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Abstract— A differential/difference representation of non-
linear multi-input discrete-time dynamics is introduced. On
these bases, the exponential representation of the associated
flow is explicitely characterized in the two-input case. The
specific case of sampled dynamics is discussed and illustrated
by a chained dynamics.

Index Terms— Nonlinear discrete-time systems, multi-input
dynamics, sampled systems, exponential series.

I. INTRODUCTION

Exponential representations of flows associated with the
solution to differential equations are well known tools in
the continuous-time case when considering autonomous
or controlled equations (see for example ([1], [3], [10]),
while quite unexplored in the discrete-time context. Given
a nonlinear first-order difference equation of the form

x(k+1) = F (x(k);u(k))

it has been shown in [6] that, under some suitable con-
ditions, such a difference equation can be rewritten as a
differential equation with respect to the control variable
with state initialization specified by the drift term. It results
that its behaviour over several steps can be revisited as
continuous with respect to the control with instantaneous
jumps piloted by the drift. In this context, the notion of flow
characterizing the evolution along the control variable or
equivalently the solution of the so built differential equation,
makes sense. In [7], an exponential representation of this
flow has been given and completely specified for the single-
input case. The present paper extends this result to the multi-
input case. The main difficulty comes out from the nonlinear
dependency on several input variables resulting in a system
of partial-derivative equations. The specific case of sampled
dynamics is discussed and illustrated by a chained dynamics.

The paper is organized as follows. Section 2 introduces
the differential representation of a multi-input difference
equation. Section 3 gives the exponential form representa-
tion of the associated flow. The sampled case is discussed in
Section 4 with an example. Some notations are given below.
² Throughout the paper x 2 X , an open set of Rn

- which can be all Rn -, u 2 Um, a neighborhood of
0 in Rm; the mapping x ! F (x;u), describing forced
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discrete-time dynamics is an Rn-valued function, analytic
on its domain of definition which contains a neighborhood
of u = 0, the mapping x ! F0(x) := F (x;0) describes
the free evolution or drift term, all the vector fields are
assumed analytic on their domains of definitions - infinitely
differentiable admitting convergent Taylor series expansions
in a neighborhood of each point of X - and complete when
necessary - the associated flow is defined at any time and
for any initial condition -.
² Given a generic map on X , its evaluation at a point

x is denoted either by ”(x)” or ”
¯̄
x
”. Given a function

¸ : X ! R and a vector field µ on X - µ(x) 2 TxX - , the
differential operator Lµ acts on ¸ as Lµ¸ := @¸

@xµ so giving
the Lie derivative of ¸ along µ. The repeated use of this Lie

derivative gives for k > 0; Lkµ¸ :=
@Lk¡1

µ
¸

@x µ with Lkµ :=
Lµ± ¢ ¢ ¢±Lµ; k¡times and L0µ = I , the identity operator.
Given another vector field ¾ on X , [µ;¾] denotes the usual
Lie bracket of vector fields; L[µ;¾]In= (Lµ±L¾¡L¾±Lµ)In,
where In indicates the identity function on X ; adµ(¾) :=
[µ;¾];ad0µ(¾) := ¾; and for k > 0, adk+1µ (¾) := [µ;adkµ(¾)].
² Given a formal indeterminate Ã, the notations ”eÃ”

and ”Log(I + Ã)” stand for the usual exponential and
logarithmic Taylor series expansions of the indeterminate
into parentheses; i.e.

eÃ = I+
X
i¸1

Ãi

i!

Log(I+Ã) =
X
i¸1

(¡1)i¡1Ãi
i

:

As an example, if Ã = Lµ , eLµ = I +
P

k¸1
Lkµ
k! . The

following property holds

eLµ¸
¯̄
x
:= ¸(x)+

X
k¸1

Lkµ¸

k!
(x) = ¸(eLµIn

¯̄
x
):

For notational convenience, eµ can also be used instead of
eLµ .
² In the sequel, a Lie monomial of a given set of

indeterminates - vector fields - indicates a Lie bracket of
them, a Lie polynomial indicates a finite sum with real
coefficients of Lie monomials and a Lie series indicates an
infinite sum of Lie polynomials. When a degree is assigned
to each vector field, the notions of degree for monomials
and homogeneity for polynomials are the usual ones.
² When not explicitely specified, convergence issues of

the series manipulated will not be addressed in this formal
context.



II. THE CONTEXT AND PROBLEM
STATEMENT

This section extends to the multi-input case the representa-
tions introduced in [6] for single-input dynamics.

A. Differential/difference representations of multi-input
nonlinear discrete-time dynamics

Let a multi-input nonlinear difference equation be

x(k+1) = F (x(k);u(k)) (1)

where x 2 Rn, u = (u1; : : : ;um)
T 2 Um with F0(x) :=

F (x;0) and assume rank
³
@F
@u

´
=m.

The following assumption is made.
H1: There exist m analytic vector fields, (iG(:;u); i =
(1; :::;m)), satisfying

@F (¢;u)
@ui

= iG(F (¢;u);u): (2)

Remark. The invertibility of F0(x) is sufficient to guarantee
H1 so that, in such a case, iG(x;u) is locally uniquely
defined as

iG(x;u) :=
@F (x;u)

@ui

¯̄̄̄
x=F¡1(x;u)

: (3)

Sampled dynamics enter in such a class. /

The following relations are directly deduced from H1 due to
commutativity of the partial-derivatives operators. Indicating
by Jx[:] the Jacobian, we deduce from (2),

@2F (x;u)

@ui@uj
= L

iG(:;u)±LjG(:;u)In F (x;u)

= Jx[jG(:;u)]iG(:;u)+
@jG(:;u)

@ui
F (x;u)

equal to

@2F (x;u)

@uj@ui
= L

jG(:;u)±LiG(:;u)In (F (x;u);u)

= Jx[iG(:;u)]jG(¢;u)+ @iG(:;u)

@uj
F (x;u)

which can be rearranged to state what we will refer to as
the compatibility conditions.
Compatibility conditions - A family of u-dependent vector
fields (iG(:;u); i= (1; :::;m)) satisfy the compatibility con-
ditions if, for any (i; j) 2 (1; :::;m) with i 6= j and u2 Um,
the equalities below are satisfied on X

[iG(:;u); jG(:;u)]jx = @iG(x;u)

@uj
¡ @jG(x;u)

@ui
: (4)

Provided the compatibility conditions are satisfied and
adopting the notation x+(u) to represent a curve in Rn

parameterized by u 2 Um, it makes sense now to represent
a discrete-time dynamics of the form (1) satisfying H1, as a
system of coupled differential/difference equations. We set

Definition 2.1: Analytically parameterized discrete-time
dynamics- APDTD
Let (x;u) 2 X £Um and assume maps and vector fields
analytic in their arguments. Given a map F0 on Rn and m
vector fields (iG(:;u);u 2 Um) on X , complete and satis-
fying the compatibility conditions, an APDTD is defined by
the system of differential/difference equations

x+ = F0(x) (5)
@x+(u)

@ui
= iG(x

+(u);u); i=(1; ¢ ¢ ¢ ;m); x+(0) = x+: (6)

For a given (x;u) 2X £Um, integrating (6) with respect to
each ui and evaluating the result at (5), we get a mapping
F (x;u) = x+(u) so illustrating how a discrete-time dynam-
ics can be revisited as a trajectory in Rn, parameterized by
u accordingly to (6) and passing through x+(0) = F0(x).
In this differential geometric context, the aim of this paper is
to specify the exponential representation of the flow which
characterizes the solution to (6). Two main difficulties occur,
due to the nonlinearity in u of each equation in (6) and
due to the coupled interaction between them as partial-
derivatives.

B. Recalls about the single-input case

In this paragraph, we refer to the previous notations setting
m= 1 and denoting without ambiguity 1G(:;u) by G(:;u)
and by Gi the vector fields characterizing the series expan-
sion around u of G(:;u); i.e.

G(:;u) =G1(:)+uG2(:)+
X
i¸2

ui

i!
Gi+1(:): (7)

Given a single-input difference equation of the form (1)
satisfying H1 and referring to the literature about differen-
tial geometry, formal calculus and combinatorics (see for
example [2], [4], [9], [11]), it has been shown in [7] that
the solution to (6) admits an exponential representation with
exponent described by a Lie element in the vector fields Gi.
More precisely, let Á(u;0; ¢) be the flow associated with
G(:;u), the unique solution of

@Á(u;0; ¢)
@u

=G(Á(u;0; ¢);u); Á(0;0; ¢) = In (8)

and let
¡!
exp

R u
0
LG(:;v)dv, the right chronological exponen-

tial defined by its asymptotic expansion (see [1] [11])
¡!
exp

R u
0
LG(:;v)dv := I+P

p¸1

R u
0

R v1
0
: : :
R vp¡1
0

LG(:;vp)± : : :±LG(:;v1)dvp : : :dv1

we have

Á(u;0; ¢) =¡!
exp

Z u

0

LG(:;v)dvIn = e
uG(:;u)In (9)

where the exponent uG(:;u) is described by its expansion

uG(:;u) =
X
p¸1

upBp(G1; :::;Gp) (10)



where Bp(G1; : : : ;Gp) stands for a homogeneous Lie poly-
nomial of degree p in its arguments. The decomposition of
each Bp as a Lie polynomial in the Gi’s can be iteratively
deduced from the formal equality

@

@u
uG(:;u) = Z(¡aduG(:;u))G(:;u) (11)

where the function Z(:) is defined for any formal indeter-
minate Ã by its Taylor expansion

Z(¡Ã) = Ã

1¡e¡Ã =
X
i¸0
(¡1)ibiÃ

i

i!
:

The coefficients bi are the Bernoulli numbers. For the first
ones: b0 = 1, b1 = ¡1=2, b2 = 1=6, b2k+1 = 0 for k > 0,
b4 =¡1=30, b6 = 1=42. We get for p¸ 1;§jq=1lq+k = p

Bp = Gp

p!
+

p¡1X
k=1

X
j¸1

X
l1;:::;lj¸1

(¡1)jbj
j!

adBl1 ± : : : ±adBlj
Gk

(k¡1)!

and for the first terms we get

B1 = G1; B2 = 1

2!
G2;

B3 =
1

3!
(G3+1=2[G1;G2]); B4 = 1

4!
(G4+[G1;G3]):

C. Some notations in the multi-input case

In the sequel, indicating as ii1¢¢¢ipGp+1(:;u), any partial
derivative of order p of iG(:;u) with respect to ui1 :::uip ;
i.e.

ii1¢¢¢ipGp+1(:;u) :=
@piG(:;u)

@uip ¢ ¢ ¢@ui1
the series expansion of iG(:;u) around u= 0 is given by

iG(:;u) = iG1+
X
p¸1

mX
i1;:::;ip=1

ui1 :::uip

p!
(ii1¢¢¢ipGp+1)

with iG1 := iG(:;u)ju=0 and ii1¢¢¢ipGp+1 :=

ii1¢¢¢ipGp+1(:;u)ju=0:
Denoting by ip+1 := (i; :::; i) a multi-index of length
p+ 1, with all elements equal to i, we analogously set

ip+1G(¢;u)jui=0 := @piG(¢;u)
@u

p
i

¯̄̄̄
¯
ui=0

so that the series ex-

pansion of iG(:;u) around ui =0, for uj =Cst when j 6= i,
is given by

iG(¢;u) = iG(¢;u)jui=0+
X
p¸1

u
p
i

p!
(ip+1G(¢;u)jui=0):

By convention, any ii1¢¢¢ipGp+1 will be said of degree p+1
and by construction, for any permutation ¾ of a multi-index
(i1; :::; ip), we have ii1i2:::ipGp+1 = i¾(i1)¾(i2):::¾(ip)Gp+1:

As previously noted, compatibility conditions of the vector
fields iG(:;u) make sense to (6) and completeness ensure
integrability of (6). It is interesting to rewrite compatibility
conditions as equalities independent on the input variables
so enlightening how these conditions specify the involutivity

of the Lie algebra generated by all the ii1i2:::ipG
0
p+1s. Under

successive derivatives with respect to u and evaluation at
u = 0, (4) can be equivalently rewritten as the successive
equalities below iteratively deduced by applying the formal
rule of derivatives of products and sums.

Lemma 2.1: For any multi-index (i1; :::; il) 2 (1; :::;m)
with i1 6= i2, (4) are equivalent to

[i1G1; i2G1] = i1i2G2¡ i2i1G2

[i1i3G2; i2G1] + [i1G1; i2i3G2] = i1i2i3G3¡ i2i1i3G3

[i1i3i4G4; i2G1] + [i1i3G2; i2i4G2]+ [i1i4G2; i2i3G2]

+ [i1G1; i2i3i4G3]

= i1i2i3i4G4¡ i2i1i3i4G4; : : : :

III. EXPONENTIAL REPRESENTATION OF
THE FLOW

To simplify the notations, we treat the case m= 2, but the
method extends according to the same lines to more than
two independent control variables. To simplify nonlinearity
in u, we propose to rewrite equations (5 - 6) for m=2 in an
extended state space, as it is usual when dealing with non-
autonomous differential equations. Setting ³ = (xT ;zT )T 2
X £U2, (5 - 6) can be rewritten as

x+ = F0(x); z+ = 0

@x+(u)

@ui
= iG(x

+(u);z+(u)); i= (1;2); x+(0) = x+

@z+i (u)

@ui
= 1;

@z+i (u)

@uj
= 0; j 6= i; z+(0) = z+

or in a more compact form as

³+ = ¹F0(³)

@³+(u1;u2)

@u1
= 1

¹G(³+(u)); (12)

@³+(u1;u2)

@u2
= 2

¹G(³+(u)); ³+(0) = (x+;0) (13)

with ¹F0(³)
T = (F0(x)

T ;0)T and i
¹G(³) = (iG(x;u)

T ;eTi )
T

where ei is the i-th unit vector in R2.
Translating the compatibility conditions (4), set over the
iG(:;u)

0s, into conditions over (1 ¹G;2 ¹G), we get the condi-
tion of nilpotency; i.e.

[1 ¹G(³); 2 ¹G(³)] = 0 (14)

which is necessary and sufficient for the existence of a
solution ³+(u) to (12-13). In fact, the equality

@2³+(u1;u2)

@u1@u2
=
@2³+(u1;u2)

@u2@u1

is immediately translated into commutativity of the extended
Lie derivative operators (L

1
¹G;L2 ¹G).

According to these notations, the formal integration of (12-
13) is greatly simplified so getting directly the exponential
form of the flow

³+(u) = e1
¹Gu1+2 ¹Gu2In+2

¯̄̄
³+(0)

: (15)



Denoting now by ¼ the projection on Rn; i.e. ¼(x;u) = x,
by Ái(ui;0; :) the flow with exponent uiGi(:;u) associated
with iG(:;u) accordingly to (8), (9) and (10), we easily
deduce the equivalent representations of the solution to (5
-6) below.

Proposition 3.1: Consider the two-input difference equa-
tion (1) verifying H1 - or equivalently, consider an APDTD
of the form (5 -6) -, then (1) - or equivalently the solution
to (6) at (5) - is given by

x+(u) = e1
¹Gu1+2 ¹Gu2¼

¯̄̄
(F0(x);0)

(16)

which can be rewritten as the composition of single-input
flows either

x+(u) = e1
¹Gu1±e2

¹Gu2¼

¯̄̄
(F0(x);0)

(17)

= Á2(u2;0;Á1(u1;0;x
+(0))) (18)

or

x+(u) = e2
¹Gu2±e1

¹Gu1¼
¯̄̄
(F0(x);0)

(19)

= Á1(u1;0;Á2(u2;0;x
+(0))) (20)

with asymptotic behaviour described either by

x+(u) =
¡!
exp

Z u1

0

L
1G(x;v1;0)dv1±

(21)

±
¡!
exp

Z u2

0

L
2G(x;u1;v2)dv2In

¯̄̄
x+(0)

or

x+(u) =
¡!
exp

Z u2

0

L
2G(x;0;v2)dv2±

(22)

±
¡!
exp

Z u1

0

L
1G(x;v1;u2)dv1In

¯̄̄
x+(0)

and exponential representation described either by

x+(u) = eu1G1(:;u1;0)±eu2G2(:;u1;u2)In
¯̄̄
x+(0)

(23)

or

x+(u) = eu2G2(:;0;u2)±eu1G1(:;u1;u2)In
¯̄̄
x+(0)

: (24)

Proof: The proof is easily performed interchanging
the role of u1 and u2. The solution can in fact be obtained
either by chaining the integration of x+(u1; v2) along v2,
between 0 and u2, for a fixed u1 and the integration of
x+(v1;0) along v1, between 0 and u1 - equations (17 -18 -
21 - 23) - or by chaining the integration of x+(v1;u2) along
v1, between 0 and u1, for a fixed u2 and the integration
of x+(0;v2) along v2, between 0 and u2 - equations (19
-20 - 22 - 24) -. It is immediate to deduce (16) from
(15) and then the equality between (17) and (19) due
to the commutativity of the operators or equivalently the
compatibility conditions. The equality between (17) and (18)
and equivalently between (19) and (20) are just a matter of
computations. The chronological series expansions (21) or
(22) with exponential representations (23) or (24) are easily

deduced by applying the results previously recalled in the
single-input case.
Denoting now by Á(u;0; :) : Rn ! Rn, the unique multi-
input flow associated with the solution to the set of partial-
derivative equations (6), we have in conclusion the expo-
nential representation below.

Theorem 3.1: Exponential representation of discrete-
time dynamics
Consider the two-input difference equation (1) satisfying H1
- or equivalently, consider an APDTD of the form (5 -6) -,
then

x+(u) = Á(u;0;x+(0)) = euG(:;u)In
¯̄̄
x+(0)

(25)

with uG(:;u) a vector field on Rn, parameterized by
(u1;u2) which is a Lie element in the ii1:::ipG

0
p+1s, given

by

uG(:;u) =
X
p2¸1

u
p2
2 B0;p2(2G1; : : : ;2p2 Gp2) (26)

+
X

p1¸1;p2¸0
u
p1
1 u

p2
2 Bp1;p2(i1G1; : : : ;i1;:::;ip1+p2

Gp1+p2)

where Bp1;p2(:) stands for a homogeneous Lie polynomial
of degree p1+ p2 in its arguments. The expansion (26) is
deduced from the equalities below

@

@ui
uG(:;u) = Z(¡aduG(:;u))iG(:;u); i= (1;2): (27)

The decomposition of the B0p1;p2s as Lie polynomials can
be iteratively computed according to B0;0=0 and for p2¸ 1
and

jP
q=1

mq+k2 = p2

B0;p2 =
2p2Gp2
p2!

+
1

p2

X
1·k2

X
j¸1X

m1;:::;mj¸0

(¡1)jbj
j!

adB0;m1
± : : : ±adB0;mj

2k2Gk2

(k2¡1)! (28)

for p1 ¸ 1;p2 ¸ 0 and
jP

q=1
lq+k1 = p1

Bp1;p2 = 1p12p2Gp1+p2
p1!p2!

+
1

p1
1·k1;0·k2 j¸1 l1;:::;lj¸0

m1;:::;mj¸0

(¡1)jbj
j!

adBl1;m1
± : : :±adBlj ;mj

1k12k2Gk1+k2
(k1¡1)!k2! :(29)

Proof: From Proposition 3.1 we immediately deduce
the existence of an exponential representation of the multi-
input flow of the form (25). The proof of the equalities (27)
follows exactly the same arguments as in the single-input
case [8]. By expanding the two members of (27) and by
identifying the coefficients we obtain (28) and (29).
Because the role of u1 and u2 can be interchanged, we
equivalently get

uG(:;u) =
X
p1¸1

u
p1
1 Bp1;0+

X
p1¸0;p2¸1

u
p1
1 u

p2
2 Bp1;p2



with

Bp1;0 =
1p1Gp1
p1!

+
1

p1

X
1·k1

X
j¸1

X
l1;:::;lj¸0

(¡1)jbj
j!

adBl1;0± : : : ±adBlj ;0
1k1Gk1
(k1¡1)!

and for p1 ¸ 0;p2 ¸ 1,
jP

q=1
lq+k1 = p1,

jP
q=1

mq+k2 = p2,

Bp1;p2 = 2p21p1Gp1+p2
p2!p1!

+
1

p2

X
0·k1;1·k2

X
j¸1

X
l1;:::;lj¸0X

m1;:::;mj¸0

(¡1)jbj
j!

adBl1;m1
± : : : ±adBlj ;mj

2k21k1Gk1+k2
(k2¡1)!k1! :

A. Some specific cases

Assuming that i=(1;2)G(x;u) depends on the corresponding
ui only; i.e. iG(x;u) =i G(x;ui), compatibility conditions
(4) reduce to nilpotency

[1G(:;u1);2G(:;u2)]jx = 0
and the solution reduces to

x+(u) = eu1G1(:;u1)+u2G2(:;u2)InjF0(x)
with each uiGi(:;ui) described by (10).
Assuming that i=(1;2)G(x;u) does not depend on the control
( autonomous vector fields); i.e. iG(x;u) = iG1(x), then
compatibility conditions (4) reduce to

[1G1;2G1]
¯̄̄
x
= 0

so that the solution reduces to

x+(u) = eu1(1G1)+u2(2G1)In

¯̄̄
F0(x)

:

B. Some computations

Let us give an insight on the first terms of the exponent (26)

uG(:;u) = u1B1;0+u
2
1B2;0+u

3
1B3;0+u2B0;1+u

2
2B0;2

+u32B0;3+u1u2B1;1+u1u
2
2B1;2+u2u

2
1B2;1+O(u

4)

with

B1;0 = 1G1; 2B2;0 =11 G2; 3!B3;0 =111 G3+
1

2
[1G1;11G2]

B0;1 = 2G1; 2B0;2 =22 G2; 3!B0;3 =222 G3+
1

2
[2G1;22G2]

and from (29)

B1;1 = 12G2+
1

2
[2G1;1G1]

2B1;2 = 122G3+[2G1;12G2]+
1

2
[22G2;1G1]

+
1

3!
[2G1[2G1;1G1]]

2B2;1 = 112G3+
1

2
[2G1;11G2]+

1

2
[[2G1;1G1];1G1]

or equivalently

B1;1 = 21G2+
1

2
[1G1;2G1]

2B1;2 = 221G3+
1

2
[1G1;22G2]+

1

2
[[1G1;2G1];2G1]

2B2;1 = 211G3+[1G1;21G2]+
1

2
[11G2;2G1]

+
1

3!
[1G1[1G1;2G1]]

so that

B1;1 =
1

2
(12G2+21G2)

4B1;2 = 122G3+ 221G3+[2G1;12G2]+
4

3!
[2G1[2G1;1G1]]

4B2;1 = 112G3+ 211G3+[1G1;21G2]+
4

3!
[1G1[1G1;2G1]])

Replacing these expressions into the exponential form, we
get in conclusion, up to an error in O(u3), in the exponent

Á(u;0;x+(0)) = euG(:;u)In
¯̄̄
F0(x)

=

eu1(1G1)+u2(2G1)+
u21
2 11G2+

u22
2 22G2+

u1u2
2 (12G2+21G2)In

¯̄̄
F0(x)

:

IV. THE CASE OF SAMPLED DYNAMICS

Let the two input-affine continuous-time dynamics

_x(t) = f(x(t))+u1(t)g1(x(t))+u2(t)g2(x(t))(30)

with f and gi analytic vector fields on Rn. Given a sampling
period ± ¸ 0, setting (t= k±;k ¸ 0), the sampling instants,
assume the input signal u(t) constant over time intervals
of amplitude ± and let u(k) be its constant value over the
interval [k±;(k+1)±[ and x(k) the value of x(t) at time
t= k±. It is well known that the solution at time t= (k+1)±,
for an initialization at x(k) describes a nonlinear difference
equation - the sampled equivalent to (30) - (i.e. the state
evolutions coincide at each sampling time), as

x(k±+ ±) := x(k+1) = e±f+u1(k)±g1+u2(k)±g2In

¯̄̄
x(k)

= F ±(x(k); ±u(k)):

It follows that the results of Theorem 3.1 still apply so
getting

Theorem 4.1: For a fixed sampling period ±, the zero–
order sampled equivalent F ±(x;±u) to (30) admits the
differential representation

x+ = e±fIn
¯̄
x
= F ±0 (x)

d

d±ui
(x+(±u)) = iG

±(x+(±u); ±u); x+(0) = x+

with

iG
±(:; ±u) = Z¡1(¡ad±f+±ug)gi: (31)



when Z¡1(:) denotes the formal inverse of Z(:);i.e.

Z¡1(¡ad³) =
1

0

e¡sad³ds= 1¡ e¡ad³
ad³

= I+
i¸1

(¡1)i
(i+1)!

adi³ :

Proof: The proof requires to verify that H1 is always
verified in this sampled case being F ±0 (x) := e±fInjx al-
ways invertible for sufficiently small values of ± ensuring
the series convergence; i.e. (F ±0 )

¡1(x) := e¡±fIn
¯̄
x
. The

expression (31) of iG±(:; ±u) follows from (27) because, in
this sampled case, ±uG(:; ±u) = ±f+±u1g1+±u2g2, so that

gi = Z(¡ad±f+±ug)iG±(:; ±u)

and thus (31) holds true.

In this sampled case, the compatibility conditions reduce to
combinatoric identities deduced from (31).

A. The example of chained dynamics

Let the one-chain system on R4 be

_x1 = u1; _x2 = u2; _x3 = x2u1; _x4 = x3u1 (32)

with sampled equivalent easily computed as

x1(k+1) = x1(k)+ ±u1(k); x2(k+1) = x2(k)+ ±u2(k)

x3(k+1) = x3(k)+ ±x2(k)u1(k)+
±2

2
u2(k)u1(k)

x4(k+1) = x4(k)+ ±x3(k)u1(k)+
±2

2
x2(k)u

2
1(k)

+
±3

3!
u2(k)u

2
1(k):

F ±(x;±u) is thus polynomial with F ±0 (x) = x. The vector
fields (1G±(:; ±u); 2G±(:; ±u)) exist, are unique and can be
computed according to (3) or (31) so getting

1G
±(¢; ±u) = (1;0;x2¡ ±

2
u2;x3¡ ±

2

3!
u1u2)

T

= 1G
±
1+ 12G

±
2±u2+ 112G

±
3±
2u1u2

2G
±(¢; ±u) = (0;1;

±

2
u1;

±2

3!
u21)

T

= 2G
±
1+ 21G

±
2±u1+ 211G

±
3

±2

2
u21

and the other terms equal to zero. The compatibility condi-
tions reduce to

[1G
±(¢; ±u1; ±u2); 2G±(¢; ±u1; ±u2)] =

12G
±
2(¢; ±u1; ±u2)¡ 21G

±
2(¢; ±u1; ±u2)

easily verified. The sampled equivalent model exhibits the
differential/difference representation

x+ = x; x+(0) = x+

@x+1 (±u)

@±u1
= 1;

@x+2 (±u)

@±u1
= 0

@x+3 (±u)

@±u1
= x+2 (±u)¡

±u2

2
;

@x+4 (±u)

@±u1
= x+3 (±u)¡

±2u1u2

3!

@x+1 (±u)

@±u2
= 0;

@x+2 (±u)

@±u2
= 1

@x+3 (±u)

@±u2
=
±u1

2
;

@x+4 (±u)

@±u2
=
±2u21
3!

:

Computing B1;0 = 1G
±
1, B0;1 = 2G

±
1, B1;1 = 12G

±
2 +

1
2
[2G

±
1;1G

±
1] = 0, B1;2 = 1

12
[2G

±
1[2G

±
1;1G

±
1]] = 0, B2;1 =

1
2 112G

±
3+

1
12 [1G

±
1[1G

±
1;2G

±
1]] = 0 and the other terms equal

to zero, we recover the finite exponent

±uG(:; ±u) = ±u1B1;0+ ±u2B0;1 = ±u11G
±
1+ ±u22G

±
1

= (±u1; ±u2; ±u1x2; ±u1x3)
T

and thus by direct integration of (32) with respect to t

F ±(x;±u) = e±uG(:;±u)In
¯̄̄
x

= e
±u1

@
@x1

+±u2
@
@x2

+±u1x2
@
@x3

+±u1x3
@
@x4 In

¯̄̄
x
:

In this case, the compatibility conditions reduce to combi-
natorics equalities deduced from (31).
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