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Abstract— In this paper, a multi-channel method is proposed
for design of iterative learning control. This novel design
method uses multiple channels to widen the learning frequency
range that can be achieved by a single channel. The application
of the multi-channel method to the anticipatory learning
control design is analyzed in details. The design procedure and
effectiveness of the multi-channel method are demonstrated via
an example and simulations. Comparisons of the multi-channel
learning control with the conventional single channel learning
control highlight the application prospect of the multi-channel
design method.

I. INTRODUCTION

Iterative learning control (ILC) develops controllers that
are to perform a specific tracking command repeatedly,
each time starting from the same initial condition [1]. It
aims to reduce tracking error during the whole period
of a process operation including the transient part using
minimum knowledge of the system. This is accomplished
by using the past experience(s) to improve the performance
in the future operations. The input signal is updated based
on the recorded data from previous trials to make the output
converge to the desired output.

Since its emergence, ILC has received considerable at-
tention. In the growing stage of ILC, researches focus on
convergence issues. But in applications, the mathematically
proved convergence of ILC does not guarantee reasonable
transients during the learning process [12]. And it is the
time to exhibit the usefulness and effectiveness of learning
control through real-life examples, show that learning con-
trol does offer new concepts and new solutions. Therefore,
in recent years, increasing efforts have been made on the
design issues. Efforts in ILC design include using tech-
niques like Linear Matrix Inequality (LMI) [4], H∞ [2], µ-
synthesis [16], Auto-Regressive Moving Average (ARMA)
model approximation [17], and zero-phase filtering [12],
[20].

In most ILC papers, the input update is acquired directly
from the error information of the previous repetition(s). An
alternative approach is that the frequency coefficients of the
input update is firstly derived from the Discrete Fourier
Transform (DFT) of the previous error, then the input
update is achieved via Inverse Discrete Fourier Transform
(IDFT) [9], [10], [15]. The later approach offers flexibility
in dealing with individual harmonic components of the
tracking error. If n harmonic components are considered,
the learning control has n parallel learning compensators
in the frequency domain. The multi-channel design method
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proposed in this paper has a few, generally much less than
n, learning compensators working simultaneously, and the
input update still takes place in the time domain. This
method bridges the existing two approaches. The multi-
channel learning deals with the tracking error channel-wise
(’channel’ means a designated frequency band). In this
paper, we will present the theoretical issue of the multi-
channel method. Experimental results on a robot joint were
reported in [24].

II. SINGLE CHANNEL ILC DESIGN

Consider a physical system modeled by a SISO continu-
ous time invariant linear state space equation{

ẋ(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) (1)

where x is the n-dimensional state vector, u is the scalar
input, y is the scalar output and w represents any determin-
istic disturbances that appear in every repetition. Laplace
transform of the output for the jth repetition is

Yj(s)=Gp(s)Uj(s)+C(sI−A)−1x(0)+C(sI−A)−1W (s)
(2)

where Gp(s) = C(sI −A)−1B is the input-output transfer
function and x(0) is the initial state position which is
assumed to be the same for each repetition. The tracking
error of the jth repetition is Ej(s) = Yd(s)− Yj(s), where
Yd(s) is the Laplace transform of a desired output yd(t)
defined over a finite time operation interval [0, T ]. Let the
Laplace transform of the learning law be

Uj(s) = Uj−1(s) + kΦ(s)Ej−1(s) (3)

where k is the scalar learning gain and Φ(s) is the learning
compensator in Laplace form (the DC gain of Φ(s) is
supposed to be 1; if it is not 1, this value can be absorbed
by k). Use (2) and (3) and we get

Yj(s) − Yj−1(s) = Gp(s)[Uj(s) − Uj−1(s)]
= kGp(s)Φ(s)Ej−1(s).

Since

Yj(s) − Yj−1(s) = −[Ej(s) − Ej−1(s)],

we get

Ej(s) = [1 − kGp(s)Φ(s)]Ej−1(s). (4)

[1−kGp(s)Φ(s)] can be viewed as a transfer function from
the tracking error at repetition (j−1) to the tracking error at
repetition j. Similar to [3], [7], [8], [12], the condition for



the tracking error to decay monotonically every repetition
for all frequencies is

|1 − kGp(jω)Φ(jω)| < 1. (5)

Frequency domain convergence condition is a sufficient
condition for convergence though learning control is finite
time problem [2], [12]. In practice, it is difficult to make
(5) satisfied for all frequencies. The frequency range where
(5) holds is termed the learnable frequency band (range).
A cutoff is required to stop learning the error components
with frequencies at which this condition is violated.

III. LEARNING CHANNEL-WISE

A. Multi-Channel ILC Structure

If the learnable frequency band of a single channel
learning control is not wide enough, methods to extend
the learnable frequency band are required. Longman and
Wirkander use the self tuning method, switching the pa-
rameters of the learning compensator between repetitions
and finding the best switch mode [14], [23]. The switch
results in a much higher cutoff frequency [23]. Longman
and Wirkander’s idea can be generalized into switching the
learning compensators, not just switching parameters. If we
use learning compensator Φ1(s) with learning gain k1 for
α trials, then switch to Φ2(s) with learning gain k2 for β
trials, then repeat, the total error contraction rate is

|1 − k1Gp(jω)Φ1(jω)|α |1 − k2Gp(jω)Φ2(jω)|β .

It is possible to find an optimal ratio of α/β that will keep
the total error contraction rate less than one up to the highest
frequency. And this frequency will be higher than the cutoff
frequency of using Φ1(s) with k1 or Φ2(s) with k2 alone.

The multi-channel method proposed here also aims to
use more learning compensators to cover a wider frequency
band, but in a different direction. A new ILC structure
with n channels is proposed in Fig. 1. The filter Fi(s)
defines the designated frequency band of the ith channel,
ki is the learning gain for the ith channel, and the ith
learning compensator Φi(s) ensures convergence of the
tracking error within the defined frequency band (suppose
the DC gain of Φi(s) is 1; if it is not 1, this value can
be absorbed by ki). The tracking error is separated into
n parts corresponding to the designated bands/channels.
These separated error parts are learned simultaneously in
corresponding channels. The individual learning control
laws in the individual channels are



U1,j(s) = U1,j−1(s) + k1Φ1(s)F1(s)Ej−1(s)
In Channel 1

...
Ui,j(s) = Ui,j−1(s) + kiΦi(s)Fi(s)Ej−1(s)

In Channel i
...

Un,j(s) = Un,j−1(s) + knΦn(s)Fn(s)Ej−1(s)
In Channel n

(6)

Fig. 1. Multi-channel learning control

Note that different learning gains can be used in different
channels. For example, we can use a smaller learning gain
in high frequency channels to decrease system sensitivity to
random high frequency noises but still assure a reasonable
learning speed. This is another benefit of the multi-channel
method besides learnable band extension. The overall learn-
ing law is

Uj(s) =
n∑

i=1

Ui,j(s)

=
n∑

i=1

Ui,j−1(s) + (
n∑

i=1

kiΦi(s)Fi(s))Ej−1(s)

= Uj−1(s) + (
n∑

i=1

kiΦi(s)Fi(s))Ej−1(s).

(7)
Using (5) and (7), the error contraction condition for multi-
channel learning control is∣∣∣∣∣1 − Gp(jω)(

n∑
i=1

kiΦi(jω)Fi(jω))

∣∣∣∣∣ < 1. (8)

The time domain version of (7) and (6) are

uj(t) =
n∑

i=1

ui,j(t) (9)

with


u1,j(t) = u1,j−1(t) + k1L1(e1,j−1(t))
In Channel 1

...
ui,j(t) = ui,j−1(t) + kiLi(ei,j−1(t))

In Channel i
...

un,j(t) = un,j−1(t) + knLn(en,j−1(t))
In Channel n

(10)

where Li(·) is channel i’s learning algorithm corresponding
to Φi(s) and ei,j−1(t) is the result of passing error at
repetition j − 1, ej−1(t), through filter Fi(s). It should be
noted that the input update of the multi-channel learning
control still takes place in the time domain which is different
from the approaches in [9], [10], [15]. The total input update



is the sum of multiple learning control updates. In the time
domain, Tayebi and Zaremba proposed gain-scheduling-
based iterative learning controllers for continuous-time non-
linear systems described by a blended multiple model
representation [19]. In [19], the learning gain changes
according to the values of the validity functions depending
on the operating point in the time domain, while in our
approach, the learning compensator or parameter depends
on frequency. The idea of using summational multiple
functions to represent a blended model is the same in our
multi-channel method and [19].
Remark 1 The price paid for the multi-channel method
is that the multi-channel learning control has the computa-
tional burden of n learning controllers. For easy application,
ILC design should use as few as possible channels to cover
the required frequency band. First, a learning compensator
is chosen with a substantially broad learnable band. If the
learnable band meets the learning control specification, the
design is completed and no multi-channel is needed. If
the learnable band is not satisfactory, more channels are
introduced until the specification is met.

B. Error Separation

In theory, the channel separation filter Fi(s) can be a
causal filter. If Fi(s) is causal, both its phase lag and
its passband needs to be considered simultaneously when
evaluating (8). This will bring much more troubles into the
design. Thus it is preferable that Fi(s) generates no phase
shift. The channel filters, Fi(s) with zero-phase character-
istics in Fig. 1, can be realized with a Discrete Fourier
Transform/Inverse Discrete Fourier Transform (DFT/IDFT)
pair or a zero-phase filter.

1) DFT/IDFT Approach: Though Fi(s) is consid-
ered as continuous, any numerical implementation should
use sampled-data. Technical details addressing applying
DFT/IDFT as cutoff in ILC were reported in [18]. Fig. 2
demonstrates the error separation into two parts according
to two designated frequency bands/channels. Firstly, using
DFT, error frequency spectrum E(jω) can be obtained from
error signal e(t). Secondly, the frequency spectrum E(jω)
is divided into two designated bands/channels. Thirdly, the
rest of the two segments is padded with zero. At last, using
IDFT, two error sequences e1(t), e2(t) can be obtained
from the two bands of spectrum. This way, the original
error signal is separated into two error signals with different
frequency spectrums, i.e., e(t) = e1(t) + e2(t).

2) Zero-Phase Filter Approach: [18] also discussed the
technical issues about using zero-phase filters as cutoff in
ILC. A zero-phase filter is not a perfect cutoff device,
but rather attenuates the signals above/below the cutoff
frequency at a rate determined by the order of the filter.
Therefore, two adjacent zero-phase filters will produce an
overlapping frequency region between the two designated
frequency bands/channels. Fig. 3 demonstrates the partial
overlapping between lowpass Filter 1 and highpass Filter 2.
ωc1 and ωc2 are the passband edge frequencies (i.e., cutoff

Fig. 2. Error separation via DFT/IDFT

Fig. 3. Frequency overlapping of two filters

frequencies) of Filter 1 and Filter 2, respectively; ωs1 and
ωs2 are the stopband edge frequencies of Filter 1 and Filter
2, respectively [11]. (Note that ωc1 < ωc2 and ωs2 < ωs1).
Suppose the overlapping region is δω = ωs1 − ωs2 and
ωd is the desired separation point of the two designated
frequency bands for channels 1 and 2. The equivalent
learning compensator inside the region δω, in Laplace form,
will be

k1Φ1(s)F1(s) + k2Φ2(s)F2(s)

where k1/Φ1(s) and k2/Φ2(s) are the two learning
gains/compensators of channels 1 and 2, respectively. F1(s)
and F2(s) are the two designated zero-phase filters that
define the frequency bands for channels 1 and 2, respec-
tively. Because zero-phase filters generate no phase shift,
F1(s) and F2(s) are real, positive value functions. Inside
the overlapping region, we have 0 < F1(jω) < 1 and
0 < F2(jω) < 1, and both learning compensators satisfy
the error contraction condition, i.e.,{ |1 − k1Gp(jω)Φ1(jω)| < 1

|1 − k2Gp(jω)Φ2(jω)| < 1 (11)

Then the error contraction rate in the overlapping region δω
is

|1 − Gp(jω)(k1Φ1(jω)F1(jω) + k2Φ2(jω)F2(jω))|



= |(1 − k1Gp(jω)Φ1(jω))F1(jω) +
(1 − k2Gp(jω)Φ2(jω))F2(jω) +
1 − F1(jω) − F2(jω)|

≤ |1 − k1Gp(jω)Φ1(jω)|F1(jω) +
|1 − k2Gp(jω)Φ2(jω)|F2(jω) +
|1 − F1(jω) − F2(jω)|

< F1(jω) + F2(jω) + |1 − F1(jω) − F2(jω)|.
If, inside the overlapping region,

F1(jω) + F2(jω) < 1 (12)

then

F1(jω) + F2(jω) + |1 − F1(jω) − F2(jω)| = 1.

Thus we have

|1 − Gp(jω)(k1Φ1(jω)F1(jω) + k2Φ2(jω)F2(jω))| < 1.

Therefore (11) and (12) are the design requirements for
the zero-phase filters and learning compensators and these
requirements represent sufficient conditions to error con-
traction in the overlapping region.
Remark 2 After the required individual learning controllers
are designed for individual channels, they can be combined
into one high order compensator with a common denomi-
nator. However, there is no guideline and it is not practical
to design this high order compensator directly. The multi-
channel method provides the design solution step by step.

IV. APPLICATION TO ANTICIPATORY ILC

The linear anticipatory ILC law [21], [22] has the simple
form of

uj(t) = uj−1(t) + kej−1(t + �) (13)

where k is the learning gain and � is the lead-time. The
error contraction condition (5) for the anticipatory ILC is∣∣1 − kej�ωGp(jω)

∣∣ < 1. (14)

Suppose Gp(jω) = Np(ω) exp(jθp(ω)) with Np(ω) being
the magnitude characteristics, and θp(ω) being the phase
characteristics of the system, respectively. From (14), we
get ∣∣∣1 − kNp(ω)ej(θp(ω)+�ω)

∣∣∣ < 1. (15)

This inequality leads to

k2Np(ω) < 2k cos(θp(ω) + �ω). (16)

If k > 0, we have

kNp(ω) < 2 cos(θp(ω) + �ω). (17)

The frequency range where condition (17) is satisfied is
named the causal range.

For a minimum phase process

Gp(s) =
bmsm + bm−1s

m−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

with more poles than zeros (n > m), the phase characteris-
tics is approaching −(n−m)×90◦. θp(ω) is bounded while
�ω is approaching +∞. In general, one single channel
anticipatory ILC has one constant lead-time and satisfies
(17) for a limited frequency band. Using the multi-channel
method, we can have the following learning law,

uj(t) =
n∑

i=1

ui,j(t) (18)

with


u1,j(t) = u1,j−1(t) + k1e1,j−1(t + �1) In Channel 1
...

ui,j(t) = ui,j−1(t) + kiei,j−1(t + �i) In Channel i
...

un,j(t) = un,j−1(t) + knen,j−1(t + �n) In Channel n
(19)

where ei,j−1 is the ith error part corresponding to channel
i at repetition (j−1). (17) is satisfied in all designated fre-
quency bands/channels with some properly chosen learning
gain ki and lead-time �i,


k1Np(ω) < 2 cos(θp(ω) + �1ω) In Channel 1
...

kiNp(ω) < 2 cos(θp(ω) + �iω) In Channel i
...

knNp(ω) < 2 cos(θp(ω) + �nω) In Channel n
(20)

Thus all error components within any of the designated
frequency bands/channels will converge to zero in theory.
Unlike the self tuning method [14], [23] which uses a rep-
etition switching lead-steps (lead-time), the multi-channel
method fixes a lead-time of an anticipatory learning control
for each of the designated frequency bands/channels.

V. AN EXAMPLE AND SIMULATIONS

Consider the robot joint example used in [13]:

Gp(s) =
8.8

s + 8.8
· 372

s2 + 2 × 0.5 × 37s + 372
.

This transfer function is a representation of the closed-loop
response of each joint of a RRC robot [5]. It is sufficient
complex to exhibit poor transient behavior and has been
used for many learning control experiments [5], [6], [12],
[13]. Suppose a desired trajectory is given as

yd(t) = 1 − cos 2πt + 0.3(1 − cos 8πt)+
0.2(1 − cos 38πt) + 0.1(1 − cos 50πt) t ∈ [0, 1]second

and it contains frequency components of 1, 4, 19 and 25Hz.
The integration step size is 0.01s. Learning gain k is fixed
as 1 (the reciprocal of DC gain of Gp(s) – the maximum
reasonable value suggested by Longman in [12]) in the
simulations, i.e. in single channel learning, k is 1 and in
multi-channel learning, k is also 1 for all channels. The
input of the first trial is u0(t) = 0.
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Fig. 4. Two channels’ design result

To ensure error convergence of all frequency components,
the learning control needs to be adjusted so that (17) is
satisfied in a frequency band wider than [0, 25Hz]. In the
single channel learning, we test a few values of the lead-
time � (i.e., tune the lead-time �) and try to find out a
value that can satisfy (17) in the widest frequency range (we
plot (17) vs. frequency with different lead-time and find the
one that can offer the highest cutoff frequency). Lead-time
0.05second is chosen and it yields a learnable frequency
range [0, 18.7Hz]. Unfortunately, the components with fre-
quencies 19 and 25Hz is not covered. A two-channels
learning control is thus employed to extend the maximum
learnable frequency from 18.7Hz to above 25Hz. The �
chosen above in the single anticipatory learning control can
be used in channel 1 and renamed as �1, with values
�1 = 0.05second. To ensure learning of all frequency
components, channel 2 must have a designated frequency
band to well cover [18, 25]Hz. Lead-time �2 = 0.03second
is chosen and the final design result is shown in Fig. 4.
�2 has two causal ranges, [0, 4]Hz and [13.6, 32]Hz. The
second causal range, [13.6, 32]Hz, of �2 overlaps with the
causal range, [0, 18.7]Hz, of �1. We can divide [0, 32Hz]
into the following two designated bands,{

Channel 1 (0Hz ≤ f < 16Hz) associated with �1

Channel 2 (16Hz ≤ f < 32Hz) associated with �2

The channel separation frequency point ωd, 16Hz, locates
in the middle of [13.6, 18.7]Hz to provide some robustness
against the model inaccuracy. When using zero-phase filters
to separate the error, the overlapping region of two adjacent
filters should locate inside [13.6, 18.7]Hz for the reason of
(11) and (12). Then the multi-channel learning law is

uj(t) = u1,j(t) + u2,j(t)

with{
u1,j(t) = u1,j−1(t) + e1,j−1(t + 0.05) In Channel 1
u2,j(t) = u2,j−1(t) + e2,j−1(t + 0.03) In Channel 2

In the single channel learning, lead-time 0.05second is
used and the cutoff frequency is set as 18Hz (cutoff is

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

Design Results of Zero−Phase Filters

Lowpass Filter Response           
Bandpass Filter Response          
Overlapping Results of Two Filters

Filters’ Overlapping  Region [14, 17]Hz

 (F
1
(jω)+F

2
(jω)<1)

ω
d
=16Hz 

Fig. 5. Design of zero-phase filters

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

Repetition

RM
S 

Er
ro

r (
in

 lo
g)

RME Error histories

1−Channel
2−Channels, DFT/IDFT
2−Channels, Zero−Phase Filters

Fig. 6. RMS error histories

realized by DFT/IDFT). In the multi-channel learning, the
cutoff frequency is set as 31Hz. The learnable frequency
range of the multi-channel learning control is [0, 31Hz]
which is substantially wider than that of the single chan-
nel learning control, i.e., [0, 18Hz]. Two error separation
approaches, the DFT/IDFT approach and the zero-phase
filter approach are both tested. For the zero-phase filter
approach, a 9Hz lowpass 5th order Butterworth filter [25]
and a [18, 27]Hz bandpass 10th order Butterworth filter are
designed, Fig. 5. Note that (11) and (12) are both satisfied
inside the two filters’ overlapping region [14, 17]Hz and
[14, 17]Hz is ∈ [13.6, 18.7]Hz.

The RMS error histories for the multi-channel learning
and the single channel learning are shown in Fig. 6. In
the single channel case, the RMS error stops decreasing
after about 50 repetitions. Tracking performances of the
single channel learning and the multi-channel learning at
repetition 1000 are shown in Fig. 6. It is obvious that the
multi-channel learning tracks the desired trajectory more
accurately than the single channel learning. The simulation
results verify the working of the learning controller in
channel 2 in the multi-channel case.
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VI. CONCLUSION

The effectiveness of the frequency characteristics oriented
multi-channel method is shown in widening the learnable
frequency range. A wider learnable frequency range ensures
better tracking performance. The reported experimental
results [24] also verified the theory and the proposed design
method of this paper. The multi-channel method can also
apply to repetitive control. Moreover, because multi-channel
learning controller has a few parameters, we can use the
auto-tuning idea [14], [23] to tune these parameters, such
as lead-time �i, learning gain ki, and channel separation
point ωd on the fly. The auto-tuning based multi-channel
ILC may not need a model.
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