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Abstract— This paper extends some recent results on the
parameterization of all admissable pairs in a class of 2-
parameter current-cycle-feedback ILC algorithms. In addi-
tion, a necessary and sufficient condition is given under which
the associated set of equivalent controllers coincides with the
set of all stabilizing controllers.

I. INTRODUCTION AND PROBLEM STATEMENT

Given a plant P : U → Y , y = Pu, along with some
desired output yd, the objective in Iterative Learning Control
is to construct a sequence of inputs {u0, u1, . . .} such
that the corresponding sequence of outputs {y0, y1, . . .}
converges to some limit value ȳ := limk→∞ yk that is close
to yd in some sense. More specifically, the aim is to define
an algorithmic procedure prescribing how future inputs may
be constructed from recordings of past in- and outputs. The
analysis in this section in concerned with one such family
of procedures, namely a class of 2-parameter iterations

uk+1 = Quk + Lek + Cek+1 (1)

Here ek := yd − yk denotes the current tracking error. The
parameters Q and L are constrained to be causal, bounded
linear operators, that is Q, L ∈ RH∞. The feedback term
C is assumed to be stabilizing.

The class of iterations is parameterized by the free pa-
rameters Q and L. Of all conceivable combinations (Q, L),
those that will generate a converging sequence of inputs
are of particular interest. Such pairs are called admissable.
The set of all admissable pairs is denoted by A [4]. For
every (Q, L) ∈ A, one can define the associated equivalent
controller [1], [2], [3], [4], [5], see Figure 1.

K = (I − Q)−1 (L + C) (2)

C

L Q

P
yd

−
++ + ȳē ū

Fig. 1. Equivalent Feedback Controller (dashed).

This equivalent controller has the property that it is al-
ways stabilizing. Now let KA denote the set of all equivalent

controllers

KA :=
{

K : K = (I − Q)−1 (L + C) ; (Q, L) ∈ A
}

and let the set of all stabilizing controllers be denoted by
K. Clearly KA ⊂ K. Recently it was shown [4] that in
case C = 0 (in which case P is assumed to be stable) both
sets coincide, but that this is not true for all C. In the next
section it is shown that the above result is just a special
case of a general result which says that KA = K if and
only if C ∈ RH∞.

II. WHEN KA AND K COINCIDE

Theorem 1: Given the class of iterations (1) and the
associated sets KA and K. Then, for any stabilizing C,
KA ⊆ K with equality (=) iff C is strongly stabilizing,
i.e. iff C is stable (C ∈ RH∞) and stabilizing.

Proof: (Sufficiency) Suppose C ∈ RH∞ and let K ∈
K be any stabilizing controller. To prove that K ∈ KA,
define

Q = (K − C) (I + PK)−1 P

L = (K − C) (I + PK)−1 (3)

The controller K being stabilizing, by definition all closed-
loop transfer matrices are stable. Since C is also stable,
so are Q and L. To prove that (Q, L) ∈ A note that
(Q − LP ) (I + CP )−1 = 0, which is a sufficient condition
for admissability [4]. And with (Q, L) ∈ A, by definition
K ∈ KA.
To prove necessity, a few more intermediate results are
required.

Lemma 2: Let K ∈ KA be a controller induced by
some admissable pair (Q, L) ∈ A. Then there exists
an “equivalent” [4] pair (Q0, L0) ∈ A such that K =
(I − Q0)

−1 (L0 + C) and (Q0 − L0P ) (I + CP )−1 = 0.
Proof: There exists such (Q0, L0) ∈ A iff if the

following set of equations has a solution (Q, L) ∈ A.

(L + C) = (I − Q)K (4)
(Q − LP ) (I + CP )−1 = 0

The unique solution to the above set of equations is given
by

Q0 = (K − C) P (I + KP )−1

L0 = (K − C) (I + PK)−1 (5)



From (4) we obtain

K − C = L + QK (6)

with Q, L ∈ RH∞ by assumption of admissability. After
substituting (6) into (5), inspection shows that Q0, L0 ∈
RH∞. Hence, by construction (Q0, L0) is admissable. This
concludes the proof.
Lemma 2 says that among all admissable pairs defining the
same equivalent controller, there is one and only one pair
(Q0, L0) which satisfies the additional constraint. Let A0

denote the set of all such pairs, i.e.

A0 =
{
(Q, L) ∈ A : (Q − LP ) (I + CP )−1 = 0

}

This set allows for an efficient parameterization

A0 := {(Q, L) = (ZN, ZM); Z ∈ RH∞} (7)

where P = M−1N is a left-coprime factorization over
RH∞. Through (7) one arrives at a parameterization of
the set KA.

Lemma 3: Let C = V −1U and P = M−1N be any
left-coprime factorization of the plant and the controller
respectively. Then the set of all equivalent controllers KA
is parameterized by

KA =
{

K = (V − V ZM)−1 (U + V ZN) ; Z ∈ RH∞
}

Proof: The equivalent controller is given by

K = (I − Q)−1 (L + C)

with (Q, L) ∈ A0 this evaluates to

K = (I − ZM)−1 (
V −1U + ZN

)
= (V − V ZM)−1 (U + V ZN) (8)

This concludes the proof.
Although the above parameterization seems to depend on
specific factorizations, in actual fact the choice of coprime
factors is immaterial. This is immediate from the fact that
left-coprime factors are unique up to a left multiplication
with a bistable transfer function.

The next lemma restates an important result on the
parameterization of all stabilizing controllers.

Lemma 4 (Youla-Kuc̆era): Given C = V −1U and P =
M−1N with U, V and M, N left-coprime. Assume C is
stabilizing. Then the set K of all stabilizing controllers is
given by [6, Theorem 12.7]

K =
{

K =
(
V − Z̃M

)−1 (
U + Z̃N

)
; Z̃ ∈ RH∞

}

Inspection shows that the respective parameterizations of
KA (Lemma 3) and K (Lemma 4) are equivalent if and
only if for every Z̃ ∈ RH∞ there exists Z ∈ RH∞ such
that Z̃ = V Z . The condition for equality is clearly satisfied
in case C is strongly stabilizing (C ∈ RH∞) since then V
is bistable and Z can be selected as Z = V −1Z̃ . The proof
of Theorem 1 is now straightforward.

Proof: (of Theorem 1, necessity) Suppose C �∈ RH∞.
Take Z̃ = I and let K be the corresponding stabilizing con-
troller (Lemma 4). By uniqueness of the Youla parameter
it is clear that the corresponding controller K belongs to
KA iff there exists Z ∈ RH∞ such that V Z = I . This
however implies that V is bistable and C = V −1U stable,
which contradicts the starting assumption. This concludes
the proof.

III. CONCLUSION

The results presented in this paper build on and make
use of a framework for analysis that was put forward
in a series of recent papers by the same authors. An
important conclusion to be drawn from this work is that
the choice of the current cycle parameter most definately
affects (constrains) the achievable performance.
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