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Abstract— In this paper, we propose a new technique for
enhancing the residual signal in a way that reduces the rate
of false alarms without introducing detection delay. This is
achieved by eliminating most of the noise from the residual
signal by performing an autoregressive modeling, where the
model parameters are estimated in real time by an ordinary
Kalman filter. Computer experiments using a Boeing 747
model are used to demonstrate the implementation of the
proposed technique.

I. INTRODUCTION

Early detection and identification of faults (abnormal condi-
tions) leads to increased reliability in complex engineering
systems. Therefore, fault detection and identification (FDI)
is an important and active research field. Published literature
in the field contains many techniques for detecting faults:
observers, parity space methods, eigenstructure assignment,
parameter identification based approaches, etc. Useful re-
sults can be found in several excellent survey papers(Gertler,
1988; Frank et al., 2000) and books (e.g., Basseville and
Nikiforov,1993; Chen and Patton, 1999; Silvio et al., 2002).
However, early detection of progressive (slowly developing
and increasing) faults has really not received a lot of
attention from the research community; only a few results
on this issue have been reported until now (for example, see
Demetriou and Polycarpou (1998), Parlos et al (2002)). Pro-
gressive faults are difficult to detect early, especially when
measured (sensor) data are corrupted by noise. Application
of the existing FDI techniques to progressive faults in the
presence of measurement noise is complicated by the trade-
off between false alarms and missed detection. Typically,
reducing the false alarm rate will result in detection delay.
In this paper, we propose a technique that can reduce the
rate of false alarm without sacrificing the speed of detection.
For stochastic systems, FDI is typically based on statistical
testing of the residuals. The basis of all statistical hypothesis
testing is that in the normal (fault-free) case, the residuals
constitute a random process with known statistical proper-
ties; when a fault occurs, the residuals constitute a different
statistical process. The whole idea of fault detection is,
then, exactly the same as detection of a change in statistical
properties. During recent years, a lot of research has been
done on FDI for stochastic systems (Chen and Patton, 1999;
Keller, 1999; Chowdhury, 2000) - the common technique in

all of these methods is the generation of a residual signal
that can be used, with a high level of confidence, as an
indicator of faults. Also, all FDI includes, in one form or
another, tests of hypotheses that are applied to the fault
indicator.
In all the hypothesis testing techniques, a trade-off is
expected between the rate of false alarm and that of missed
detection or detection delay. Too many false alarms make
system operation rather unreliable, but trying to reduce the
number of false alarms typically results in an increased
probability of missed alarms, which translates into detection
delays. Since false alarms are a direct result of the noisiness
of the residuals, it is clear that techniques of reducing the
noise level of the residuals, without losing the fundamental
information regarding the presence of the fault, would be
of great benefit.
In this paper, we propose a technique that extracts the
useful signal from noisy residuals. This method would be
especially useful for detecting slowly evolving faults in
dynamic systems; the technique is based on an autoregres-
sive (AR) modelling of the residuals. The residuals can be
generated by any of the conventional methods; the only
requirement is that during fault-free operation, they should
be zero-mean and timewise uncorrelated random variables.
We focus on progressive faults because in case of sudden
faults the raw residuals are usually sufficient to detect the
fault. Moreover, using the existing methods, when we try to
reduce the number of false alarms by setting the detection
threshold high (for example, at 3σ: three times the standard
deviation, the false alarm rate is 1%), progressive faults
may go undetected for a long time, thus endangering the
entire system. In some cases, progressive faults may turn
into failures. It is our contention that AR-modeling of the
residuals provides a reliable and sensitive indicator of the
fault before the fault becomes apparent in the raw residuals;
in this technique, the number of false alarms is greatly
reduced.

II. CONCEPT OF THE MAIN APPROACH

According to the literature (Isermann and Balle, 1997; Chen
and Patton, 1999), the term “fault” is defined as unpermitted
deviation of at least one characteristic property or parameter
of the system from acceptable/usual condition, while the



term “failure” refers to complete breakdown of a system
component or function. A fault may lead to a failure -
and while we cannot prevent many faults, by detecting
them as early as possible, we may be able to prevent a
failure. A progressive fault (or so-called incipient fault in
some fields) is considered in this work. It is a very slowly
developing fault, that is, it denotes an abnormal condition
that gets worse and worse until some system component
totally fails or some physical quantity (speed, temperature,
pressure, etc.) exceeds allowable limits. For example, it can
be described as follows:

f(t) = β(t − T )f0

where T ≥ 0 is the beginning time of a fault, f0 is a
constant vector, and β(t − T ) is defined as follows:

β(t − T ) =

{

0; if t ≤ T

1 − e−k(t−T ); if t ≥ T
(1)

with k ≥ 0 being a small constant. The fault f(t) becomes
a failure when it exceeds some threshold M at a specific
time t∗: if

f(t∗) = M

and
f(t) ≥ M ∀t ≥ t∗,

then a failure has occurred at time t = t∗.
Remark 1: The above fault model is given only for
illustration purposes; the technique used in this paper works
regardless of any specific fault model.
Because of the nature of a progressive fault, it is much more
difficult to detect earlier, compared with an abrupt fault. The
goal of this paper is detect such faults as soon as possible
even when they are tolerable at the early stage, to prevent
any serious consequences. That is, detect the fault before it
becomes a failure.
In this work, the model of the closed loop dynamic system
including the controller is assumed to be known. (This
assumption is used only for simplicity; if the system model
is not known, then system identification methods can be
used to generate the necessary residuals. Regardless of how
the residuals are created, our method can be applied on
the residuals directly.) Let the output of the system model
be yM (k), and the actual plant output be yk, as shown in
Figure 1; the nominal (fault-free) plant output is the same
as the model output. The residual is given by

R(k) = y(k) − yM (k). (2)

If the output signal can only be measured with a certain
noise v1k, the noisy residual is

R(k)(noisy) = y(k) − yM (k) + vs(k). (3)

Suppose the controller output (the manipulated variable)
obtained from the model is uM (k), and the actual controller
output is u(k), as shown in Figure 1. Assuming that the
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Fig. 1. Block diagram of residual generation

actuator signal can be measured, the “controller residual”
is given by

Rc(k) = u(k) − uM (k). (4)

If the controller output can only be measured with a certain
noise vc(k), then the noisy controller residual is

Rc(k)(noisy) = u(k) − uM (k) + vc(k). (5)

Clearly, during no-fault situations the “true residuals”
remain zero. When the measurements are available without
any noise, the generated residuals are sufficient to indicate
the presence of a fault - either progressive or sudden - in
the system. However, when the measured signals contain
random measurement noise, the raw residuals do not im-
mediately show the presence of the fault. In such cases, we
propose to use the AR modeling technique to extract the
“true residuals”, and use that variable as the main indicator
of system fault. Essentially, the AR modeling provides a
way of filtering out the noise from the residuals. It is worth
pointing out that front-end filtering can also be used to
reduce sensor noise. Although a low-pass filter is easy to
implement, its performance is not very good, since some of
the low-frequency noise will always remain in the filtered
signal. Another way to filter the noise would be to take
a moving average of the signal; however, since the zero
mean of the signal can only be obtained (theoretically)
with an infinite number of data points, and any practical
implementation of the moving average must have a finite
window size, we cannot expect a true mean value from
this method. Using the AR modeling, in theory, the AR
parameters should be zero; thus, the AR-processed signal
is also zero. In practice, the AR parameters estimated in
real time will be small non-zero numbers.
Remark 2: The AR-processed residual is not viewed as a
random number. The idea is that this technique essentially
replaces the stochastic indicator (raw residuals) by a deter-
ministic one.

III. AUTOREGRESSIVE (AR) MODEL OF PROCESSES

Claim 1: As long as the residuals constitute a zero-mean
uncorrelated random process, any modeling of the residuals
should yield an output which is very close to zero, since it



is fundamentally impossible to predict a random sequence.
As soon as there is a fault, the residuals will contain the
information in some form; at this time, the information can
be extracted with a simple AR model.
The AR model of a process zk is given by

z(k) = Σn
i=1αiz(k − i),

where αi are the AR parameters and n is the order of the
AR model. In this work, the process zk can be the residuals
collected either at the system output or the controller output,
depending on which signal is deemed to be more sensitive
to the faults. Note that during the no-fault period, assuming
the availability of correct models for the plant and the
controller, the residuals will be either:

• zero, if the measurements are non-noisy, or
• equal to the measurement noise, if the measurements

are noisy.

In the noise-free case, there is no added benefit to using the
AR modeling: the raw residuals at the system output and
the controller output can serve as fault indicators. If the
measurements are noisy, then the raw residuals can mask
the presence of faults, at least temporarily; in such cases, the
AR-predicted “true residuals” are a much better indicator of
faults. In this work, we propose the use of the Kalman filter
for the parameter estimation; all the appropriately modified
equations for the implementation of the Kalman filter in this
specific problem are presented in the next section.

A. AR Parameter Estimation in Real Time

Let the M-dimensional vector x(k) denote the state of
a discrete-time, linear dynamical system and let an N-
dimensional y(k) denote the observed signal of the sys-
tem, both measured at time k. Thus the system model is
described by two equations. The process equation is given
by

x(k + 1) = A(k + 1, k)x(k) + v1(k) (6)

where A(k + 1, k) is known by M-by -M state transition
matrix relating the states of the system at times k+1 and k.
v1(k) is modeled as zero mean, white noise process.
The measurement equation of the system is given by

z(k) = C(k)x(k) + v2(k) (7)

where C(k) is a known N-by-M measurement matrix.
The noise vectors v1(k) and v2(k) are assumed to be
uncorrelated. The state transition matrix A(k+1, k) and the
measurement matrix C(k) are also assumed to be known.
Given this dynamic system model, a Kalman filter can
estimate the state vector x(k) based on noisy measurements
z(k). The covariance matrices of the noise signals are
assumed to be known; if they are not known, they can also
be estimated in real time.

In order to estimate the AR parameters of the residual
sequence, let us map the process Eq. 6 and measurement
Eq. 7 to the AR model. More specifically, by letting

x(k) = α(k) = [α1(k), · · · , αn(k)];

C(k) = [z(k − 1), · · · , z(k − n)];

and A(k+1, k) = In×n, we get the following measurement
and update equations respectively.

α(k + 1) = α(k) + v1(k) (8)

z(k) = C(k)α(k) + v2(k) (9)

Now, state vector x(k) of the dynamic system contains the
AR parameters αi, and can be estimated in real time. The
update equation for the AR parameters obtained from Eq.9,
with the computed Kalman gain at each time step K(k) is:

α̂(k) = α̂(k − 1) + K(k)(z(k) − ẑ(k)), (10)

where ẑ(k) is the estimated output from the previous
steps of the estimation process (using the AR parameters
estimated at time k − 1). The standard Kalman gain K(k)
is given by

K(k) = APCτ (CPCτ + R)−1 (11)

where the error covariance matrix

P (k)
4
= E

[

(z(k) − ẑ(k))(z(k) − ẑ(k))τ

]

is updated by

P (k + 1) = AP (k)Aτ + Q−K(k)(CP (k)Cτ + R)Kτ (k)
(12)

with R and Q being covariance matrices of the measurement
noise and process noise respectively, that is

E

(

[

v1(k)
v2(k)

]

[vτ
1 (j) vτ

2 (j)]

)

=

[

Q 0
0 R

]

δkj

where δkj is the Kronecker delta function, E(·) stands for
the expectation operator, A is an identity matrix in this case.
Note that due to the random walk nature of the process
equation, Eq. (8), the AR parameters are allowed to change
in small amounts, and this allowance is controlled by the
covariance of process noise used in the algorithm.
The fault detection process in this approach consists of ex-
tracting fault information from the noisy residuals. Indeed,
substituting E[v2(k)] = 0 in (9) we get

E[z(k)] = C(k)E[α(k)], (13)

which also means that ẑ(k) = C(k)α̂(k); this is the quantity
we use as the actual fault indicator. Ideally, nonzero ẑ(k)
indicates occurrence of a fault. In practice, we establish a
threshold for the decision rule; the threshold depends on
the definition of “failure” in each application, and may also
depend on other application-specific quantities.



B. Closed-loop vs. Open-loop Cases

For early detection of progressive faults that have the
potential to turn into failures, we must select carefully
the best location for generating the residuals. It should
be noted that a similar issue – that is, choice of the
best sensor location – has been investigated in (Xu and
Jiang, 2000). In that paper, the authors concluded that
the controller output is the optimal location to obtain the
information about small parameter changes or faults in the
actuator, feedback sensor and the plant. Although they did
not consider progressive faults, and they considered noise-
free cases only, it is our contention that the controller output
is the best location for residual generation in all closed-
loop cases; in addition, the more effective the controller
is, the more important it is to base the fault detection on
the controller-output residuals and not on the system-output
residuals. Our experiments show that the AR-predicted val-
ues obtained from the controller-output residuals constitute
the best indicator of progressive faults in a closed-loop
system. Also, a restrictive assumption about norm bound of
the transfer functions in certain frequency ranges is critical
in (Xu and Jiang, 2000), while it is not required in this
paper. We demonstrate that AR-predicted residuals at the
controller output constitute the best indicator in a closed-
loop system. To illustrate our concept, a series of computer
simulations have been conducted on an aerospace system
example, which is described in the next section.
Remark 3: A straight forward extension of the method
to the ARMA (AutoRegressive Moving Average) modeling
will result in the estimate of the transfer function between
the input to the system and the residual signal. This transfer
function would be a direct estimation of the fault in the
system, which is useful for fault accommodation as pointed
out by (Patton, 1997; Staroswiecki and Gehin, 2001).
In the next section, results of computer simulation studies
that demonstrate the application of our concept are pre-
sented.

IV. A BOEING 747 AIRCRAFT EXAMPLE

In this section, a Boeing 747 jet transport aircraft model
is used to test the proposed method in this paper. Using
the geometrical and aerodynamic data for the Boeing 747
jet transport aircraft from (Etkin and Reid, 1994) and
considering flight condition: cruising in horizontal flight
at 40,000 feet with Mach number 0.8, the dynamics of
longitudinal model is characterized by the following matrix:

A =









−0.006868 0.01395 0 −32.2
−0.09055 −0.3151 773.98 0
0.0001187 −0.001026 −0.4285 0

0 0 1 0









;

B =









−0.000187 9.66
−17.85 0
−1.158 0

0 0









; C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

where the state vector and control/command vector are
composed by:
x1 = υ – the longitudinal velocity;

x2 = ω – the vertical velocity;
x3 = $y– the rate of pitch;
x4 = θ – the pitch angle,

u1 = δe – the elevator command;
u2 = δa – the throttle command.

First, a fault-free nominal model of the entire system is
used to generate nominal outputs etc., which are to be used
as the reference for residual generation. It is assumed that
a fault occurred at the execution level, for example, at the
servomotor of the elevator channel (because of a low supply
voltage or mechanical brake). The simulated fault is of a
slowly developing nature and occurs at t=4 sec, which is
depicted in Figure 2. We assume that this fault becomes a
“failure” at time t ≥ 10 sec, therefore our goal is to see
whether we can detect the fault at or before this time.
The values of the residuals at two points in the system are
measured: (a) the system output, that is, the longitudinal
velocity, and (b) the controller output, that is, the elevator
command. The true residuals under noise-free environment
are shown in Figure 3 and Figure 4 respectively. It can
be seen that the controller output residual would detect the
fault very quickly. Figures 5-6 show the two residuals when
the measured signals contain white noise. It is evident that
in the noisy case, the raw residuals do not clearly indicate
the presence of the fault in the beginning of the process.
If the threshold is set to be small, there are too many false
alarms. If we set a high detection threshold (see Figure 5)
to reduce the number of false alarms, the fault detection
time will be delayed till t=11 sec.
Next, we perform a second-order AR modeling of the
residuals at controller output and system output for the
noisy case. The results of AR modeling is shown in Figures
7-8 respectively. Figure 7 shows that, by using residual
autogression at the system output, the detection threshold
can be made small without increasing the rate of false
alarms. Even better results can be seen in Figure 8 by using
residual autogression at the controller output, where the
threshold can be nearly zero (near-perfect noise filtering)
and earlier fault detection can be achieved.
The first order equation governing the AR modeling of the
residuals at the system output for the noise free case is given
by

z(k) = a1z(k − 1). (14)

After the coefficient is estimated (â1) by an ordinary
Kalman filter, the AR-predicted residual is given by:

ẑ(k + 1) = â1z(k). (15)

This process is repeated at each time-step k, where the
covariance matrices for process, sensor noise sequences and
initial estimation error are :

Q = 0, R = 5In, P (0) = 0.05In.



TABLE I
FALSE ALARM RATES USING RAW RESIDUALS AND AR-PREDICTED

ONES AT SYSTEM OUTPUT: DETECTION TIME = 10 SEC.

slopes of fault raw residual AR-predicted residual
0.01 32.5% 7.5%
0.02 15% 2.5%
0.03 2.5% 0%

TABLE II
FALSE ALARM RATES USING RAW RESIDUALS AND AR-PREDICTED

ONES AT CONTROLLER OUTPUT: DETECTION TIME = 7 SEC.

slopes of fault raw residual AR-predicted residual
0.01 22.5% 2.5%
0.02 12.5% 0%
0.03 2.5% 0%

Another similar Kalman filter is utilized at the controller
output node, producing AR-predicted residuals, where P (0)
is chosen as 0.1In. From the plots of these AR-predicted
residuals, we can determine that the slowly developing fault
is detectable more clearly from the AR-predicted residuals
than from the raw residuals. Moreover, it can also be seen
that the controller output residuals are a better indicator of
the fault than the output residuals.
In order to investigate the relative frequency of false alarms
in the raw residuals vs. the AR-predicted residuals, we have
done simulations for incipient faults that occurred at t=4
sec, with different slopes. Comparison of false alarm rates
between raw residuals and their AR modeling at system
output is summarized in Table 1 where the detection time
is fixed at t=10 sec, while Table 2 compares false alarm
rates between raw residuals at controller output and the AR-
predicted ones where the detection time is fixed at t=7 sec.
From the above tables, it can be seen that the AR-predicted
residuals significantly reduce the false alarm rates, regard-
less of which residuals are being used. Moreover, comparing
table 1 and table 2, it is clear that the AR-predicted residuals
at the controller output detect the faults earlier, with very
little false alarms.

V. CONCLUSION

In this paper, we have presented a simple and practical
way of creating a fault indicator that is very useful for
early detection of progressive faults. This fault indicator
is the AR-predicted value of the residual signal. We have
demonstrated that in closed-loop systems, autoregression of
the residuals at the controller output provides the best and
earliest indicator of the presence of a fault. In future work,
we plan to implement methods of estimating the transfer
function between the residual signal and the system input;
this transfer function should provide an estimate of the
fault, which would be useful for fault accommodation and
potentially, for design of active fault-tolerant control.
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Fig. 2. The incipient fault signal f(t)
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Fig. 3. System output residual: noise-free case
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Fig. 4. Controller output residual: noise-free case
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Fig. 5. System output residual: noisy case
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Fig. 6. Controller output residual: noisy case
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Fig. 7. AR-predicted system output residual
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Fig. 8. AR-predicted controller output residual
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