Exponential representations of two-input nonlinear discrete-time dynamics

Salvatore Monaco, Marie-Dorothee Normand-Cyrot and Claudia Califano

Abstract

A differential/difference representation of nonlinear multi-input discrete-time dynamics is introduced. On these bases, the exponential representation of the associated flow is explicitely characterized in the two-input case. The specific case of sampled dynamics is discussed and illustrated by a chained dynamics.

Index Terms-Nonlinear discrete-time systems, multi-input dynamics, sampled systems, exponential series.

I. INTRODUCTION

Exponential representations of flows associated with the solution to differential equations are well known tools in the continuous-time case when considering autonomous or controlled equations (see for example ([1], [3], [10]), while quite unexplored in the discrete-time context. Given a nonlinear first-order difference equation of the form

$$
x(k+1)=F(x(k), u(k))
$$

it has been shown in [6] that, under some suitable conditions, such a difference equation can be rewritten as a differential equation with respect to the control variable with state initialization specified by the drift term. It results that its behaviour over several steps can be revisited as continuous with respect to the control with instantaneous jumps piloted by the drift. In this context, the notion of flow characterizing the evolution along the control variable or equivalently the solution of the so built differential equation, makes sense. In [7], an exponential representation of this flow has been given and completely specified for the singleinput case. The present paper extends this result to the multiinput case. The main difficulty comes out from the nonlinear dependency on several input variables resulting in a system of partial-derivative equations. The specific case of sampled dynamics is discussed and illustrated by a chained dynamics.

The paper is organized as follows. Section 2 introduces the differential representation of a multi-input difference equation. Section 3 gives the exponential form representation of the associated flow. The sampled case is discussed in Section 4 with an example. Some notations are given below.

- Throughout the paper $x \in \mathcal{X}$, an open set of R^{n} - which can be all $R^{n}-, u \in \mathcal{U}^{m}$, a neighborhood of 0 in R^{m}; the mapping $x \rightarrow F(x, u)$, describing forced
S. Monaco and C. Califano are with Dipartimento di Informatica e Sistemistica "Antonio Ruberti", Università di Roma "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy. salvatore.monaco@uniroma1.it, claudia.califano@uniroma1.it

Marie-Dorothée Normand-Cyrot is with Laboratoire des Signaux et Systèmes, CNRS, Supélec, Plateau de Moulon, 91190 Gif-sur-Yvette, France. cyrot@lss.supelec.fr
discrete-time dynamics is an R^{n}-valued function, analytic on its domain of definition which contains a neighborhood of $u=0$, the mapping $x \rightarrow F_{0}(x):=F(x, 0)$ describes the free evolution or drift term, all the vector fields are assumed analytic on their domains of definitions - infinitely differentiable admitting convergent Taylor series expansions in a neighborhood of each point of \mathcal{X} - and complete when necessary - the associated flow is defined at any time and for any initial condition -.

- Given a generic map on \mathcal{X}, its evaluation at a point x is denoted either by " (x) " or " $\left.\right|_{x}$ ". Given a function $\lambda: \mathcal{X} \rightarrow R$ and a vector field θ on $\mathcal{X}-\theta(x) \in T_{x} \mathcal{X}$ - , the differential operator L_{θ} acts on λ as $L_{\theta} \lambda:=\frac{\partial \lambda}{\partial x} \theta$ so giving the Lie derivative of λ along θ. The repeated use of this Lie derivative gives for $k>0, \quad L_{\theta}^{k} \lambda:=\frac{\partial L_{\theta}^{k-1} \lambda}{\partial x} \theta$ with $L_{\theta}^{k}:=$ $L_{\theta} \circ \cdots \circ L_{\theta} ; k$-times and $L_{\theta}^{0}=I$, the identity operator. Given another vector field σ on $\mathcal{X},[\theta, \sigma]$ denotes the usual Lie bracket of vector fields; $L_{[\theta, \sigma]} I_{n}=\left(L_{\theta} \circ L_{\sigma}-L_{\sigma} \circ L_{\theta}\right) I_{n}$, where I_{n} indicates the identity function on $\mathcal{X} ; \operatorname{ad}_{\theta}(\sigma):=$ $[\theta, \sigma], a d_{\theta}^{0}(\sigma):=\sigma$, and for $k>0, a d_{\theta}^{k+1}(\sigma):=\left[\theta, a d_{\theta}^{k}(\sigma)\right]$.
- Given a formal indeterminate ψ, the notations "e $e^{\psi "}$ and ${ }^{"} \log (I+\psi) "$ stand for the usual exponential and logarithmic Taylor series expansions of the indeterminate into parentheses; i.e.

$$
\begin{aligned}
e^{\psi} & =I+\sum_{i \geq 1} \frac{\psi^{i}}{i!} \\
\log (I+\psi) & =\sum_{i \geq 1} \frac{(-1)^{i-1} \psi^{i}}{i} .
\end{aligned}
$$

As an example, if $\psi=L_{\theta}, e^{L_{\theta}}=I+\sum_{k \geq 1} \frac{L_{e}^{k}}{k!}$. The following property holds

$$
\left.e^{L_{\theta}} \lambda\right|_{x}:=\lambda(x)+\sum_{k \geq 1} \frac{L_{\theta}^{k} \lambda}{k!}(x)=\lambda\left(\left.e^{L_{\theta}} I_{n}\right|_{x}\right) .
$$

For notational convenience, e^{θ} can also be used instead of $e^{L_{\theta}}$.

- In the sequel, a Lie monomial of a given set of indeterminates - vector fields - indicates a Lie bracket of them, a Lie polynomial indicates a finite sum with real coefficients of Lie monomials and a Lie series indicates an infinite sum of Lie polynomials. When a degree is assigned to each vector field, the notions of degree for monomials and homogeneity for polynomials are the usual ones.
- When not explicitely specified, convergence issues of the series manipulated will not be addressed in this formal context.

II. THE CONTEXT AND PROBLEM STATEMENT

This section extends to the multi-input case the representations introduced in [6] for single-input dynamics.

A. Differential/difference representations of multi-input nonlinear discrete-time dynamics

Let a multi-input nonlinear difference equation be

$$
\begin{equation*}
x(k+1)=F(x(k), u(k)) \tag{1}
\end{equation*}
$$

where $x \in R^{n}, u=\left(u_{1}, \ldots, u_{m}\right)^{T} \in \mathcal{U}^{m}$ with $F_{0}(x):=$ $F(x ; 0)$ and assume $\operatorname{rank}\left(\frac{\partial F}{\partial u}\right)=m$.
The following assumption is made.
H1: There exist m analytic vector fields, $\left({ }_{i} G(., u) ; i=\right.$ $(1, \ldots, m)$), satisfying

$$
\begin{equation*}
\frac{\partial F(\cdot, u)}{\partial u_{i}}={ }_{i} G(F(\cdot, u), u) . \tag{2}
\end{equation*}
$$

Remark. The invertibility of $F_{0}(x)$ is sufficient to guarantee H1 so that, in such a case, ${ }_{i} G(x, u)$ is locally uniquely defined as

$$
\begin{equation*}
{ }_{i} G(x, u):=\left.\frac{\partial F(x, u)}{\partial u_{i}}\right|_{x=F^{-1}(x, u)} . \tag{3}
\end{equation*}
$$

Sampled dynamics enter in such a class. \triangleleft
The following relations are directly deduced from $\mathbf{H 1}$ due to commutativity of the partial-derivatives operators. Indicating by $J_{x}[$.$] the Jacobian, we deduce from (2),$

$$
\begin{aligned}
\frac{\partial^{2} F(x ; u)}{\partial u_{i} \partial u_{j}} & =\left.L_{i} G(., u)^{\circ} L_{j} G(., u) I_{n}\right|_{F(x ; u)} \\
& =\left.\left(J_{x}\left[{ }_{j} G(., u)\right]_{i} G(., u)+\frac{\partial_{j} G(., u)}{\partial u_{i}}\right)\right|_{F(x ; u)}
\end{aligned}
$$

equal to

$$
\begin{aligned}
\frac{\partial^{2} F(x ; u)}{\partial u_{j} \partial u_{i}} & =\left.L_{j G(\cdot, u)}{ }^{\circ} L_{i} G(., u) I_{n}\right|_{(F(x ; u), u)} \\
& =\left.\left(J_{x}\left[{ }_{i} G(., u)\right]_{j} G(\cdot, u)+\frac{\partial_{i} G(., u)}{\partial u_{j}}\right)\right|_{F(x ; u)}
\end{aligned}
$$

which can be rearranged to state what we will refer to as the compatibility conditions.
Compatibility conditions - A family of u-dependent vector fields $\left({ }_{i} G(., u) ; i=(1, \ldots, m)\right)$ satisfy the compatibility conditions if, for any $(i, j) \in(1, \ldots, m)$ with $i \neq j$ and $u \in \mathcal{U}^{m}$, the equalities below are satisfied on \mathcal{X}

$$
\begin{equation*}
\left.\left[{ }_{i} G(., u),{ }_{j} G(., u)\right]\right|_{x}=\frac{\partial_{i} G(x, u)}{\partial u_{j}}-\frac{\partial_{j} G(x, u)}{\partial u_{i}} \tag{4}
\end{equation*}
$$

Provided the compatibility conditions are satisfied and adopting the notation $x^{+}(u)$ to represent a curve in R^{n} parameterized by $u \in \mathcal{U}^{m}$, it makes sense now to represent a discrete-time dynamics of the form (1) satisfying H1, as a system of coupled differential/difference equations. We set

Definition 2.1: Analytically parameterized discrete-time dynamics- APDTD
Let $(x, u) \in \mathcal{X} \times \mathcal{U}^{m}$ and assume maps and vector fields analytic in their arguments. Given a map F_{0} on R^{n} and m vector fields $\left({ }_{i} G(., u) ; u \in \mathcal{U}^{m}\right)$ on \mathcal{X}, complete and satisfying the compatibility conditions, an APDTD is defined by the system of differential/difference equations

$$
\begin{align*}
x^{+} & =F_{0}(x) \tag{5}\\
\frac{\partial x^{+}(u)}{\partial u_{i}} & ={ }_{i} G\left(x^{+}(u), u\right) ; i=(1, \cdots, m) ; x^{+}(0)=x^{+} . \tag{6}
\end{align*}
$$

For a given $(x, u) \in \mathcal{X} \times \mathcal{U}^{m}$, integrating (6) with respect to each u_{i} and evaluating the result at (5), we get a mapping $F(x, u)=x^{+}(u)$ so illustrating how a discrete-time dynamics can be revisited as a trajectory in R^{n}, parameterized by u accordingly to (6) and passing through $x^{+}(0)=F_{0}(x)$.
In this differential geometric context, the aim of this paper is to specify the exponential representation of the flow which characterizes the solution to (6). Two main difficulties occur, due to the nonlinearity in u of each equation in (6) and due to the coupled interaction between them as partialderivatives.

B. Recalls about the single-input case

In this paragraph, we refer to the previous notations setting $m=1$ and denoting without ambiguity ${ }_{1} G(., u)$ by $G(., u)$ and by G_{i} the vector fields characterizing the series expansion around u of $G(., u)$; i.e.

$$
\begin{equation*}
G(., u)=G_{1}(.)+u G_{2}(.)+\sum_{i \geq 2} \frac{u^{i}}{i!} G_{i+1}(.) \tag{7}
\end{equation*}
$$

Given a single-input difference equation of the form (1) satisfying H1 and referring to the literature about differential geometry, formal calculus and combinatorics (see for example [2], [4], [9], [11]), it has been shown in [7] that the solution to (6) admits an exponential representation with exponent described by a Lie element in the vector fields G_{i}. More precisely, let $\phi(u, 0, \cdot)$ be the flow associated with $G(., u)$, the unique solution of

$$
\begin{equation*}
\frac{\partial \phi(u, 0, \cdot)}{\partial u}=G(\phi(u, 0, \cdot), u) ; \quad \phi(0,0, \cdot)=I_{n} \tag{8}
\end{equation*}
$$

and let $\overrightarrow{\exp } \int_{0}^{u} L_{G(\cdot, v)} d v$, the right chronological exponential defined by its asymptotic expansion (see [1] [11])

$$
\begin{gathered}
\overrightarrow{\exp } \int_{0}^{u} L_{G(., v)} d v:=I+ \\
\sum_{p \geq 1} \int_{0}^{u} \int_{0}^{v_{1}} \ldots \int_{0}^{v_{p-1}} L_{G\left(., v_{p}\right)}^{\circ} \ldots \circ L_{G\left(., v_{1}\right)} d v_{p} \ldots d v_{1}
\end{gathered}
$$

we have

$$
\begin{equation*}
\phi(u, 0, \cdot)=\overrightarrow{\exp } \int_{0}^{u} L_{G(., v)} d v I_{n}=e^{u \mathcal{G}(., u)} I_{n} \tag{9}
\end{equation*}
$$

where the exponent $u \mathcal{G}(., u)$ is described by its expansion

$$
\begin{equation*}
u \mathcal{G}(., u)=\sum_{p \geq 1} u^{p} \mathcal{B}_{p}\left(G_{1}, \ldots, G_{p}\right) \tag{10}
\end{equation*}
$$

where $\mathcal{B}_{p}\left(G_{1}, \ldots, G_{p}\right)$ stands for a homogeneous Lie polynomial of degree p in its arguments. The decomposition of each \mathcal{B}_{p} as a Lie polynomial in the G_{i} 's can be iteratively deduced from the formal equality

$$
\begin{equation*}
\frac{\partial}{\partial u} u \mathcal{G}(., u)=Z\left(-a d_{u \mathcal{G}(., u)}\right) G(., u) \tag{11}
\end{equation*}
$$

where the function $Z($.$) is defined for any formal indeter-$ minate ψ by its Taylor expansion

$$
Z(-\psi)=\frac{\psi}{1-e^{-\psi}}=\sum_{i \geq 0}(-1)^{i} b_{i} \frac{\psi^{i}}{i!}
$$

The coefficients b_{i} are the Bernoulli numbers. For the first ones: $b_{0}=1, b_{1}=-1 / 2, b_{2}=1 / 6, b_{2 k+1}=0$ for $k>0$, $b_{4}=-1 / 30, b_{6}=1 / 42$. We get for $p \geq 1, \Sigma_{q=1}^{j} l_{q}+k=p$
$\mathcal{B}_{p}=\frac{G_{p}}{p!}+\sum_{k=1}^{p-1} \sum_{j \geq 1} \sum_{l_{1}, \ldots, l_{j} \geq 1} \frac{(-1)^{j} b_{j}}{j!} a d_{\mathcal{B}_{l_{1}}} \circ \ldots \circ a d_{\mathcal{B}_{l_{j}}} \frac{G_{k}}{(k-1)!}$
and for the first terms we get
$\mathcal{B}_{1}=G_{1}, \quad \mathcal{B}_{2}=\frac{1}{2!} G_{2}$,
$\mathcal{B}_{3}=\frac{1}{3!}\left(G_{3}+1 / 2\left[G_{1}, G_{2}\right]\right), \quad \mathcal{B}_{4}=\frac{1}{4!}\left(G_{4}+\left[G_{1}, G_{3}\right]\right)$.

C. Some notations in the multi-input case

In the sequel, indicating as $i_{1} \cdots i_{p} G_{p+1}(., u)$, any partial derivative of order p of ${ }_{i} G(., u)$ with respect to $u_{i_{1}} \ldots u_{i_{p}}$; i.e.

$$
{ }_{i i_{1} \cdots i_{p}} G_{p+1}(., u):=\frac{\partial^{p}{ }_{i} G(., u)}{\partial u_{i_{p}} \cdots \partial u_{i_{1}}}
$$

the series expansion of ${ }_{i} G(., u)$ around $u=0$ is given by
${ }_{i} G(., u)={ }_{i} G_{1}+\sum_{p \geq 1} \sum_{i_{1}, \ldots, i_{p}=1}^{m} \frac{u_{i_{1}} \ldots u_{i_{p}}}{p!}\left({ }_{i i_{1} \cdots i_{p}} G_{p+1}\right)$
with $\quad{ }_{i} G_{1} \quad:=\left.{ }_{i} G(., u)\right|_{u=0} \quad$ and $\quad i i_{1} \cdots i_{p} G_{p+1} \quad:=$ $\left.{ }_{i i_{1} \cdots i_{p}} G_{p+1}(., u)\right|_{u=0}$.
Denoting by $i^{p+1}:=(i, \ldots, i)$ a multi-index of length $p+1$, with all elements equal to i, we analogously set
$\left.{ }_{i}{ }^{p+1} G(\cdot, u)\right|_{u_{i}=0}:=\left.\frac{\partial^{p} G(\cdot, u)}{\partial u_{i}^{p}}\right|_{u_{i}=0}$ so that the series ex-
pansion of ${ }_{i} G(., u)$ around $u_{i}=0$, for $u_{j}=C$ st when $j \neq i$, is given by

$$
{ }_{i} G(\cdot, u)=\left.{ }_{i} G(\cdot, u)\right|_{u_{i}=0}+\sum_{p \geq 1} \frac{u_{i}^{p}}{p!}\left(\left.{ }_{i^{p+1}} G(\cdot, u)\right|_{u_{i}=0}\right) .
$$

By convention, any $i_{1} \cdots i_{p} G_{p+1}$ will be said of degree $p+1$ and by construction, for any permutation σ of a multi-index $\left(i_{1}, \ldots, i_{p}\right)$, we have ${ }_{i i_{1} i_{2} \ldots i_{p}} G_{p+1}={ }_{i \sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{p}\right)} G_{p+1}$. As previously noted, compatibility conditions of the vector fields ${ }_{i} G(., u)$ make sense to (6) and completeness ensure integrability of (6). It is interesting to rewrite compatibility conditions as equalities independent on the input variables so enlightening how these conditions specify the involutivity
of the Lie algebra generated by all the ${i i_{1} i_{2} \ldots i_{p}} G_{p+1}^{\prime} s$. Under successive derivatives with respect to u and evaluation at $u=0$, (4) can be equivalently rewritten as the successive equalities below iteratively deduced by applying the formal rule of derivatives of products and sums.

Lemma 2.1: For any multi-index $\left(i_{1}, \ldots, i_{l}\right) \in(1, \ldots, m)$ with $i_{1} \neq i_{2}$, (4) are equivalent to

$$
\begin{aligned}
{\left[{ }_{1} G_{1}, i_{2} G_{1}\right] } & ={ }_{1} i_{2} G_{2}-{ }_{i_{2} i_{1}} G_{2} \\
{\left[{ }_{11} i_{3} G_{2}, i_{2} G_{1}\right] } & +\left[{ }_{1} G_{1}, i_{2} i_{3} G_{2}\right]={ }_{i_{1} i_{2} i_{3}} G_{3}-{ }_{i_{2} i_{1} i_{3}} G_{3} \\
{\left[i_{1} i_{3} i_{4} G_{4},{ }_{i 2} G_{1}\right] } & +\left[i_{1} i_{3} G_{2}, i_{2} i_{4} G_{2}\right]+\left[{ }_{i_{1} i_{4}} G_{2},{ }_{i_{2} i_{3}} G_{2}\right] \\
& +\left[i_{1} G_{1}, i_{2} i_{3} i_{4} G_{3}\right] \\
& ={ }_{i_{1} i_{2} i_{3} i_{4}} G_{4}-{ }_{i_{2} i_{1} i_{3} i_{4}} G_{4}, \quad \ldots .
\end{aligned}
$$

III. EXPONENTIAL REPRESENTATION OF THE FLOW

To simplify the notations, we treat the case $m=2$, but the method extends according to the same lines to more than two independent control variables. To simplify nonlinearity in u, we propose to rewrite equations (5-6) for $m=2$ in an extended state space, as it is usual when dealing with nonautonomous differential equations. Setting $\zeta=\left(x^{T}, z^{T}\right)^{T} \in$ $\mathcal{X} \times \mathcal{U}^{2},(5-6)$ can be rewritten as

$$
x^{+}=F_{0}(x) ; \quad z^{+}=0
$$

$\frac{\partial x^{+}(u)}{\partial u_{i}}={ }_{i} G\left(x^{+}(u) ; z^{+}(u)\right) ; i=(1,2) ; x^{+}(0)=x^{+}$
$\frac{\partial z_{i}^{+}(u)}{\partial u_{i}}=1 ; \quad \frac{\partial z_{i}^{+}(u)}{\partial u_{j}}=0 ; \quad j \neq i ; \quad z^{+}(0)=z^{+}$
or in a more compact form as

$$
\begin{align*}
\zeta^{+} & =\bar{F}_{0}(\zeta) \\
\frac{\partial \zeta^{+}\left(u_{1}, u_{2}\right)}{\partial u_{1}} & ={ }_{1} \bar{G}\left(\zeta^{+}(u)\right) \tag{12}\\
\frac{\partial \zeta^{+}\left(u_{1}, u_{2}\right)}{\partial u_{2}} & ={ }_{2} \bar{G}\left(\zeta^{+}(u)\right) ; \quad \zeta^{+}(0)=\left(x^{+}, 0\right) \tag{13}
\end{align*}
$$

with $\bar{F}_{0}(\zeta)^{T}=\left(F_{0}(x)^{T}, 0\right)^{T}$ and ${ }_{i} \bar{G}(\zeta)=\left({ }_{i} G(x, u)^{T}, e_{i}^{T}\right)^{T}$ where e_{i} is the i-th unit vector in R^{2}.
Translating the compatibility conditions (4), set over the ${ }_{i} G(., u)^{\prime} s$, into conditions over $\left({ }_{1} \bar{G},{ }_{2} \bar{G}\right)$, we get the condition of nilpotency; i.e.

$$
\begin{equation*}
\left[{ }_{1} \bar{G}(\zeta),{ }_{2} \bar{G}(\zeta)\right]=0 \tag{14}
\end{equation*}
$$

which is necessary and sufficient for the existence of a solution $\zeta^{+}(u)$ to (12-13). In fact, the equality

$$
\frac{\partial^{2} \zeta^{+}\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}}=\frac{\partial^{2} \zeta^{+}\left(u_{1}, u_{2}\right)}{\partial u_{2} \partial u_{1}}
$$

is immediately translated into commutativity of the extended Lie derivative operators $\left(L_{1} \bar{G}, L_{2} \bar{G}\right)$.
According to these notations, the formal integration of (1213) is greatly simplified so getting directly the exponential form of the flow

$$
\begin{equation*}
\zeta^{+}(u)=\left.e^{1 \bar{G} u_{1}+{ }_{2} \bar{G} u_{2}} I_{n+2}\right|_{\zeta^{+}(0)} \tag{15}
\end{equation*}
$$

Denoting now by π the projection on R^{n}; i.e. $\pi(x, u)=x$, by $\phi_{i}\left(u_{i}, 0,.\right)$ the flow with exponent $u_{i} \mathcal{G}_{i}(., u)$ associated with ${ }_{i} G(., u)$ accordingly to (8), (9) and (10), we easily deduce the equivalent representations of the solution to (5 -6) below.

Proposition 3.1: Consider the two-input difference equation (1) verifying H1 - or equivalently, consider an APDTD of the form (5-6) -, then (1) - or equivalently the solution to (6) at (5) - is given by

$$
\begin{equation*}
x^{+}(u)=\left.e^{1^{\bar{G}} u_{1}+2 \bar{G} u_{2}} \pi\right|_{\left(F_{0}(x), 0\right)} \tag{16}
\end{equation*}
$$

which can be rewritten as the composition of single-input flows either

$$
\begin{align*}
x^{+}(u) & =\left.e^{\bar{G} u_{1}}{ }_{\circ} e^{2 \bar{G} u_{2}} \pi\right|_{\left(F_{0}(x), 0\right)} \tag{17}\\
& =\phi_{2}\left(u_{2}, 0, \phi_{1}\left(u_{1}, 0, x^{+}(0)\right)\right) \tag{18}
\end{align*}
$$

or

$$
\begin{align*}
x^{+}(u) & =\left.e^{2^{\bar{G}} u_{2}} \circ e^{1 \bar{G} u_{1}} \pi\right|_{\left(F_{0}(x), 0\right)} \tag{19}\\
& =\phi_{1}\left(u_{1}, 0, \phi_{2}\left(u_{2}, 0, x^{+}(0)\right)\right) \tag{20}
\end{align*}
$$

with asymptotic behaviour described either by

$$
\begin{align*}
x^{+}(u)= & \overrightarrow{\exp } \int_{0}^{u_{1}} L_{1} G\left(x, v_{1}, 0\right) d v_{1} \circ \\
& \left.\circ \stackrel{\rightharpoonup \exp }{ } \int_{0}^{u_{2}} L_{2 G\left(x, u_{1}, v_{2}\right)} d v_{2} I_{n}\right|_{x^{+}(0)} \tag{21}
\end{align*}
$$

or

$$
\begin{align*}
x^{+}(u)= & \overrightarrow{\exp } \int_{0}^{u_{2}} L_{2 G\left(x, 0, v_{2}\right)} d v_{2} \circ \\
& \left.\circ \stackrel{\rightharpoonup \exp }{ } \int_{0}^{u_{1}} L_{1 G\left(x, v_{1}, u_{2}\right)} d v_{1} I_{n}\right|_{x^{+}(0)} \tag{22}
\end{align*}
$$

and exponential representation described either by

$$
\begin{equation*}
x^{+}(u)=\left.e^{u_{1} \mathcal{G}_{1}\left(., u_{1}, 0\right)} \stackrel{\circ}{ } e^{u_{2} \mathcal{G}_{2}\left(., u_{1}, u_{2}\right)} I_{n}\right|_{x^{+}(0)} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{+}(u)=\left.e^{u_{2} \mathcal{G}_{2}\left(., 0, u_{2}\right)} \circ e^{u_{1} \mathcal{G}_{1}\left(\cdot, u_{1}, u_{2}\right)} I_{n}\right|_{x^{+}(0)} \tag{24}
\end{equation*}
$$

Proof: The proof is easily performed interchanging the role of u_{1} and u_{2}. The solution can in fact be obtained either by chaining the integration of $x^{+}\left(u_{1}, v_{2}\right)$ along v_{2}, between 0 and u_{2}, for a fixed u_{1} and the integration of $x^{+}\left(v_{1}, 0\right)$ along v_{1}, between 0 and u_{1} - equations (17-18-21-23) - or by chaining the integration of $x^{+}\left(v_{1}, u_{2}\right)$ along v_{1}, between 0 and u_{1}, for a fixed u_{2} and the integration of $x^{+}\left(0, v_{2}\right)$ along v_{2}, between 0 and u_{2} - equations (19 $-20-22-24)-$. It is immediate to deduce (16) from (15) and then the equality between (17) and (19) due to the commutativity of the operators or equivalently the compatibility conditions. The equality between (17) and (18) and equivalently between (19) and (20) are just a matter of computations. The chronological series expansions (21) or (22) with exponential representations (23) or (24) are easily
deduced by applying the results previously recalled in the single-input case.
Denoting now by $\phi(u, 0,):. R^{n} \rightarrow R^{n}$, the unique multiinput flow associated with the solution to the set of partialderivative equations (6), we have in conclusion the exponential representation below.

Theorem 3.1: Exponential representation of discretetime dynamics
Consider the two-input difference equation (1) satisfying H1 - or equivalently, consider an APDTD of the form (5-6) -, then

$$
\begin{equation*}
x^{+}(u)=\phi\left(u, 0, x^{+}(0)\right)=\left.e^{u \mathcal{G}(., u)} I_{n}\right|_{x^{+}(0)} \tag{25}
\end{equation*}
$$

with $u \mathcal{G}(., u)$ a vector field on R^{n}, parameterized by $\left(u_{1}, u_{2}\right)$ which is a Lie element in the $i i_{1} \ldots i_{p} G_{p+1}^{\prime} s$, given by

$$
\begin{align*}
& u \mathcal{G}(., u)=\sum_{p_{2} \geq 1} u_{2}^{p_{2}} \mathcal{B}_{0, p_{2}}\left({ }_{2} G_{1}, \ldots, 2^{p_{2}} G_{p_{2}}\right) \tag{26}\\
& +\sum_{p_{1} \geq 1, p_{2} \geq 0} u_{1}^{p_{1}} u_{2}^{p_{2}} \mathcal{B}_{p_{1}, p_{2}}\left(i_{1} G_{1}, \ldots, i_{1}, \ldots, i_{p_{1}+p_{2}} G_{p_{1}+p_{2}}\right)
\end{align*}
$$

where $\mathcal{B}_{p_{1}, p_{2}}$ (.) stands for a homogeneous Lie polynomial of degree $p_{1}+p_{2}$ in its arguments. The expansion (26) is deduced from the equalities below

$$
\begin{equation*}
\frac{\partial}{\partial u_{i}} u \mathcal{G}(., u)=Z\left(-a d_{u \mathcal{G}(., u)}\right)_{i} G(., u) ; \quad i=(1,2) \tag{27}
\end{equation*}
$$

The decomposition of the $\mathcal{B}_{p_{1}, p_{2}}^{\prime} s$ as Lie polynomials can be iteratively computed according to $\mathcal{B}_{0,0}=0$ and for $p_{2} \geq 1$ and $\sum_{q=1}^{j} m_{q}+k_{2}=p_{2}$

$$
\begin{align*}
& \mathcal{B}_{0, p_{2}}= \frac{2^{p_{2}} G_{p_{2}}}{p_{2}!}+\frac{1}{p_{2}} \sum_{1 \leq k_{2}} \sum_{j \geq 1} \\
& \sum_{m_{1}, \ldots, m_{j} \geq 0} \frac{(-1)^{j} b_{j}}{j!} a d_{\mathcal{B}_{0, m_{1}}} \circ \ldots \circ a d_{\mathcal{B}_{0, m_{j}}} \frac{2^{k_{2}} G_{k_{2}}}{\left(k_{2}-1\right)!} \tag{28}
\end{align*}
$$

for $p_{1} \geq 1, p_{2} \geq 0$ and $\sum_{q=1}^{j} l_{q}+k_{1}=p_{1}$

$$
\begin{aligned}
& \mathcal{B}_{p_{1}, p_{2}}=\frac{1^{p_{1} 2^{p_{2}}} G_{p_{1}+p_{2}}}{p_{1}!p_{2}!}+\frac{1}{p_{1}} \sum_{1 \leq k_{1}, 0 \leq k_{2}} \sum_{j \geq 1} \sum_{l_{1}, \ldots, l_{j} \geq 0} \\
& \sum_{m_{1}, \ldots, m_{j} \geq 0} \frac{(-1)^{j} b_{j}}{j!} a d_{\mathcal{B}_{l_{1}, m_{1}}} \circ \ldots \circ a d_{\mathcal{B}_{l_{j}, m_{j}}} \frac{1^{k_{1} 2^{k_{2}}} G_{k_{1}+k_{2}}}{\left(k_{1}-1\right)!k_{2}!} \text { (29) }
\end{aligned}
$$

Proof: From Proposition 3.1 we immediately deduce the existence of an exponential representation of the multiinput flow of the form (25). The proof of the equalities (27) follows exactly the same arguments as in the single-input case [8]. By expanding the two members of (27) and by identifying the coefficients we obtain (28) and (29).
Because the role of u_{1} and u_{2} can be interchanged, we equivalently get

$$
u \mathcal{G}(., u)=\sum_{p_{1} \geq 1} u_{1}^{p_{1}} \mathcal{B}_{p_{1}, 0}+\sum_{p_{1} \geq 0, p_{2} \geq 1} u_{1}^{p_{1}} u_{2}^{p_{2}} \mathcal{B}_{p_{1}, p_{2}}
$$

with

$$
\begin{aligned}
& \mathcal{B}_{p_{1}, 0}=\frac{1^{p_{1}} G_{p_{1}}}{p_{1}!} \\
& +\frac{1}{p_{1}} \sum_{1 \leq k_{1}} \sum_{j \geq 1} \sum_{l_{1}, \ldots, l_{j} \geq 0} \frac{(-1)^{j} b_{j}}{j!} a d_{\mathcal{B}_{l_{1}, 0}} \ldots \ldots \circ d_{\mathcal{B}_{l_{j}, 0}} \frac{1^{k_{1}} G_{k_{1}}}{\left(k_{1}-1\right)!}
\end{aligned}
$$

and for $p_{1} \geq 0, p_{2} \geq 1, \sum_{q=1}^{j} l_{q}+k_{1}=p_{1}, \sum_{q=1}^{j} m_{q}+k_{2}=p_{2}$,

$$
\begin{aligned}
& \mathcal{B}_{p_{1}, p_{2}}=\frac{2^{p_{2} 1^{p_{1}} G_{p_{1}+p_{2}}}}{p_{2}!p_{1}!}+\frac{1}{p_{2}} \sum_{0 \leq k_{1}, 1 \leq k_{2}} \sum_{j \geq 1} \sum_{l_{1}, \ldots, l_{j} \geq 0} \\
& \sum_{m_{1}, \ldots, m_{j} \geq 0} \frac{(-1)^{j} b_{j}}{j!} a d_{B_{l_{1}, m_{1}}} \circ \ldots \circ a d_{B_{l_{j}, m_{j}}} \frac{2^{k_{2} k_{1}} G_{k_{1}+k_{2}}}{\left(k_{2}-1\right)!k_{1}!} .
\end{aligned}
$$

A. Some specific cases

Assuming that ${ }_{i=(1,2)} G(x, u)$ depends on the corresponding u_{i} only; i.e. ${ }_{i} G(x, u)={ }_{i} G\left(x, u_{i}\right)$, compatibility conditions (4) reduce to nilpotency

$$
\left.\left[{ }_{1} G\left(., u_{1}\right),{ }_{2} G\left(., u_{2}\right)\right]\right|_{x}=0
$$

and the solution reduces to

$$
x^{+}(u)=\left.e^{u_{1} \mathcal{G}_{1}\left(\cdot, u_{1}\right)+u_{2} \mathcal{G}_{2}\left(\cdot, u_{2}\right)} I_{n}\right|_{F_{0}(x)}
$$

with each $u_{i} \mathcal{G}_{i}\left(., u_{i}\right)$ described by (10).
Assuming that ${ }_{i=(1,2)} G(x, u)$ does not depend on the control (autonomous vector fields); i.e. ${ }_{i} G(x, u)={ }_{i} G_{1}(x)$, then compatibility conditions (4) reduce to

$$
\left.\left[{ }_{1} G_{1},{ }_{2} G_{1}\right]\right|_{x}=0
$$

so that the solution reduces to

$$
x^{+}(u)=\left.e^{u_{1}\left({ }_{1} G_{1}\right)+u_{2}\left({ }_{2} G_{1}\right)} I_{n}\right|_{F_{0}(x)}
$$

B. Some computations

Let us give an insight on the first terms of the exponent (26)

$$
\begin{aligned}
& u \mathcal{G}(., u)=u_{1} B_{1,0}+u_{1}^{2} B_{2,0}+u_{1}^{3} B_{3,0}+u_{2} B_{0,1}+u_{2}^{2} B_{0,2} \\
& \quad+u_{2}^{3} B_{0,3}+u_{1} u_{2} B_{1,1}+u_{1} u_{2}^{2} B_{1,2}+u_{2} u_{1}^{2} B_{2,1}+O\left(u^{4}\right)
\end{aligned}
$$

with
$B_{1,0}={ }_{1} G_{1}, 2 B_{2,0}={ }_{11} G_{2}, 3!B_{3,0}={ }_{111} G_{3}+\frac{1}{2}\left[{ }_{1} G_{1},{ }_{11} G_{2}\right]$
$B_{0,1}={ }_{2} G_{1}, 2 B_{0,2}={ }_{22} G_{2}, 3!B_{0,3}={ }_{222} G_{3}+\frac{1}{2}\left[{ }_{2} G_{1},{ }_{22} G_{2}\right]$
and from (29)

$$
\begin{aligned}
& B_{1,1}={ }_{12} G_{2}+\frac{1}{2}\left[{ }_{2} G_{1},{ }_{1} G_{1}\right] \\
& 2 B_{1,2}={ }_{122} G_{3}+\left[{ }_{2} G_{1},{ }_{12} G_{2}\right]+\frac{1}{2}\left[{ }_{22} G_{2},{ }_{1} G_{1}\right] \\
&+\frac{1}{3!}\left[{ }_{2} G_{1}\left[{ }_{2} G_{1,1} G_{1}\right]\right] \\
& 2 B_{2,1}= 112 G_{3}+\frac{1}{2}\left[{ }_{2} G_{1}, 11\right. \\
&\left.G_{2}\right]+\frac{1}{2}\left[\left[{ }_{2} G_{1,1} G_{1}\right],{ }_{1} G_{1}\right]
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
B_{1,1}= & { }_{21} G_{2}+\frac{1}{2}\left[{ }_{1} G_{1,2} G_{1}\right] \\
2 B_{1,2}= & { }_{221} G_{3}+\frac{1}{2}\left[{ }_{1} G_{1,22} G_{2}\right]+\frac{1}{2}\left[\left[{ }_{1} G_{1,2} G_{1}\right]{ }_{, 2} G_{1}\right] \\
2 B_{2,1}= & { }_{211} G_{3}+\left[{ }_{1} G_{1},{ }_{21} G_{2}\right]+\frac{1}{2}\left[{ }_{11} G_{2,2} G_{1}\right] \\
& +\frac{1}{3!}\left[{ }_{1} G_{1}\left[{ }_{1} G_{1,2} G_{1}\right]\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
B_{1,1} & =\frac{1}{2}\left({ }_{12} G_{2}+{ }_{21} G_{2}\right) \\
4 B_{1,2} & ={ }_{122} G_{3}+{ }_{221} G_{3}+\left[{ }_{2} G_{1}, 1_{2} G_{2}\right]+\frac{4}{3!}\left[{ }_{2} G_{1}\left[{ }_{2} G_{1,1} G_{1}\right]\right] \\
4 B_{2,1} & \left.={ }_{112} G_{3}+{ }_{211} G_{3}+\left[{ }_{1} G_{1},{ }_{21} G_{2}\right]+\frac{4}{3!}\left[{ }_{1} G_{1}\left[{ }_{1} G_{1,2} G_{1}\right]\right]\right)
\end{aligned}
$$

Replacing these expressions into the exponential form, we get in conclusion, up to an error in $O\left(u^{3}\right)$, in the exponent

$$
\begin{aligned}
& \phi\left(u, 0, x^{+}(0)\right)=\left.e^{u \mathcal{G}(., u)} I_{n}\right|_{F_{0}(x)}= \\
& \left.e^{u_{1}\left({ }_{1} G_{1}\right)+u_{2}\left({ }_{2} G_{1}\right)+\frac{u_{1}^{2}}{2}{ }_{11} G_{2}+\frac{u_{2}^{2}}{2} 22 G_{2}+\frac{u_{1} u_{2}}{2}\left({ }_{12} G_{2}+21 G_{2}\right)} I_{n}\right|_{F_{0}(x)} .
\end{aligned}
$$

IV. THE CASE OF SAMPLED DYNAMICS

Let the two input-affine continuous-time dynamics

$$
\begin{equation*}
\dot{x}(t)=f(x(t))+u_{1}(t) g_{1}(x(t))+u_{2}(t) g_{2}(x(t))(3 \tag{30}
\end{equation*}
$$

with f and g_{i} analytic vector fields on R^{n}. Given a sampling period $\delta \geq 0$, setting $(t=k \delta ; k \geq 0)$, the sampling instants, assume the input signal $u(t)$ constant over time intervals of amplitude δ and let $u(k)$ be its constant value over the interval $[k \delta,(k+1) \delta[$ and $x(k)$ the value of $x(t)$ at time $t=k \delta$. It is well known that the solution at time $t=(k+1) \delta$, for an initialization at $x(k)$ describes a nonlinear difference equation - the sampled equivalent to (30) - (i.e. the state evolutions coincide at each sampling time), as

$$
\begin{aligned}
x(k \delta+\delta):=x(k+1) & =\left.e^{\delta f+u_{1}(k) \delta g_{1}+u_{2}(k) \delta g_{2}} I_{n}\right|_{x(k)} \\
& =F^{\delta}(x(k), \delta u(k))
\end{aligned}
$$

It follows that the results of Theorem 3.1 still apply so getting

Theorem 4.1: For a fixed sampling period δ, the zeroorder sampled equivalent $F^{\delta}(x, \delta u)$ to (30) admits the differential representation

$$
\begin{aligned}
x^{+} & =\left.e^{\delta f} I_{n}\right|_{x}=F_{0}^{\delta}(x) \\
\frac{d}{d \delta u_{i}}\left(x^{+}(\delta u)\right) & ={ }_{i} G^{\delta}\left(x^{+}(\delta u), \delta u\right) ; \quad x^{+}(0)=x^{+}
\end{aligned}
$$

with

$$
\begin{equation*}
{ }_{i} G^{\delta}(., \delta u)=Z^{-1}\left(-a d_{\delta f+\delta u g}\right) g_{i} \tag{31}
\end{equation*}
$$

when $Z^{-1}($.$) denotes the formal inverse of Z($.$) ;i.e.$
$Z^{-1}\left(-a d_{\zeta}\right)=\int_{0}^{1} e^{-s a d_{\zeta}} d s=\frac{1-e^{-a d_{\zeta}}}{a d_{\zeta}}=I+\sum_{i \geq 1} \frac{(-1)^{i}}{(i+1)!} a d_{\zeta}^{i}$.
Proof: The proof requires to verify that $\mathbf{H} \mathbf{1}$ is always verified in this sampled case being $F_{0}^{\delta}(x):=\left.e^{\delta f} I_{n}\right|_{x}$ always invertible for sufficiently small values of δ ensuring the series convergence; i.e. $\left(F_{0}^{\delta}\right)^{-1}(x):=\left.e^{-\delta f} I_{n}\right|_{x}$. The expression (31) of ${ }_{i} G^{\delta}(., \delta u)$ follows from (27) because, in this sampled case, $\delta u \mathcal{G}(., \delta u)=\delta f+\delta u_{1} g_{1}+\delta u_{2} g_{2}$, so that

$$
g_{i}=Z\left(-a d_{\delta f+\delta u g}\right)_{i} G^{\delta}(., \delta u)
$$

and thus (31) holds true.
In this sampled case, the compatibility conditions reduce to combinatoric identities deduced from (31).

A. The example of chained dynamics

Let the one-chain system on R^{4} be

$$
\begin{equation*}
\dot{x_{1}}=u_{1}, \quad \dot{x_{2}}=u_{2}, \quad \dot{x_{3}}=x_{2} u_{1}, \quad \dot{x_{4}}=x_{3} u_{1} \tag{32}
\end{equation*}
$$

with sampled equivalent easily computed as

$$
\begin{aligned}
x_{1}(k+1)= & x_{1}(k)+\delta u_{1}(k) ; \quad x_{2}(k+1)=x_{2}(k)+\delta u_{2}(k) \\
x_{3}(k+1)= & x_{3}(k)+\delta x_{2}(k) u_{1}(k)+\frac{\delta^{2}}{2} u_{2}(k) u_{1}(k) \\
x_{4}(k+1)= & x_{4}(k)+\delta x_{3}(k) u_{1}(k)+\frac{\delta^{2}}{2} x_{2}(k) u_{1}^{2}(k) \\
& \quad+\frac{\delta^{3}}{3!} u_{2}(k) u_{1}^{2}(k) .
\end{aligned}
$$

$F^{\delta}(x, \delta u)$ is thus polynomial with $F_{0}^{\delta}(x)=x$. The vector fields $\left({ }_{1} G^{\delta}(., \delta u),{ }_{2} G^{\delta}(., \delta u)\right)$ exist, are unique and can be computed according to (3) or (31) so getting

$$
\begin{aligned}
{ }_{1} G^{\delta}(\cdot, \delta u) & =\left(1,0, x_{2}-\frac{\delta}{2} u_{2}, x_{3}-\frac{\delta^{2}}{3!} u_{1} u_{2}\right)^{T} \\
& ={ }_{1} G_{1}^{\delta}+{ }_{12} G_{2}^{\delta} \delta u_{2}+{ }_{112} G_{3}^{\delta} \delta^{2} u_{1} u_{2} \\
{ }_{2} G^{\delta}(\cdot, \delta u) & =\left(0,1, \frac{\delta}{2} u_{1}, \frac{\delta^{2}}{3!} u_{1}^{2}\right)^{T} \\
& ={ }_{2} G_{1}^{\delta}+{ }_{21} G_{2}^{\delta} \delta u_{1}+{ }_{211} G_{3}^{\delta} \frac{\delta^{2}}{2} u_{1}^{2}
\end{aligned}
$$

and the other terms equal to zero. The compatibility conditions reduce to

$$
\begin{aligned}
& {\left[{ }_{1} G^{\delta}\left(\cdot, \delta u_{1}, \delta u_{2}\right),{ }_{2} G^{\delta}\left(\cdot, \delta u_{1}, \delta u_{2}\right)\right]=} \\
& { }_{12} G_{2}^{\delta}\left(\cdot, \delta u_{1}, \delta u_{2}\right)-{ }_{21} G_{2}^{\delta}\left(\cdot, \delta u_{1}, \delta u_{2}\right)
\end{aligned}
$$

easily verified. The sampled equivalent model exhibits the differential/difference representation

$$
\begin{aligned}
& x^{+}=x ; \quad x^{+}(0)=x^{+} \\
& \frac{\partial x_{1}^{+}(\delta u)}{\partial \delta u_{1}}=1, \quad \frac{\partial x_{2}^{+}(\delta u)}{\partial \delta u_{1}}=0 \\
& \frac{\partial x_{3}^{+}(\delta u)}{\partial \delta u_{1}}=x_{2}^{+}(\delta u)-\frac{\delta u_{2}}{2}, \quad \frac{\partial x_{4}^{+}(\delta u)}{\partial \delta u_{1}}=x_{3}^{+}(\delta u)-\frac{\delta^{2} u_{1} u_{2}}{3!} \\
& \frac{\partial x_{1}^{+}(\delta u)}{\partial \delta u_{2}}=0, \quad \frac{\partial x_{2}^{+}(\delta u)}{\partial \delta u_{2}}=1 \\
& \frac{\partial x_{3}^{+}(\delta u)}{\partial \delta u_{2}}=\frac{\delta u_{1}}{2}, \quad \frac{\partial x_{4}^{+}(\delta u)}{\partial \delta u_{2}}=\frac{\delta^{2} u_{1}^{2}}{3!} . \\
& \text { Computing } \quad B_{1,0}={ }_{1} G_{1}^{\delta}, \quad B_{0,1}={ }_{2} G_{1}^{\delta}, \quad B_{1,1}={ }_{12} G_{2}^{\delta}+ \\
& \frac{1}{2}\left[{ }_{2} G_{1}^{\delta},{ }_{1} G_{1}^{\delta}\right]=0, \quad B_{1,2}=\frac{1}{12}\left[{ }_{2} G_{1}^{\delta}\left[{ }_{2} G_{1}^{\delta},{ }_{1} G_{1}^{\delta}\right]\right]=0, \quad B_{2,1}= \\
&\left.\frac{1}{2} 112 G_{3}^{\delta}+\frac{1}{12}\left[{ }_{1} G_{1}^{\delta}{ }_{1} G_{1}^{\delta}{ }_{2} G_{1}^{\delta}{ }_{1}\right]\right]=0 \text { and the other terms equal }
\end{aligned}
$$

to zero, we recover the finite exponent

$$
\begin{aligned}
\delta u \mathcal{G}(., \delta u) & =\delta u_{1} B_{1,0}+\delta u_{2} B_{0,1}=\delta u_{11} G_{1}^{\delta}+\delta u_{22} G_{1}^{\delta} \\
& =\left(\delta u_{1}, \delta u_{2}, \delta u_{1} x_{2}, \delta u_{1} x_{3}\right)^{T}
\end{aligned}
$$

and thus by direct integration of (32) with respect to t

$$
\begin{aligned}
F^{\delta}(x, \delta u) & =\left.e^{\delta u \mathcal{G}(., \delta u)} I_{n}\right|_{x} \\
& =\left.e^{\delta u_{1} \frac{\partial}{\partial x_{1}}+\delta u_{2} \frac{\partial}{\partial x_{2}}+\delta u_{1} x_{2} \frac{\partial}{\partial x_{3}}+\delta u_{1} x_{3} \frac{\partial}{\partial x_{4}}} I_{n}\right|_{x} .
\end{aligned}
$$

In this case, the compatibility conditions reduce to combinatorics equalities deduced from (31).

References

[1] A.A.Agrachev and R.V.Gramkrelidze, Exponential representations of flows and chronological calculus, Math. USSR Sbornik, vol. 35, 1978, pp.727-785.
[2] K.T. Chen, Formal differential equations, Annals of Math., vol 73, 1961, pp.110-133.
[3] M.Kawski and H.J.Sussmann, Noncommutative power series and formal Lie algebraic techniques in control theory, in Systems and Linear Algebra (U.Helmke and D. Pratzël Wolters, E. Zertz eds.), pp.111-128, Studgart, 1997.
[4] W. Magnus, On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics vol. 7, 1954, pp.649-673.
[5] S. Monaco and D. Normand-Cyrot, The immersion under feedback of a multi-dimensional discrete-time nonlinear system into a linear one, Int. Journal of Control, vol. 38, 1983, pp.245-261.
[6] S. Monaco and D. Normand-Cyrot, A unifying representation for nonlinear discrete-time and sampled dynamics, J. of Math. Syst., Est. and Contr. 1995, pp.101-103 (summary), vol. 7, 1997, pp.477-503.
[7] S. Monaco, D. Normand-Cyrot and C.Califano, Exponential representations of Volterra-like expansions: an explicit computation of the exponent series, Proc. 41st IEEE-CDC, 2002.
[8] S. Monaco, D. Normand-Cyrot, Issues on nonlinear digital systems, Semi-Plenary Conference, ECC-01, Porto, Special Issue, European J. of Control, vol. 7, 2001, pp.160-178, Hermès Sciences, Paris.
[9] L. Saenz, R. Suarez, A combinatorial approach to the generalized Baker Campbell Hausdorff Dynkin formula, Syst. \& Contr. Lett., vol. 45, 2002, pp.357-370.
[10] I.W. Sandberg, Volterra-like expansions for solutions of nonlinear integral equations and nonlinear differential equations, IEEE Trans on Aut.Contr., vol. 30, 1983, pp.68-77.
[11] A.V. Sarychev, Lie- and chronologico-algebraic tools for studying stability of time-varying systems, Syst. \& Contr. Lett., vol. 43, 2001, pp.59-76.

