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Abstract—This paper shows that Lyapunov-based
state feedback controller synthesis for piecewise-affine
systems can be cast as an optimization problem subject
to a set of LMIs analitically parameterized by a vector.
Furthermore, it is shown that continuity of the control
inputs at the switchings can be guaranteed by adding
equality constraints to the problem without affecting
its parameterization structure. Finally, it is shown
that piecewise-affine state feedback controller synthesis
to maximize the decay rate of a quadratic control
Lyapunov function can be cast as a set of quasi-convex
optimization problems parameterized by a vector.

I. INTRODUCTION

Piecewise-affine systems are multi-model systems that
offer a good modeling framework for complex dynami-
cal systems involving nonlinear phenomena. Piecewise-
affine systems are also a class of hybrid systems, i.e,
systems with a continuous-time state and a discrete
event state. Piecewise-affine systems pose challenging
problems because of its switched structure. In fact, the
analysis and control of even some simple piecewise-
affine systems have been shown to be either anNP
hard problem or undecidable [1]. State and output
feedback control of continuous-time piecewise-affine
systems has received increasing interest over the last
years [2], [3], [4]. Previous work of the authors has
concentrated on Lyapunov-based controller synthesis
methods for continuous-time piecewise-affine (PWA)
systems [4], [2]. In [4], controller synthesis was for-
mulated as a bi-convex optimization problem. The bi-
convexity structure arises because of the negativity
constraint on the derivative of the piecewise-quadratic
Lyapunov function over time. This constraint leads
to a bilinear matrix inequality (BMI) [5]. Bi-convex
optimization problems are non-convex, NP-hard and,
therefore, extremely expensive to solve globally from
a computational point of view [5]. Although the
general Lyapunov-based controller synthesis problem

for piecewise-affine systems using piecewise-quadratic
Lyapunov functions is non-convex, reference [2] has
shown that for the particular case of piecewise-linear
state feedback without affine terms, globally quadratic
stabilization could be cast as a convex optimization
problem. Unfortunately, if affine terms are included in
the controller, as stated in [2], ”it does not seem that
the condition for stabilizability can be cast as an LMI”,
which apparently destroys the convex structure of the
problem, making it hard to solve globally. The current
paper shows that piecewise-affine state feedback using
a globally quadratic Lyapunov function can indeed be
solved to a point near the global optimum in an efficient
way by a set of parameterized LMIs. In this paper four
controller synthesis problems are formulated, relaxed
to a finite set of optimization programs and solved. The
paper starts by presenting the assumptions that are
common to all controller design problems, followed by
the statements of the four problems. Section IV formu-
lates the controller synthesis problems as optimization
programs and discusses its solution. Finally, after a
numerical example, the paper presents the conclusions

II. PROBLEM ASSUMPTIONS

It is assumed that a PWA system and a corresponding
partition of the state space with polytopic cellsRi, i ∈
I = {1, . . . ,M} are given (see [6] for generating such
a partition). Following [3], [2], each cell is constructed
as the intersection of a finite number(pi) of half spaces

Ri = {x |HT
i x− g̃i < 0}, (1)

where Hi = [hi1 hi2 . . . hipi ], g̃i = [g̃i1 g̃i2 . . . g̃ipi ]
T .

Moreover the setsRi partition a subset of the state
spaceX ⊂ IRn such that ∪M

i=1Ri = X , Ri ∩ Rj =

∅, i 6= j, whereRi denotes the closure ofRi. Within
each cell the dynamics are affine of the form

ẋ(t) = Aix(t) + b̃i + Biu(t), (2)



where x(t) ∈ IRn and u(t) ∈ IRm. For system (2),
we adopt the definition of trajectories or solutions
presented in [3]. Any two cells sharing a common facet
will be called level-1neighboring cells. LetNi = {level-
1 neighboring cells of Ri}. It is also assumed that
vectors cij ∈ IRn and scalars dij exist such that the
facetboundary between cellsRi andRj is contained in
the hyperplane described by{x ∈ IRn | cT

ijx−dij = 0},
for i = 1, . . . ,M , j ∈ Ni. A parametric description of
the boundaries can then be obtained as [2]

Ri ∩Rj ⊆ {x = l̃ij + Fijs | s ∈ IRn−1} (3)

for i = 1, . . . ,M , j ∈ Ni, where Fij ∈ IRn×(n−1)

(full rank) is the matrix whose columns span the
null space of cij, and l̃ij ∈ IRn is given by l̃ij =

cij

(
cT

ijcij

)−1
dij. It is also assumed that eachRi can

be outer approximated by a finite union of (possibly
degenerate) ellipsoidsεij for j = 1, . . . , Ji. To describe
the ellipsoidal covering, it is assumed that matricesEij

and f̃ij exist such that

Ri ⊆ ∪Ji
j=1εij (4)

where
εij = {x| ‖Eijx + f̃ij‖ ≤ 1}. (5)

This covering is especially useful in the case whereRi

is a slab because in this case the covering has only one
degenerate ellipsoidεi and it is exact, i.e., εi ⊆ Ri

and Ri ⊆ εi. More precisely, if Ri = {x | d1 ≤ cT
i x ≤

d2}, then the degenerate ellipsoid is described byEi =

2cT
i /(d2 − d1) and f̃i = −(d2 + d1)/(d2 − d1). Finally,

it is assumed that the control objective is to stabilize
the system to a given pointxcl. Setting z = x − xcl

the problem is transformed to the stabilization of the
origin of the system

ż(t) = Aiz(t) + bi + Biu(t), (6)

where bi = b̃i + Aixcl. The parametric description of
the boundaries (3) is written as

Ri ∩Rj ⊆ {z = lij + Fijs | s ∈ IRn−1} (7)

where lij = l̃ij − xcl for i = 1, . . . ,M , j ∈ Ni. The
description of the polytopic cells is

Ri = {z |HT
i z − gi < 0}, (8)

where gi = g̃i −HT
i xcl. With fij = f̃ij + Eijxcl, the

ellipsoidal covering elementsεij are described by

εij = {z| ‖Eijz + fij‖ ≤ 1}. (9)

III. PROBLEM STATEMENT

There are four Lyapunov-based controller synthesis
problems that will be solved in this paper. For the
four problems, the piecewise-affine state feedback input
signal is parameterized byKi and mi in the form

u = Kiz + mi, z ∈ Ri (10)

with −l0 ≤ mi ≤ l0 where l0 is a vector of upper
bounds for the entries ofmi, i = 1, . . . ,M . The glob-
ally quadratic candidate control Lyapunov function is
parameterized by P = PT as

V (z) = zT Pz. (11)

PROBLEM 1: Find a globally quadratic control Lya-
punov function and a piecewise-affine state feedback
controller that exponentially stabilizes the origin of (6),
PROBLEM 2: From the controllers that exponentially
stabilize the origin, find the one that maximizes the
decay rate of the control Lyapunov function,
PROBLEM 3: The same as problem 1 with continuous
input signals at the switching boundaries,
PROBLEM 4: The same as problem 2 with continuous
input signals at the switching boundaries.

IV. PROBLEM SOLUTION

This section formulates mathematically the four prob-
lems defined in section III and proposes two algorithms
to solve them numerically.

A. Stabilization - Problem 1

The candidate control Lyapunov function (11) becomes
a Lyapunov function with decay rayeα if for fixed α ≥
0, V > 0 and V̇ < −αV . Using (6) and (10), sufficient
conditions for exponential stability are P = PT > 0,

z ∈ Ri ⇒ 2 [(Ai + BiKi) z + (bi + Bimi)]
T Pz +

+αzTPz < 0 (12)

For z ∈ Ri, this expression can be recast as
[

z

1

] [
ĀT

i P + PĀi + αP P b̄i

(P b̄i)
T 0

][
z

1

]
< 0, (13)

where Āi = Ai +BiKi and b̄i = bi +Bimi. If we relax
the condition z ∈ Ri in (13) by z ∈ εij for j = 1, . . . , Ji

and if we use expression (9) and theS − procedure in
a similar way as it was done in [2] yields the following
sufficient conditions for quadratic stabilization

P = PT > 0, λij < 0, i = 1, . . . ,M, j = 1, . . . , Ji

[
ĀT

i P + PĀi + X (·)
(P b̄i + λijE

T
ijfij)

T −λij

(
1− fT

ijfij

)
]

< 0, (14)



where X = αP + λijE
T
ijEij . Using new variablesQ =

P−1, µij = λ−1
ij and a standard algebraic procedure

[7], [2] conditions (14) are equivalent to

Q = QT > 0, µij < 0, i = 1, . . . ,M, j = 1, . . . , Ji

[
ĀiQ + QĀT

i + Y (·)
(µij b̄if

T
ij + QET

ij)
T −µij

(
I − fijf

T
ij

)
]

< 0, (15)

where Y = αQ+µijb̄i b̄
T
i . Setting Āi = Ai +BiKi and

introducing new variables Yi = KiQ in (15) yields

Q = QT > 0, µij < 0, i = 1, . . . ,M, j = 1, . . . , Ji

[
AiQ + QAT

i + W (·)
(µij b̄if

T
ij + QET

ij)
T −µij

(
I − fijf

T
ij

)
]

< 0, (16)

where W = BiYi + Y T
i BT

i + αQ + µij b̄i b̄
T
i , b̄i = bi +

Bimi.
Definition 4.1: The piecewise-affine state feed-

back synthesis problem (problem 1) is: for fixedα ≥ 0

find Q, Yi, mi, µij

s.t. Q = QT > 0, µij < 0, (16)

−l1 ≺ Yi ≺ l1, − l0 ≺ mi ≺ l0,

i = 1, . . . ,M, j = 1, . . . , Ji

where �, ≺ mean component-wise inequalities and
l0, l1 are given vector bounds. 2

Notice that it is clear from (16) that we cannot
formulate this synthesis problem as one convex prob-
lem because (16) is not an LMI if the parameters
mi, i = 1, . . . ,M are unknown. However, for fixed
mi, i = 1, . . . ,M , expression (16) is indeed an LMI
and the problem is convex. Therefore, although the
problem formulated in (16) cannot be cast as one
convex program, it is an infinite set of convex problems
involving an LMI or, equivalently, an infinite num-
ber of LMIs analitically parameterized by the vector
γ = [mT

1 mT
2 . . . mT

M ]T . The following algorithm is
suggested to solve the state-feedback problem:

Algorithm # 1 – Sampling Method:

1) Define a grid for the domain of the vectorγ to
sample it at N points,

2) For fixed α ≥ 0, solve the corresponding feasi-
bility problem 4.1 for each of the points in the
grid until a feasible point is found.

3) If step 2 is successful or if the maximum num-
ber of iterations was reached, stop. Otherwise,
increase the grid density and go back to Step 2.

Remark 1: The feasibility problem 4.1 can be trans-
formed into an optimization problem if theQ with
minimum condition number is sought. In that case, for
fixed ε > 0, the constraintsη > 0, εI < Q < ηεI

should be added to the problem (usuallyε is selected to

be unitary) andη should be minimized [7]. Algorithm #
1 can then be changed to store for all grid points the
one that yields the minimum value ofη. The algorithm
can be further improved if the derivative of the solution
with respect toγ at each point is computed. In that
case, for each selected sample point, the next sample
point should be chosen in the direction opposite to the
vector derivative. This will reduce the number of points
from the grid that need to be used, thus reducing the
computational burden. 2

B. Stabilization - Problem 3

To solve problem 3, similarly to what was done in
[4], the boundary description (7) is used to yield
the following constraints for continuity of the control
signals

(Ki −Kj)Fij = 0, (17)

(Ki −Kj)lij + (mi −mj) = 0, ∀j ∈ Ni. (18)

These constraints for continuity cannot be directly used
in the problem from definition 4.1 becauseKi, i =

1, . . . , M , are not variables in that problem. To be able
to express contraints (17)–(18) on the variablesYi, i =

1, . . . , M , define the matrix Xij = [Fij lij ]. Note that
Xij is invertible becauseFij is full rank and lij does
not belong to the column space ofFij by construction.
Using Xij, (17)–(18) can be written as

(Ki −Kj)Xij = [0m×(n−1) mj −mi]. (19)

Then, using (19), the change of variablesYi = KiQ

and inverting Xij, we can write

Yi = Yj + [0m×(n−1) mj −mi]X
−1
ij Q. (20)

Definition 4.2: The stabilization problem 3 is: for
fixed α ≥ 0

find Q, Yi, mi, µij

s.t. Q = QT > 0, µij < 0, (16), (20)

−l1 ≺ Yi ≺ l1, − l0 ≺ mi ≺ l0,

i = 1, . . . ,M, j = 1, . . . , Ji

where �, ≺ mean component-wise inequalities and
l0, l1 are vector bounds. 2

Constraints (20) must be included in the optimization
problem 4.1 to guarantee that the control signals are
continuous at the switching boundaries. Note that for
fixed mi and mj, the problem can still be formulated
as an infinite set of convex optimization programs.

C. Decay Rate Maximization

In the problems of sections IV-A and IV-B the param-
eter α was fixed. Let nowα, the desired decay rate for
the globally quadratic control Lyapunov function, be



+
_

1 . 2 V

1 . 5 K

5 n

2 p
+

_

+

_

x 2

x 1

i R = g ( x 2 )

x 2

u +

Fig. 1. Circuit with nonlinear resistor

a variable. Then, we define the performance criterion
J = α. The controller design problem is now to find
from the class of control signals parameterized in the
form u = Kiz + mi in each regionRi, the one that
maximizesJ .

Definition 4.3: The decay rate optimization problem
2 is:

max α

s.t. Q = QT > 0, µij < 0, α > 0, (16)

−l1 ≺ Yi ≺ l1, − l0 ≺ mi ≺ l0,

i = 1, . . . ,M, j = 1, . . . , Ji

where �, ≺ mean component-wise inequalities and
l0, l1 are vector bounds. 2

If there is only one region in the partition of the state
space, thenM = 1, m1 = 0, the system is linear and
the decay rate maximization problem is a quasi-convex
problem because of the product of variablesαQ (see
[7] for details). Following the same reasoning as the one
used in section IV-A, for the general case of piecewise-
affine systems, the decay rate maximization problem
is an infinite set of quasi-convex programs analitically
parameterized by the vectorγ. To formulate problem
4, it suffices to include the continuity constraints (20)
in the optimization 4.3 yielding a new optimization
problem.

Definition 4.4: The decay rate optimization problem
4 is:

max α

s.t. Q = QT > 0, µij < 0, α > 0, (16), (20)

−l1 ≺ Yi ≺ l1, − l0 ≺mi ≺ l0,

i = 1, . . . ,M, j = 1, . . . , Ji

where �, ≺ mean component-wise inequalities and
l0, l1 are vector bounds. 2
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Fig. 2. Nonlinear resistor characteristic.

To solve problems 4.3 and 4.4, note that ifγ is
again sampled, for each fixed value ofγ there is one
quasi-convex optimization problem to be solved. For
each optimization, a lower bound to the corresponding
maximum value of α can then be found, as tight as
desired, using the familiar bisection algorithm.

Algorithm # 2 – Bisection:

1) Set α = 0, and solve the corresponding convex
stabilization problem 1 (or problem 3). If the
problem is infeasible stop; there is no piecewise-
affine state feedback controller that can quadrat-
ically stabilize the system. If the problem is
feasible, setαlower = 0, α = δ for small δ and
go to step 2.

2) Solve stabilization problem 1 (or problem 3) with
α← 10α until an infeasible solution is reported.

3) Set αupper = α, where α is the one that made
problem 1 (or problem 3) infeasible in step 2.
Given the desired degree ofε tightness of the
lower bound, choose the tolerancetol = ε.

4) While αupper − αlower < tol solve the convex
stabilization problem 1 (or problem 3) with α←
0.5αlower + 0.5αupper. If the problem is feasible
set αlower = α, otherwise setαupper = α

5) The ε-tight lower bound is αlower and the ε-
optimal controller and control Lyapunov func-
tion parameters are the ones that are provided
as the solution to problem 1 (or problem 3) using
α = αlower.

V. EXAMPLE

This example considers a circuit with a nonlinear
resistor taken from [2] and shown in figure 1. With



0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

C
u

r
r
e

n
t 

(m
A

)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

V
o

lt
a

g
e

 (
V

)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

time

C
o

n
tr

o
l 

In
p

u
t 

(V
)

Fig. 3. Piecewise-affine controller forα = 10−9

time in 10−10 seconds, the inductor current in mA
and the capacitor voltage in Volts, the dynamics are
[

ẋ1

ẋ2

]
=

[
−30 −20

0.05 0

][
x1

x2

]
+

[
24

−50g(x2)

]
+

[
20

0

]
u.

Following [2], the characteristic of the nonlinear resis-
tor g(x2) is defined to be the piecewise-affine function
shown in figure 2 which generates the polytopic regions

R1 = {x ∈ IR2 | − L < x2 < 0.2},
R2 = {x ∈ IR2 | 0.2 < x2 < 0.6},
R3 = {x ∈ IR2 | 0.6 < x2 < L},

where L = 2× 104. The (exact) ellipsoidal covering is

E1 =
2

0.2 + L
e1, E2 =

2

0.6− 0.2
e2, E3 =

2

L− 0.6
e3

f̃1 =
L− 0.2

L + 0.2
f̃2 = −0.6 + 0.2

0.6− 0.2
f̃3 = −L + 0.6

L− 0.6
,

where e1 = e2 = e3 = [0 1]. Assume that the affine
terms of the control law have magnitude bounded by
0.2 so that l0 = [0.2 0.2 0.2]T . The objective is to
design a piecewise-affine state feedback controller to
stabilize the open-loop equilibrium point ofR3

xcl = x3
ol =

[
0.3714

0.6429

]
.
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Fig. 4. Piecewise-affine controller for optimal decay rate
(α = 1.01) using a mesh of25 points

For region R3 we then must havem3 = 0. We start by
fixing m1 = 0 and m2 = 0.2. With these values form1

and m2, Algorithm #1 was then used (with only one
point in the grid) enforcing continuity of the control
signals and usingα = 1× 10−9, l1 = 10−13[8 8]T to
yield

K1 =
[
−0.21× 10−4 −5.66

]
, m1 = 0.00,

K2 =
[
−0.21× 10−4 −5.21

]
, m2 = 0.20

K3 =
[
−0.21× 10−4 −9.88

]
, m3 = 0.00,

The simulation results are shown in figure 3 for the
initial condition x0

1 = 0.5, x0
2 = 0.1 (inside region

R1). If each of the affine termsm1 and m2 are now
sampled in the interval [−0.2,0.2] with increments of
0.1, a mesh is obtained for the domain ofγ = [m1 m2]

T

with 25 points. The optimal controller obtained as the
solution to problem 4 using a loop with Algorithm #2
inside Algorithm # 1 is described by (see figure 4)

K1 =
[
−0.19× 10−4 −11.21

]
, m1 = 0.00,

K2 =
[
−0.19× 10−4 −11.66

]
, m2 = −0.20

K3 =
[
−0.19× 10−4 −7.00

]
, m3 = 0.00,



α = 1.01

It is clear from figure 4 that maximizing the decay rate
has yielded a much faster controller as compared to the
controller whose results are shown in figure 3. This has
come at the expense of increasing the control signal,
although the gain vectors still meet the limiting bounds.
Also notice that the constraints for continuity of the
input signals have imposed that the first component of
all gain vectors be equal.

VI. CONCLUSIONS

The main contribution the paper is to show that the
problem of piecewise-affine state feedback controller
synthesis can be cast as an optimization program
with an infinite number of LMI constraints param-
eterized analitically by a vector. After a relaxation
(such as, for example, gridding the domain of the
vector parameterizing the LMIs), the problem can now
be solved more efficiently to a point near the global
optimum using available convex optimization packages.
Before casting the synthesis in the format presented
here, Lyapunov-based piecewise-affine state feedback
controller synthesis could only be formulated as a bi-
convex optimization program, which is very expensive
to solve globally.
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