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Abstract— The problem of establishing hard bounds on a
state estimate of a nonlinear system is described. Within an
operating range, the Extended Set-Membership Filter and a
set of switched linear models are used in order to minimize
the uncertainty on the state estimate. The bounding of the
linearization error for use in set-membership with model
switching is explained. Methods to select, place, and switch
linear models to meet a desired uncertainty are discussed. The
proposed methods are then applied to a model of the relative
motion of two aircraft.

I. INTRODUCTION

The study of hybrid systems is attractive because many
applications can be described in hybrid terms. Although the
term hybrid system is used for a wide range of systems, it can
loosely be defined as a system in which there is interaction
of discrete and continuous dynamics. Hybrid systems arise in
various engineering applications such as automotive power-
train systems, intelligent vehicle systems, and air traffic
management [2], [7], [17]. There has also been interest in hy-
brid systems among mathematicians and theoretical computer
scientists [1]. A more specific definition of a hybrid system is
a system described by a set of ordinary differential equations
with discontinuities or multivalued right-hand sides [11].
These systems can be used to represent nonlinearities such
as saturation, hysteresis, switches, relays, and dead zones.
Control laws such as rule-based control, programmable logic
control, and gain scheduling are also piecewise linear by
nature and fit naturally into the hybrid framework.

State-estimation for hybrid systems has been considered in
[15] for piecewise-affine systems, in [6] based on moving-
horizon estimation, and in [16] when mode changes are
determined by a Markov process. One of the more chal-
lenging problems in hybrid estimation is that of sensor
scheduling. The problem of minimizing communication by
scheduling measurements in stochastic systems is dealt with
in [10]. However, often the system model is not known
precisely and stochastic techniques are not effective. The
scheduling problem, which consists of estimating the state
of an uncertain process based on measurements obtained by
switching a given set of noisy sensors, is addressed in [12].
This approach does not rely on stochastic models, but handles
uncertainties that are modeled by unknown functions that
satisfy integral quadratic constraints.

Nonlinearities within a system, such as model round off
errors, colored noises, etc., can hinder the reconstruction of

the state from measurements. Stochastic filters such as the
Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF) address nonlinearities directly: the EKF linearizes the
dynamics while the UKF propagates finite points through
the nonlinear dynamics [5]. But both approaches ignore
higher order terms of the nonlinearities. The designer can
address these issues by typically “tunning” the process/sensor
noise matrices in a somewhat ad hoc manner. By ignoring
these higher order terms, the error covariance is not an
accurate measurement of the bound on the state estimate, and
thus makes them incompatible with current coordination ap-
proaches and robust control techniques that require bounded
uncertainty information in their formulations in order to
guarantee closed loop stability and performance [13].

This paper presents a procedure to compute hard bounds
on state estimates of a nonlinear system. System nonlinear-
ities are addressed by implementing a set of linear models
each over a particular operating range, which are switched to
minimize the uncertainty of the estimate. An Extended Set-
Membership Filter (ESMF) is used to compute bounds for
each of the system models [13]. In order to minimize com-
putation and still achieve a desired level of uncertainty, the
question of how many linear models should be implemented
is also explored.

The paper is presented as follows. Section II describes how
hard bounds on the state are obtained using the Extended Set-
membership filter. Methods to create a hybrid state estimate
trajectory and how to design for an uncertainty bound are
presented in Section III. Finally an example is presented in
Section IV to illustrate the proposed techniques.

II. THE EXTENDED SET-MEMBERSHIP FILTER

The basis of set-membership estimation is to assume hard
bounds on the noise, which allows hard bounds on the
estimate of the state to be developed. In contrast, the Kalman
Filter (or Extended Kalman Filter for nonlinear systems)
assumes noise sources are stochastic and then recursively
calculates the highest probability state estimate and covari-
ance [3]. Set-membership estimation recursively computes
an output set in which no point is more likely to be the
actual state, but does guarantee that the actual state lies within
this set. In the literature, set-membership methods have been
derived using polytope and ellipsoidal methods. Ellipsoid
methods require less information than polytope methods and
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are perhaps more intuitive because of their analogy to the
covariance in stochastic estimation. The ellipsoidal method,
as developed by Schweppe [14], is used in [13] to formulate
the extended set-membership filter (ESMF) which extends
set-membership estimation to dynamic nonlinear systems.
The ESMF is chosen in this paper because it is well suited
for on-line usage, does not make any assumptions on the
type of noise (except that it is bounded), and calculates a
non-conservative estimated set.

A. Basic Algorithm
Consider the discrete nonlinear state-space system:

xk+1 = f (xk)+wk (8)
yk+1 = h(xk+1)+vk+1 (9)

where xk ∈R
n is the state vector, wk ∈R

n is the disturbance,
yk+1 ∈ R

ny is the measurement, vk+1 ∈ R
ny is the sensor

noise.
An ellipsoidal constraint of the form [x−y]P−1[x−y]T ≤

1 is represented by the notation x ∈ Ω(y,P). The initial
state, x0, process noise, and sensor noise are assumed to be
bounded by ellipsoids.

x0 ∈ Ω(x̂0,Σ0,0) (10)
wk ∈ Ω(0,Qk) (11)

vk+1 ∈ Ω(0,Rk+1) (12)

Linearizing Equation (8) about the current state estimate,
x̂k, yields

xk+1 = f (x̂k)+
∂ f (xk)
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The ESMF [13] combines the higher order terms and the
process noise into one bound such that Equation (13) can be

rewritten as
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where ŵk is a new noise term that bounds both the original
noise and the linearization remainder, ŵk ∈ Ω(0, Q̂k). A
similar procedure applied on the measurement, Equation (9),
yields v̂k+1 ∈ Ω(0,Vk+1). The procedure to combine the
process and measurement noise with the linearization errors
is based on interval mathematics and is discussed in Section
II-B or described in detail in [13].

Given the initial conditions, Equation (10), the extended
noise bounds calculated at each time step, ŵk and v̂k+1,
and the system dynamics, Equation (8), the state ellipsoid
center, Ω(xk,k,Σk,k), can be estimated recursively by applying
a linear set-membership filter [14].

The prediction step, Equations (1-2), is physically the addi-
tion of two ellipsoids, the augmented noise ellipsoid Ω(0, Q̂k)
and the state uncertainty ellipsoid Ω(x̂k,k,,Σk,k) rotated and
scaled by AT

k and Ak. The update step, Equations (3-6), is the
intersection of two sets, the predicted state ellipsoid and the
set described by the output equation Ω(yk+1,Rk). The actual
state, xk, is then bounded by

[xk+1 − x̂k+1]
T Σ−1

k+1,k+1 [xk+1 − x̂k+1] ≤ 1. (15)

B. Defining Models and Bounding

Considering the scalar case for simplicity, rewriting Equa-
tion (13) yields
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where Rnr is a remainder term, and f nr the nrth derivative.
Following Taylor’s Theorem [13], the Lagrange remainder is
written as

Rnr (xk, x̂k,Xk) =
f (nr+1) (Xk)

(nr +1)!
(xk − x̂k)

nr+1 . (17)

The term Xk can take on any value over an interval for
which (xk − x̂k) is defined. Therefore, Equation (17) can be
bounded by an interval by simply defining the interval Xk
and evaluation Rnr (xk − x̂k,Xk) using interval mathematics.

For the proposed piecewise linear hybrid estimator, the
nonlinear dynamics are linearized about the operating points.
The models used in this formulation are defined by lineariz-
ing the nonlinear system dynamics, Equation (8), around N
fixed operating points, xi. Evaluating Equation (7) at the
operating points yields a set of system matrices, Ai, and
output matrices, Ci.

Since linearization is done with respect to a set of fixed
operating points the linearization error is a function of those
points. Rewriting Equation (13) for the one-state case using
a Lagrange remainder yields
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where xi denotes the i-th operating point. The linearization
error, the fourth term on the right-hand side of Equation
(19), is evaluated using interval mathematics which yields the
interval X i

Rk
. In order to maintain guarantees on the bounds

of the state estimates in a hybrid form of the ESMF, the
transition of the bounds/uncertainties from one mode to the
next must be addressed. In the hybrid case, the extrema of the
current state ellipsoid, Ω(xi,Σk,k), is centered at the operating
point xi and is defined as
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where the superscript denotes the j-th state. The state interval
bound becomes
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This interval is bounded using an ellipsoid that is not
uniquely defined, but can be optimized by minimizing a
metric of the ellipsoid. If the volume is minimized, the closed
form solution is written as [13]
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if j 6= m,
[
Q j, j

k,k

]
= 0. The combined process noise bound, Q̂k,k,

is found by adding the ellipsoids bounding the linearization
error, Equation (22), and the process noise, Qk.

Q̂k,k = Ωs(Qk,k,Qk,βQ) (23)

where βQ is a scalar, 0 < βQ < 1. The scalars βk, ρk+1 and βQ
are defined between 0 and 1 and can be optimized to find the
smallest ellipsoid that bounds the addition ellipsoids. Having
defined the combined process noise bound for N operating
points, the ESMF equations can be applied recursively.

III. MODEL SWITCHING

A hybrid or more specifically a switched dynamical system
can be described by an ordinary differential equation of the
form

ẋ(t) = fi(x(t),u(t)) (24)

y(t) = hi(x(t),u(t)) (25)

where x(t) ∈ R
n is the state, for i ∈ 1,2, ...n. f1(·), ..., fn(·)

and h1(·), ...,hn(·) are continuous vector functions that de-
scribe the behavior and output of the system under differ-
ent conditions. This model was created to more accurately
describe systems in which a single vector function is not
sufficient. Switching between the vector functions is typically
done for control reasons such as to maintain stability or
improve robustness. Linearizing fi and hi in Equations (24-
25) about the i-th operating point results in the i-th model,
Φi, composed of the matrices (Ai,Bi,Ci,Di).

Φi =

[
Ai Bi
Ci Di

]
(26)

The discrete version of Equations (24,25) with process and
measurement noise results in

xk+1 = [A]ixk +[B]iuk +wk (27)

yk+1 = [C]ixk +[D]iuk +vk+1 (28)

where the subscript i denotes the i-th model.

A. Piecewise Linear Model Selection
It is proposed here to switch estimators based on the

size of the uncertainty while also bounding the uncertainty
through the mode transitions. The ESMF defines a bound in
the form of a state ellipsoid, Ω

(
xi

k,Σk,k
)
, in which the true

state lies (Equation (15)); the quality of the estimate can be
assessed by evaluating the size of the bound. In the ESMF,
the size of the bound is influenced by the measurement, the
process and measurement noise, and the linearization error.
In the hybrid formulation of the ESMF, the linearization
error inherently increases as the system moves away from
the operating points. The quality of the estimate is evaluated
by defining a metric for the size of the uncertainty ellipsoid,
Ω

(
xi

k,Σk,k
)
. Metrics that could be used to measure the size

of the uncertainty include the trace, the determinant, and the
maximum eigen value. In practice, the trace is often used for
this purpose. The determinant of a matrix is proportional to
the volume of the ellipsoid defined by the matrix. Used as
a metric, the maximum eigen value indicates the largest size
ellipsoid in one dimension.



TABLE I
MODEL SELECTION CRTIERIA.

Metric

1 tr(Σk,k)
2 |Σk,k|
3 max [eig(Σk,k)]
4 tr(Q̂k)
5 |Q̂k|
6 max [eig(Q̂k)]

An alternative set of metrics can be developed based on the
bound on the linearization error, such as Ω

(
xi

k,Qk,k
)
. This

method isolates the influence of the linearization error on the
size of the uncertainty. By not considering the measurement,
yk+1, the metric immediately reacts to fluctuations in the
linearization error. The metrics are applied to the state
ellipsoid Ω

(
xi

k,Σk,k
)

react more slowly as the information
must first pass through the dynamics of the ESMF. All six
metrics are summarized in Table I.

The hybrid estimator is then implemented by switching
N ESMFs running based on each of the operating points.
Depending on the measurement, noise, and linearization
error, the quality of the estimate of each filter will vary.
Switching is based on evaluating each filter using one of
the metrics in Table I, which enables the hybrid estimator to
minimize and bound uncertainty across the operating regions
and transitions. The continuity assumptions of the ESMF
are maintained because there are no discontinuities in the
Hessian and Jacobian of all N filters.

B. Model Selection Based on Uncertainty
The size of the uncertainty in the hybrid estimator is a

function of the number of operating points (N) as well as their
location. Thus, the designer can choose either the number of
filters (N) or size of uncertainty (Table I). The approach here
is to use the Bersekas formulation of the set-membership
filter [4] as opposed to the Schweppe formulation presented
in Section II, because the state uncertainty matrix Σk,k does
not depend on the observation and will converge to a steady
state value, i.e. limk→∞ = Σss [4]. It is noted that both
approaches are outer bounding. The Bertsekas differs in how
the state matrix is propagated, as shown in Equations (29-30).
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]−1
(29)

δk = (1−βk−1)(1−ρk)δk−1 +(zk −CkAk−1x̂k−1)
T (30)

with the initial condition, δ0 = 0. In the Bertsekas based
ESMF, Equations (4,5) are replaced by Equations (29,30)
respectively. The actual state xk is bounded by Ω(xi,(1−
δk+1)Σ−1

k+1,k+1).
A procedure is developed here to find the location of N

linearization points used in the hybrid estimator based on the

magnitude of the system’s uncertainty. Defining the full range
of operation to be x̃ = [xmin,xmax], the N the operating points
inside the range are xi for i = {1, ...,N}, the linearization
error for jth component of f (xk), Equation (19), and the ith

operating point from:

H i
j(xk,xi) = (xk −xi)T ∂2 f j(xk)

∂x2
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xk=xi

(xk −xi). (31)

The linearization error for the jth state equation of the hybrid
estimator within the interval x̃ is found by minimizing the
linearization over all N operating points:

H j(xk,xi, . . . ,xN) = min
xk∈x̃

(
H i

j(xk,xi), . . . ,HN
j (xk,xN)

)
. (32)

Placement of the operating points is then accomplished by
minimizing a typical metric of the linearization error defined,
Equation (32), by moving the location of the operating points.

Minimizing the area under H j is inefficient because ulti-
mately the maximum size of the uncertainty is a function of
the largest value that Hi attains in x̃ and computations are
wasted by calculating other points.

To directly minimize the maximum values of H j, the
objective function is chosen so that placing the operating
points is formulated as a nonlinear minimax optimization
problem.

Qmax = min
xi∈x̃

(
max
x∈x̃

[
H1, . . . ,HN

])
(33)

An added advantage of formulating the objective function
as shown in Equation (33) is that H i

j can be evaluated at
xmin,xmax,ci, and the local minima of H i

j that are found via
differentiation or at the switching boundaries. The optimal
value of the objective function, Equation (33), Qmax, is then
the largest linearization error in the interval. Qmax is then
used to find the steady state value of the state matrix Σss.
If this value is not within the desired range, then another
operating point is added and the process is repeated.

The procedure to find the location and the minimum
number of operating points to satisfy an uncertainty of Σmax
can be summarized as follows:

1) Solve Equations (2,4,29,30) with Qk,k = 0, to find the
smallest steady state uncertainty, Σss

min based on the
chosen metric. This is the best steady state uncertainty
since it is only due to noises in the system. If Σmax is
greater than Σss

min then go on to step 2, else redefine
Σmax.

2) Add one operating point within [xmin,xmax].
3) Solve the nonlinear minimax optimization problem,

Equation (33).
4) Substitute Qmax and find the steady state uncertainty,

Σss using Equations (2,4, 29,30).
5) If Σss > Σmax then go to step 2, else the location

and number of operating points that meet the desired
uncertainty has been found.



IV. EXAMPLE

The procedure proposed in this paper is evaluated by
implementing it on a model of the relative motion of two
aircraft.

xr,k+1 = xr,k +T [−v0,k + v1,k cosψr,k +ω0yr,k] (34)
yr,k+1 = yr,k +T [v1,k sinψr,k −ω0xr,k] (35)
ψr,k+1 = ψr,k +T [ω1 −ω0] (36)

Equations (34-36) depict the relative motion of aircraft 1
with respect to aircraft 0 (which is equivalent to fixing the
origin of the relative motion of aircraft 1 and studying the
motion of aircraft 1 with respect to aircraft 0). (xr,yr,ψr) ⊂
R

2× [−π,π] is the relative position and orientation of aircraft
1 with respect to aircraft 0 and vi and ωi are the linear and
angular velocities of each aircraft. The control input is the
linear velocity of aircraft 0, u = v0, the disturbance is the
linear velocity of aircraft 1, d = v1, and T is the sampling
time. This system is the discrete version of the model found
in [8]. The sensor output is:

yk+1 =

[
y1,k+1
y2,k+1

]
=

[
xr,k+1
yr,k+1

]
+vk+1 (37)

For this example, v1 = 10 m/s, ω1 = 0.5 rad/sec, v0 = 0
m/s, and ω0 = 0 m/s. The initial conditions for the systems
are x0 = [0,0,0], while the sampling time for the system is
0.01 seconds. The noise for the system has the following
form:

η = g(η) (38)

where η∼N (0,σ2) and g(·) is a transformation function that
passes only values within ±σ of the mean. The result is a
mixed random variable, η, that does not violate the assump-
tions of the ESMF since ηk ∈ Ω(0,σ2). The variance for the
process and measurement noise are diag(0.012,0.012,0.012)
and diag(0.092,0.092) respectively.

The trajectory for the system is shown in Figure 1. With
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Fig. 1. Relative motion of plane 1 with initial conditions [0 0 0]T .

a nonzero ω1, the orientation of aircraft one starts at [0,0,0]
and rotates and moves to

[
20,20, π

2

]
.

The procedure described in Section III-B is used to find
location of the operating points. Assume a design specifi-
cation that requires the linearization uncertainty in ψ(k)r
be smaller than 2.5 radians in the operating range, i.e.√

Σmax(3,3) ≤ 2.50. From Step 1 in the process the steady
state uncertainty is

√
Σss

min(3,3) = 1.86 rad; therefore, the
specification is feasible.

Defining now N operating points over the full system
range: 
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 ,




0
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ψ2
r


 , . . . ,




0
0

ψN
r


 (39)

Computing the Hessians for this system reveals that uncer-
tainty exists in two dimensions. The hybrid uncertainty for
all three states is defined as

H1 = min
xk∈x̃

[
(ψr −ψ1

r )
2(T v1 cosψr), . . . ,

(ψr −ψN
r )2(T v1 cosψr)

]
(40)

H2 = min
xk∈x̃

[
(ψr −ψ1

r )
2(T v1 sinψr), . . . ,

(ψr −ψN
r )2(T v1 sinψr)

]
(41)

H3 = 0. (42)

Equations (40-42) describe the linearization error in three
dimensions for the system for N operating points. From
Step 2, one operating point is added within x̃. Step 3
requires a solution to the nonlinear minimax optimization
problem, Equation (33), which is in general nonconvex due
to the structure of the objective function. Sequential quadratic
programming [9] is used to minimize Equation (33) in
MATLAB. The algorithm is initialized by selecting M points
from a uniform distribution spanning x̃.
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Fig. 2. Value of the objective at the solutions for 1000 trials of optimizing
Equation (33) with three operating points. Points below the dashed line are
below 110% of Qmax/T v1.

For comparison purposes, an exhaustive search over x ∈ x̃
was conducted and the “best” value of (minx∈x̃ Qmax) is found
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to be 0.006. Although the optimization algorithm cannot
guarantee convergence to a global minimum [9], Figure 2
shows the solutions found by initializing the problem with
1000 different points. The points below the dashed line in
the figure are the points that are within 10% of the Qmax
found from the exhaustive search. Figure 3 presents the
percentage of optimized solutions that converge to a given
percentage threshold of 0.006. The extreme nonlinear nature
of the optimization makes it very difficult to find optimal
solutions and as shown in Figure 2, the algorithm indeed
does find nonoptimal solutions. However, Figure 3 suggests
that, for a desired solution to be within 10% of Qmax = 0.006
the algorithm can be solved p times and p

2 of the solutions
will be within the bound. It should be noted that Figures 2
and 3 display results for optimization over two dimensions
and three operating points.

The best solution for Equation (33) using N = 2 results
in a value of Q∗

max = 0.129 and
√

Σss(3,3) = 3.23 for
operating points x1 = [0,0,0.39] and x2 = [0,0,1.1]. Because
the uncertainty in the third state does not satisfy our require-
ments, Step 5 of the procedure states that another operating
must be added and the optimization repeated. The solution
with N = 3 results in Q∗

max = 0.007,
√

Σss(3,3) = 2.17 for
operating points at x1 = [0,0,0.22], x2 = [0,0,0.82], and
x3 = [0,0,1.35]. Because the uncertainty specification on ψr
is met, there is no need to add more operating points.

The three operating found above are used to demonstrate
the effect of uncertainty on the system. The resulting system
matrices, Ai, for the system are shown below.

A1 =




1 0 -0.02
0 1 0.09
0 0 1


 , A2 =




1 0 -0.07
0 1 0.07
0 0 1


 ,

A3 =




1 0 -0.10
0 1 0.02
0 0 1




Matrices, Bi, Ci, and Di are the same for all three models
and are shown in Equation (43),

Bi =




-T
0
0


 ,Ci =

[
1 0 0
0 1 0

]
,Di =

[
0
0

]
(43)

for i = {1,2,3}.
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Fig. 4. Trace of the uncertainty for systems with constant plant models
around 0, 45, and 90 degrees.

Figure 4 show the trace of the state ellipsoid as a function
of time. The figures shows that close to the system’s initial
condition the filter implemented with the first operating point,
x1 = [0,0,0.22], has a smaller trace than the other two
models. As the system moves towards π

4 radians, the trace of
the filter using the model defined around the second operating
point, x2 = [0,0,0.82], decreases as the linearization error
for this filter becomes smaller. The same can be said as ψr
approaches π

2 for the filter using the third model around the
operating point, x3 = [0,0,1.35].
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Fig. 5. Bounds on the orientation for constant plant models around 0.22,
0.82, and 1.35 radians.

The uncertainty on the third state for the three filters is
shown in Figure 5. The magnitude of the uncertainty for each



of the filters changes as the linearization error evolves with
respect to each operating point. Similar to the relationship
shown in Figure 4, the uncertainty is smaller near each of
the operating points.
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Fig. 6. Model chosen by considering the trace of the uncertainty and the
trace of combined process noise ellipsoid.

Two of the switching criteria presented in Section III-A
and Table I are compared in Figure 6. As ψr changes from
0 to π

2 each of the metrics selects which operating point is
more appropriate. As seen in Figure 6 the switching is more
consistent using tr (Σk,k), but relatively similar.

V. CONCLUSION

A method to define hard bounds on the state estimate using
a set of switched linear models was presented. First, the
bounding of the linearization error was adapted for use with
set-membership with model switching. Then the Extended
Set-Membership Filter was implemented to bound the state
estimate for each model. Criteria that dictates when model
switching occurs was defined in order to minimize uncer-
tainty. The problem of determining the minimum number
of operating points needed to guarantee a desired level of
uncertainty was also discussed.
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