
A Multi-time Scales Model and Control for Hybrid 
Stochastic Production Systems with Quadratic Cost 

 
SONG Chunyue1    SUN Jianping2    LI Ping1 

 
1: National Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, 

Hangzhou 310027, P. R. China 
2: Mechanical and Electrical Department, Zhengzhou Institute of Technology, Zhengzhou 450052, P. R. China 

(E-mail: cysong@iipc.zju.edu.cn) 
 
 
 
 

 
Abstract—A hybrid stochastic production system 

corresponding to a situation where a basically deterministic 
production system, the fast subsystem, is subject to infrequent 
model disruptions occurring randomly, the slow subsystem is 
formulated with multi-time scales. One time scale is 1, the 
processing time scale, which is frequently and represents fast 
model. Another time scale is ε-1, system failure time scale, 
which is infrequently and stands for slow model of the system. 
On different time scales, the long-run average cost function is 
decomposed into two sub-objective functions. Based on the 
two sub-objective functions, the optimal control policy of the 
system is gotten by using approximation numerical technique. 
Numerical experiments show its merit. 
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I. INTRODUCTION* 

THE modeling and optimal control of stochastic 
production systems have been the objective of 

considerable investigations in Control Theory (see [1], [2] 
and [3] as samples of the literature on this topic). Typically, 
in these models, the stochastic jump process describes the 
evolution of the operational state of a flexible 
manufacturing shop, with jumps due to failures and repairs 
of the machines, whereas the deterministic state equations 
show the evolution of the surplus of products produced by 
the system. In most of these models, the jump Markov 
disturbances due to failures and repairs are assumed to be 
represented as a continuous-homogenous Markov chain 
with jump rate which is independent of state and control. In 
[4], a model is proposed where, for each machine of the 
systems, an additional state variable records the age of the 
machine and the failure rates are age dependent. And this 

model provides an example of a piecewise deterministic 
control systems (PDCS) with state dependent jump rates. In 
[5], a manufacturing system with control (production rate) 
dependent failure rates has been studied. Those efforts 
mentioned above are focused on flexible production 
systems, and more complex production systems are studied 
in [6], where a setup, which may involve setup time or 
setup cost or both, is required if products is to be switched 
from one product to another. Being a particularly difficult 
class of problem, modeling and optimization of PDCS are 
discussed by using hierarchical approach via singularly 
perturbation technique. (See [7], [8] and [9]). In those 
works, the original problem is decomposed into simpler 
problems, which turn out to be the limiting problems 
derived from averaging the given stochastic machine 
capacities, and the optimal control policy for original 
problem is constructed from the optimal control of the 
limiting problems. But the meaning of the singularly 
perturbation parameter in [7] is contrary to that in [8]. For 
relevant works dealing with production systems, we refer 
the readers to [10], [11], [12] and its references. 

                                                        
This work is supported by the Project 973 of P. R. China (2002CB312200), 
the University Doctoral Foundation of National Education Commission, P. 
R. China (20020335106) and the Postdoctoral Foundation of P. R. China 

Being an elegant paradigm of hybrid stochastic control 
system, the modeling and approximation of optimal control 
of a failure-prone production system with quadratic cost are 
discussed, where the jump disturbances are state and 
control independent, and when the time scales of the 
stochastic and the deterministic parts are of different orders 
of magnitude. More precisely, The hybrid stochastic 
production system is composed of “fast model”, 
characterized by a continuous state variable and 
corresponding with the subsystem in the form of a 
controlled diffusion process, and “slow model”, 
characterized by a discrete variable and according with the 
subsystem in the form of a uncontrolled jump process. The 
hybrid stochastic production system we study in this paper 
is formulated as a long-run average cost stochastic control 
problem with quadratic cost in the form of a switching 
diffusion process with a hybrid state and a singularly 
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perturbed generator. To illustrate the validity of this result 
we adopt the approximation numerical technique initiated 
by Kushner and Dupuis [13]. 

The paper is organized as follows. In section II, the 
hybrid stochastic production system is formulated precisely 
under consideration. Approximate optimal control via 
multi-time scales is proved in section III. Section IV 
illustrates the method on a numerical example, and Section 
V concludes the paper. 

II. CONTROL MODEL FOR HYBRID STOCHASTIC 
PRODUCTION SYSTEMS 

A production line is treated as a set of failure-prone 
equipment in production systems, which can produce many 
types of products. In a certain degree, the optimal policy for 
this system is similar to that of a hybrid stochastic 
production system consisting of a single machine. Here, the 
production system consisting of a set of unreliable 
equipment can produce n different types of product Pi, 
i=1, … , n with only one at any given time. The equipment 
is subject to random failure and repairs. 

The hybrid stochastic production system is described by 
using two types of state variables. One is a vector of 
variables continuously changing in Rn, and another is the 
stochastic jump process taking values in a finite index state 
space E (defined later). Corresponding to any state α∈E, 
there exists a system of differential equations describing the 
dynamic of the continuously changing variables when the 
jump process is in the state α. The continuous state 
variables can be associated with the deterministic dynamics 
of the production system while the stochastic jump process 
represents the changes of its functional modes. A small 
parameter ε>0 is introduced below in such a way that 
continuous variables can have a finite (not tending to zero 
with ε) deviation on any time interval of the length ε while 
the probability for the jump process to change their value 
on such an interval is of the order O(ε). Thus, continuous 
variables can be considered to be “fast” with respect to the 
rate of the occurrence of the jump. 

For t≥0, let xi(t) R∈ 1=(-∞, ∞), ui(t)∈R+= ),0[ ∞  and 
zi(t)∈R+ denote the surplus, production rate, and the rate of 
demand for product Pi, i=1, … , n. X, U, and Z are used to 
denote vectors [x1(t), …, xn(t)]T∈Rn, [u1(t), …, un(t)]T∈R+n, 
and [z1(t), …, zn(t)]T∈R+n, respectively, where AT denotes 
the transpose of a vector (or a matrix) A. zi(t) is considered 
as a constant in this paper. The inventory/shortage levels 
are described by the following dynamic differential 
equations: 

XXtddttUtXftdX =+= )0(),())(),(()( ωσα ,    (1) 

where σ=[σ1, σ2, …, σn]T is a given vector, and (ω(t), t≥0) is 
a standard Rn-valued Wiener motion process, defined on a 
complete probability space (Ω, £, P). Here, σ describes the 
random and uncontrolled product exhaustion by internal 

strife. 
The unreliable equipment states can be classified as (i) 

operational, denoted by state 1; (ii) breakdown, denoted by 
state 0. Under operational state, any type of product can be 
produced; under breakdown state, nothing is produced. Let 
ζ(t) denote the state process of the equipment, and let E={0, 
1} be the state space of the process ζ(t), ζ(t)∈E. It is 
assumed that a discrete-state variable is “moving slowly” 
according to a continuous time stochastic jump process 
with jump rates qαβ: 

)(])(|)([ dtodtqtdttP +===+ αβεαζβζ ,        (2) 

)(1])(|)([ dtodtqtdttP ++===+ ααεαζαζ .      (3) 

Where o(dt)/dt=0, .  is the 

jump rate of the process ζ(t) from state α to state β at time t. 
In expressions (2)-(3) the parameter ε is the time-scale ratio 
that will, eventually, be considered very small. And the 
production system can be described by the following 
differential equation precisely: 
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We are concerned with the optimal problem of finding a 
production control policy that minimizes the expected 
long-run average cost: 
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where s denotes the remaining set up time of the system, 
and i denotes the initial set up state of the system. The 
decision variables are the rates of production U(·) over time. 
Let G(X(t), U(t), ζ(t)) denote the instantaneous cost 
function of the surplus and repair. It is denoted by 
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Positive surplus is supposed to incur a holding cost of ci
+ 

per unit commodity per unit time, while the negative incur 
a holding cost of ci

-, with ci
+>0, ci

->0. xi
+:= max(xi, 0), xi

-: 
=max(-xi, 0). Where cr denotes cost parameter of repair, 
which is nonnegative constant. ind{ζ(t)=α} is the indicator 
function of set {ζ(t)=α} 
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Remark 1: The quadratic instantaneous cost function (6) 
is a useful cost approximation for the hybrid stochastic 
production systems, where products are perishable or may 
become obsolete, as well as systems with storage-space 
competition [14]. And the cost of repair in (6) ensures the 
system model more practical, which is ignored in most 
lectures on this topic. 

According to the nature of this system, for t≥0, the 
production constraints are given as follows: 
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Where ri denotes the maximum production rate of Pi. 
The constraint (9) is very appealing from an intuitive point 
of view. Note that (q10)-1 and (q10)-1 are mean sojourn time 
of the “slow model” in states 0 and 1 respectively. 

Let U(α), a close subset of R+n, denote the production 
rate control constraints, α∈E. Any measurable function 
U(t) defined on U(α), for each α∈E, is called an admissible 
control. The set π={U(t): t≥0} is an admissible policy. The 
admissible control function U(t) is supposed to be 
piecewise continuous in t and continuously differentiable 
with bounded partial derivatives in X. U(t) is a feedback 
admissible control which can react to the current state. 
Feedback controls are of practical importance because they 
will adjust any unfavorable deviation of the state from the 
targeted position at any time and hence render a better 
performance, especially when uncertainties or disturbances 
are presented in the system. 

∀

Let (X(t), ζ(t)) denote the system state at time t, and the 
space of the system state is Rn×E. The problem is to find an 
admissible decision U(·)∈π that minimizes J(i, X, s, ζ(t), ε), 
the expected long-run average cost, which is subject to Eq. 
(5), (8), (9). 

III. APPROXIMATE OPTIMAL CONTROL VIA MULTI-TIME 
SCALES 

In this section, properties of the value function of the 
problem, the associated HJB (Hamilton-Jacobi-Bellman) 
equation, and an approximate optimal control policy on 
multi-time scales are considered. 

Without losing generality, let ),,,( εαXiV  for X∈Rn, 
α∈E, s=0, denote the value function of the problem, i.e. 

),0,,,(inf),,,(
)(
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π

XiJXiV
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From (6), G(X(t), U(t), ζ(t)) is locally Lipschitz and has 
at most polynomial growth, which agrees with the 
assumption A1 in [6]. The value function ),,,( εαXiV  is 
C2 in xi for each α∈E, and the following HJB equation 

holds. For any α∈E and i=1, 2, …, n 
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According to the hybrid stochastic production system 
model formulated in section II, there are multi-time scales 
in the system. One time scale is 1, the processing time scale, 
which is frequency and represents fast model. The other 
time scale is ε-1, system failure time scale, which is 
infrequency and stands for slow model of the system. Now 
the following notation is introduced as multi-time scales: 

ttt ε== 10 ,                               (12) 

Thus, (10) can be rewritten as the following by using the 
above stretched-out time scale 
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Denote the operator Dn, 1,0, =
∂
∂

= n
t

D
n

n , suppose 

some assumptions hold in [9], and the following HJB 
equations hold by comparing the each power coefficient of 
ε in the equation (11) via using this operator Dn 
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iii. ),,(,,( 0 αα XiVXiV →  as 0→ε         (16) 

Remark 2: ),,(0 αXi  is the limiting problem 
commonly mentioned in [7], and asymptotic optimal 
controls for original problem (10) can be constructed from 
optimal or near-optimal controls for the limiting problem. 
Here, the meaning of ε is opposite to [7] and similar to [8]. 

Now a numerical technique is implemented to 



approximate the optimal control of the hybrid stochastic 
production system described above. 

Let Gh be a grid of points in X with mesh h which defines 
the set of x-states for the approximate chain. Let  
denote the reflecting boundary for the chain, which is 
disjoint from G

+∂ hG

h. And the state space of the approximate 
chain will be . Let eEGGS hhh ×∂∪= + )( i be the unit 
vector on the xi coordinate. We approximate ),( ⋅⋅V  by a 
function , and by replacing the first order partial 

derivative (

),( ⋅⋅hV

),( ⋅⋅V
∂
∂
X

) and the second order partial 

derivative ( ),(2

2

⋅⋅V
∂
∂
X

) of the value function by the 

following expressions (We refer the readers to [8] and [13] 
for details.). For convenience, the subscript of ),( ⋅⋅V  are 
omitted in the following text: 
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Second order: 
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Without losing generality, here we only demonstrate the 
transform of equation (15): 

i. for 0≥
dt
dxi  

Regrouping terms in the equation (15) where the partial 
derivatives have been replaced by the (17) and (18), the 
following equation can be obtained: 
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ii. for 0<
dt
dx , the corresponding equation holds. i

For 0=∑
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the following dynamic programming equation can be gotten 
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The solutions of the dynamic programming equations (24) 
and (25) can construct the solution of the original optimal 
control problem approximately. 

IV. NUMERICAL EXPERIMENTS 
The solution of the numerical technique for the hybrid 

stochastic production system is shown with an example 
including the following specifications: n=2, and r1=r2=1.0, 
z1=0.3, z2=0.4, α∈ E={0, 1}. The other parameters are 
shown in Tab. 1. And the simulation results are shown in 
Fig. 1. 

Fig. 1.1.a and Fig. 1.1.b correspond to the control policy 
u1(t), u2(t) according with x1(0) = -1.5, x2(0)=1.0 for ζ(0)=1, 
respectively. Fig. 1.2.a corresponds to the tendency of the 
value function V(·, ·) according with x1(t), x2(t)∈ [-1.5, 1.0] 
for ζ(0)=1, and Fig. 1.2.b displays the tendency of the value 
function V(·, ·) when x1(t) varieties from –1.5 to 1.0, 



whereas x2(t) is a constant, for ζ(0)=1. Simulation shows 
that the optimal production control policy is of bang-bang 
control policy, and of hedging point policy. The hedging 
point is around zero, i.e. zero-inventory policy is the 
optimal control policy for the system. These numerical 
results illustrate and confirm the method developed above. 
And the numerical experiments show that the policy not 

only keeps the system run at the least cost but makes the 
production meet the demand perfectly. Moreover the policy 
makes the production satisfy the customers in sum and 
balances all types of the products, keeping the inventory in 
low level. 

 

 
 

TABLE I. Parameters of The System 
 

c1
+ c1

- c2
+ c2

- q10 q01 ε σ1 σ2 r1 r2 

0.5 3.0 1.0 3.0 0.1 0.2 0.02 0.5 0.5 1.0 1.0 
 
 

 

 

Fig. 1.2.a Value function for ζ(0)=1 Fig. 1.1.a the Control Policy of u1(t) for ζ(0)=1

Fig. 1.1.b the Control Policy of u2(t) for ζ(0)=1 Fig. 1.2.b Value function for ζ(0)=1 

 
 

Fig. 1 the Simulation Results of the Numerical Experiments

 
 
 

V. CONCLUSIONS 
The hybrid stochastic production system involving fast 

model and slow model, we studied in this paper, 
corresponds to a situation where a basically deterministic 
production system, the fast subsystem, is subject to 
infrequent model disruptions occurring randomly (i.e. 
machine failures process), the slow subsystem. The hybrid 
stochastic production system is formulated as a multi-time 
scales model and the value function of the system is 
decomposed over multi-time scales. Compared to the 
hierarchical production model with singularly perturbation 

proposed by [9] or [6], our modeling and optimization deal 
with the problem from a point of view of system 
engineering. It is encouraging that the numerical solution of 
the dynamic programming equations with multi-time scales 
characterizing the optimal control policy, has been obtained 
since a hybrid stochastic production example has been 
solved. The method of modeling and optimization can be 
extended to these systems involving hybrid state. 
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