_{2 i} Z_{j i} H_{4 i}^{T} \\
H_{4 i} Z_{j i} B_{2 i}^{T} & H_{4 i} Z_{j i} H_{4 i}^{T}-\delta_{j i} I
\end{array}\right] \leq 0} \tag{24g}\\
 \tag{24h}\\
{\left[\begin{array}{cc}
E Z^{T}(X, Y) & \Psi_{(i)}^{T} \\
\Psi_{(i)} & \gamma u_{0(i)}^{2}
\end{array}\right] \geq 0} \tag{24i}\\
 \tag{24j}\\
{\left[\begin{array}{cc}
Q & Z^{T}(X, Y) \\
Z(X, Y) & I
\end{array}\right] \leq 0} \\
\\
{\left[\begin{array}{ccc}
\tilde{M}^{\prime \prime} & \Theta_{1} & \Theta_{2}^{\prime T} \\
\Theta_{1}^{T} & -\alpha^{-1} I & \\
\Theta_{2}^{\prime} & & -\alpha I
\end{array}\right]<0}
\end{gather*}
$$

where $\Theta_{2}^{\prime}=\left[\Theta_{2} 0 \cdots 0\right]$ and Θ_{2} is defined in (21) setting $P=Z(X, Y), \Lambda P^{T}=\Psi$, then the uncertain delay singular system (1) with the feedback gain $\Lambda=\Psi Z^{-T}(X, Y)$ is robust stable for any initial condition belonging to the set $\Phi_{0}=\left\{\phi(t)\|\phi(t)\|^{2} \leq \delta\right\}$ with $\delta=\frac{\lambda_{\text {min }}(Q)}{\gamma \pi_{2}}$, where

$$
\begin{aligned}
& \pi_{2}=\lambda_{\max }\left(E Z^{T}(X, Y)\right)+k \tau \lambda_{\max }\left(\Psi^{T} \Psi\right) \\
& \quad+\frac{k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[V_{1 i}+V_{3 i}+V_{5 i}\right] \\
& \quad+\frac{3 k \tau^{2}}{2} \max _{i} \lambda_{\max }\left[V_{2 i}+V_{4 i}+V_{6 i}\right]
\end{aligned}
$$

The positive definite symmetric matrix $V_{j i}$ and the scalars $\mu_{j i}$ can be solved by the following matrices inequalities

$$
\begin{align*}
& {\left[\begin{array}{ll}
\Pi_{11} & \Pi_{12} \\
\Pi_{12}^{T} & \Pi_{22}
\end{array}\right] \leq 0} \tag{25a}\\
& \Pi_{11}=\left(Z(X, Y) A_{0}^{T}+\Psi^{T} B_{20}^{T}\right)\left(Q_{1 i}^{-1}+R_{1 i}^{-1}\right)\left(A_{0} Z^{T}(X, Y)\right. \\
& \left.+B_{20} \Psi\right)+\mu_{1 i} G G^{T}-V_{1 i} \\
& \Pi_{12}=\left(Z(X, Y) A_{0}^{T}+\Psi^{T} B_{20}^{T}\right)\left(Q_{1 i}^{-1}+R_{1 i}^{-1}\right)\left(H_{1} Z^{T}(X, Y)+H_{3} \Psi\right) \text {, } \\
& \Pi_{22}=\left(H_{1} Z^{T}(X, Y)+H_{3} \Psi\right)^{T}\left(Q_{1 i}^{-1}+R_{1 i}^{-1}\right)\left(H_{1} Z^{T}(X, Y)\right. \\
& \left.+H_{3} \Psi\right)-\mu_{1 i} I \\
& {\left[\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{12}^{T} & \Theta_{22}
\end{array}\right] \leq 0} \tag{25b}\\
& \Theta_{11}=Z(X, Y) A_{i}^{T}\left(Q_{2 i}^{-1}+R_{2 i}^{-1}\right) A_{0} Z^{T}(X, Y)+\mu_{2 i} G G^{T}-V_{2 i} \text {, } \\
& \Theta_{12}=Z(X, Y) A_{i}^{T}\left(Q_{2 i}^{-1}+R_{2 i}^{-1}\right) H_{2 i} Z^{T}(X, Y) \text {, } \\
& \Theta_{22}=Z(X, Y) H_{2 i}^{T}\left(Q_{1 i}^{-1}+R_{1 i}^{-1}\right) H_{2 i} Z^{T}(X, Y)-\mu_{2 i} I \\
& {\left[\begin{array}{cc}
V_{3 i} & C^{T} K^{T} E_{10}^{T} \\
E_{10} K C & -\left(Q_{3 i}^{-1}+R_{3 i}^{-1}\right)^{-1} I
\end{array}\right] \geq 0} \tag{25c}\\
& {\left[\begin{array}{cc}
\Psi^{T} B_{2 i}^{T}\left(Q_{4 i}^{-1}+R_{4 i}^{-1}\right) B_{2 i} \Psi+\mu_{4 i} G G^{T}-V_{4 i} & \Psi^{T} B_{2 i}^{T}\left(Q_{4 i}^{-1}+R_{4 i}^{-1}\right) H_{4 i} \Psi \\
{\left[\Psi^{T} B_{2 i}^{T}\left(Q_{4 i}^{-1}+R_{4 i}^{-1}\right) H_{4 i} \Psi\right]^{T}} & \Pi_{22}^{\prime}
\end{array}\right] \leq 0} \\
& \Pi_{22}^{\prime}=\left(H_{4 i} \Psi\right)^{T}\left(Q_{4 i}^{-1}+R_{4 i}^{-1}\right)\left(H_{4 i} \Psi\right)-\mu_{4 i} I \tag{25d}
\end{align*}
$$

$\left[\begin{array}{cc}\Psi^{T} B_{20}^{T}\left(Q_{s i}^{-1}+R_{5 i}^{-1}\right) B_{20} \Psi+\mu_{5 i} G G^{T}-V_{5 i} & \Psi^{T} B_{20}^{T}\left(Q_{s i}^{-1}+R_{5 i}^{-1}\right) H_{3} \Psi \\ {\left[\Psi^{T} B_{20}^{T}\left(Q_{5 i}^{-1}+R_{5 i}^{-1}\right) H_{3} \Psi\right]^{T}} & \Theta_{22}^{\prime}\end{array}\right] \leq 0$

$$
\left[\begin{array}{cc}
\Psi^{T} B_{2 i}^{T}\left(Q_{6 i}^{-1}+R_{6 i}^{-1}\right) B_{2 i} \Psi+\mu_{6 i} G G^{T}-V_{6 i} & \Psi^{T} B_{2 i}^{T}\left(Q_{6 i}^{-1}+R_{6 i}^{-1}\right) H_{4 i} \Psi \tag{25e}\\
{\left[\Psi^{T} B_{2 i}^{T}\left(Q_{6 i}^{-1}+R_{6 i}^{-1}\right) H_{4 i} \Psi\right]^{T}} & \Xi_{22}
\end{array}\right] \leq 0
$$

C. Disturbance Case (with $w(t) \neq 0$)

When $w(t) \neq 0$, we assume that $w^{T}(t) w(t) \leq w_{0}^{-1}$. In the conditions described below, the matrices $\tilde{M}^{\prime \prime}, \Theta_{1}$ and Θ_{2}^{\prime} are the matrices defined in Theorem 2 with $j=1, \cdots, 7$.

Theorem 3. For given $w_{0}>0$, if there exist a series of positive definite symmetric $X, Q_{j i}, R_{j i}, Z_{j i}, \bar{Z}_{j i}, T_{0}, T_{i}, T_{j i}, P_{j i}, V_{j i}, Q$, a matrix Y, Ψ, and the scalars $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3 i}, \beta_{0}, \beta_{i}, \quad \beta_{j i}, \delta_{j i}, \alpha, \mu_{j i}, \gamma, \nu, \nu$ and τ, satisfying (35a-i) for $i=1, \cdots, k, j=1, \cdots, 7$ and

$$
\left[\begin{array}{cccccc}
W_{11} & \Theta_{1} & \Theta_{2}^{\prime T} & B_{10} Z^{T}(X, Y) & 0 & 0 \\
\Theta_{1}^{T} & -\alpha^{-1} I & 0 & 0 & 0 & 0 \\
\Theta_{2}^{\prime} & 0 & -\alpha I & 0 & 0 & 0 \\
Z(X, Y) B_{10}^{T} & 0 & 0 & -v I & \tau N_{7} & \tau N_{7} \\
0 & 0 & 0 & \tau N_{7}^{T} & \tau \Omega_{7} & 0 \\
0 & 0 & 0 & \tau N_{7}^{T} & 0 & \tau \Omega_{7}^{\prime}
\end{array}\right]<0
$$

$$
\begin{equation*}
-v w_{0}+v \gamma \leq 0 \tag{26a}
\end{equation*}
$$

$$
\begin{equation*}
-w_{0}+\frac{\tau}{2} v \gamma \leq 0 \tag{26b}
\end{equation*}
$$

where 0 denotes the zero matrix with appropriate dimensions, and

$$
\begin{aligned}
& W_{11}=\tilde{M}^{\prime \prime}+\left[\begin{array}{cc}
\nu E Z^{T}(X, Y) & 0_{n \times 12 k n} \\
0_{12 k n \times n} & 0_{12 k n \times 12 k n}
\end{array}\right], \\
& N_{7}=\left[Z(X, Y) B_{10}^{T} \cdots Z(X, Y) B_{10}^{T}\right], \\
& \Omega_{7}=-\operatorname{diag}\left\{Q_{71}, Q_{72}, \cdots, Q_{7 k}\right\}, \\
& \Omega_{7}^{\prime}=-\operatorname{diag}\left\{R_{71}, R_{22}, \cdots, R_{7 k}\right\} .
\end{aligned}
$$

then the feedback gain $\Lambda=\Psi Z^{-T}(X, Y)$, the scalar δ defining in the set $\Phi_{0}=\left\{\phi(t)\|\phi(t)\|^{2} \leq \delta\right\}$ with $\delta=\frac{\lambda_{\text {min }}(Q)\left(w_{0}-\frac{\tau}{2} v \gamma\right)}{\gamma w_{0} \pi_{2}}$, where π_{2} is defined in Theorem 2, and the closed-loop trajectories remain confined in the set $\Omega(P, E, \gamma)=\left\{x(t) \in R^{n} \mid x^{T}(t) P^{-1} E x(t)<\gamma^{-1}, \gamma>0\right\}$.

IV. ILLUSTRATIVE EXAMPLE

Consider an uncertain time-delay singular system (1) with $k=1$ with an actuator saturated at level ± 1 and a dynamic described as follows:
$E=\left[\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right], A_{0}=\left[\begin{array}{ll}-1 & 0 \\ -1 & 2\end{array}\right], A_{1}=\left[\begin{array}{cc}-0.1 & -0.1 \\ 0.3 & 0.2\end{array}\right], w_{0}=1.2$,
$B_{10}=\left[\begin{array}{l}0.7 \\ 0.8\end{array}\right], B_{20}=\left[\begin{array}{l}0.3 \\ 0.5\end{array}\right], B_{21}=\left[\begin{array}{l}0.1 \\ 0.2\end{array}\right], E_{10}=\left[\begin{array}{cc}0.4 & 0.3 \\ -0.3 & 0.2\end{array}\right]$,
$K=\left[\begin{array}{ll}0.4 & \\ & 0.6\end{array}\right], C=\left[\begin{array}{cc}-1 & 1 \\ 0.6 & -2\end{array}\right], G=\left[\begin{array}{l}0.3 \\ 0.5\end{array}\right], u_{0}=10$,
$H_{1}=\left[\begin{array}{ll}0.2 & 0.5\end{array}\right], H_{21}=\left[\begin{array}{ll}0.1 & 0.2\end{array}\right], H_{3}=0.3, H_{41}=0.2$.
It's easy to see $\Phi=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$. Applying Theorem 3 to this uncertain time-delay singular system, it is found, using the software package LMI lab, that this system is regular, impulse free and locally asymptotically stable for any time-delay $\tau \leq 0.6684$, When $\tau=0.5$, the corresponding calculation results are as follows:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
6.0657 & 4.7504 \\
4.7504 & 6.0657
\end{array}\right], \quad Y=\left[\begin{array}{l}
-1.1697 \\
-2.3394
\end{array}\right], \\
& \Psi=\left[\begin{array}{ll}
-0.6008 & -1.2016
\end{array}\right], \\
& \Lambda=\left[\begin{array}{ll}
0.2284 & -0.2284
\end{array}\right], \quad \gamma=1.0953
\end{aligned}
$$

Hence, the corresponding optimal value of δ is 0.7849 . Owing to be out of tuning of parameters, it is obvious to see that the process of calculation is simple as the method presented in [7].

REFERENCES

[1] J.K. Hale, Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.
[2] L. Dai, Singular Control Systems. Berlin: Springer-Verlag; 1989.
[3] S. Xu, P.V. Dooren, R. Stefan, and J. Lam, "Robust stability and stabilization for singular systems with state delay and parameter uncertainty", IEEE Trans. Automat. Control, Vol. 47, pp. 1122-1128, 2002.
[4] S. Xu, J. Lam, and L. Zhang, "Robust D-Stability analysis for uncertain discrete singular systems with state delay", IEEE Trans.Circuits Syst. I, Vol. 49, pp. 551-555, 2002.
[5] P.Shi and V.Dragan, "Asymptotic H_{∞} Control of Singular Perturbed Systems with Parametic Uncertainties", IEEE Trans. Automat. Control, Vol. 44, No. 9, pp. 1738-1742, 1999.
[6] S. Tarbouriech, P.L.D. Peres, G. Garcia, and I. Queinnec, "Delay-dependent stabilization and disturbance tolerance for time-delay systems subject to actuator saturation", IEE Proc. -Control Theory Appl., Vol. 149, pp. 387-393, 2002.
[7] H. -Y. Su, F. Liu and J. Chu, "Robust stabilization of uncertain time-delay systems containing saturating actuators", IEE Proc. -Control Theory Appl., Vol. 148, pp. 323-328, 2001.
[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM, 1994.
[9] R. -Q. Lu, H. -Y. Su and J. Chu, "Roust H_{∞} Control for A Class of Uncertain Lur'e Singular Systems with Time-Delays", in Proc. IEEE Conf. Decision \& Control Hawaii 2003, pp. 5585-559.

[^0]: Manuscript received September 20, 2003. This work was supported by the National Outstanding Youth Science Foundation of P. R. China (NSFC: 60025308), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE P. R. China and the National Natural Science Foundation of P. R. China (NSFC: 10371106)
 W. N. Zhou is with the National Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Yuquan Campus, Hangzhou 310027, P. R. China and the Mathematics Institute, Zhejiang Normal University, Jinhua 321004, P. R. China (e-mail: wnzhou@mail.zjnu.net.cn).
 R. Q. Lu, H. Y. Su, and J. Chu are with the National Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Yuquan Campus, Hangzhou 310027, P. R. China (e-mail: rqlu@iipc.zju.edu.cn, hysu@iipc.zju.edu.cn, chuj@iipc.zju.edu.cn).

