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Abstract— Frequency compensation of two-stage integrated-
circuit operational amplifiers is normally accomplished with
a capacitor around the second stage. This compensation
capacitance creates the desired dominant-pole behavior in the
open-loop transfer function of the op amp. Circuit analysis of
this compensation leads to a mathematical observation of “pole
splitting:” that as the compensation capacitance is increased,
the parasitic poles of the amplifier separate in frequency.

Treatment of op-amp compensation as minor-loop feedback,
instead of pole splitting, greatly simplifies and generalizes
the analysis and design of op-amp frequency response. Using
classical-control techniques instead of direct circuit analysis,
insight and intuition into the behavior and flexibility of the
system are gained.

I. INTRODUCTION

Operational amplifiers have been used by control engi-
neers for many decades as key components in compensators
[1], sensor circuitry [2], and analog computers [3], [4]. They
are still one of the most ubiquitous electronic elements in
the world. However, despite the required use of feedback
in all op-amp applications, and the presence of feedback in
the internal circuitry, the design of operational amplifiers
is often presented and completed without a useful control
framework.

Op amps require a deliberately designed frequency re-
sponse to ensure stability and satisfactory transient perfor-
mance in end-user applications. Standard frequency com-
pensation is designed for general-purpose op-amp applica-
tions such as amplifiers, buffers, and integrators. Sophisti-
cated compensation techniques can be employed in specific
applications in which standard compensation methods per-
form poorly.

Internally compensated op amps have a fixed transfer
function set by the manufacturer. In the design of the circuit,
the op-amp designer must choose a compensation network
that is appropriate for the intended applications of the op
amp. Externally compensated op amps [5] allow the end
user to select the compensation network that determines
the transfer function of the op amp. The determination and
implementation of appropriate op-amp transfer functions in
various applications is easily understood with the tools of
classical control.

Popular textbooks in analog circuit design [6], [7], [8]
treat op-amp compensation in a network-theory context,
writing out many node equations and discussing the concept
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Fig. 1. Schematic for a simple non-inverting amplifier circuit. For general-
purpose use (and commercial success) this circuit must be stable for any
resistor values R1 and R2.

of “pole splitting” [9]. This approach is unnecessarily
abstruse. Treatment of op-amp compensation as minor-loop
feedback, instead of pole splitting, greatly simplifies and
generalizes the analysis and design of op-amp frequency-
compensation networks.

This paper demonstrates the use of classical-control
techniques instead of direct circuit analysis in the design
of compensation for general-purpose and special-purpose
operational amplifiers. Intuition and insight into the solution
are gained by using these feedback techniques.

II. THE GENERAL-PURPOSE TRANSFER FUNCTION

The frequency response of general-purpose op amps is
designed to be stable in the largest number of applications.
The schematic for a simple non-inverting amplifier circuit
is shown in Figure 1. This amplifier circuit is implemented
with a negative-feedback loop around the op amp, and the
closed-loop gain is

Vo

Vi
=

R1 + R2

R1
.

For general-purpose use the op amp must be designed such
that this circuit is stable for any resistor values R1 and R2.
The block diagram of this circuit is shown in Figure 2. The
circuit loop transfer function is

L(s) = A(s)
R1

R1 + R2
= A(s)F.

For stability in this application, this loop transfer function
must create a stable feedback system for any value of F
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Fig. 2. Block diagram for the non-inverting amplifier circuit in Figure 1.
The feedback path is F = R1/(R1 + R2). The op-amp transfer function
A(s) must be designed to guarantee stability for any such attenuative
feedback.
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Fig. 3. Frequency response of the desired op-amp transfer function A(s).
The single-pole roll-off (slope of −1) behavior over a wide frequency
range gives the desired transfer function for a general-purpose op amp.
The frequency ωu is the unity-gain frequency of the op amp.

less than one. The ideal transfer function that meets this
requirement is

A(s) =
A0

τs + 1
. (1)

With this op-amp transfer function, the closed-loop circuit
will be stable for any choice of resistive feedback. The
frequency response of this desired op-amp transfer function
A(s) rolls off with a slope of −1 over a wide frequency
range, as shown in Figure 3. In the ideal case, this transfer
function gives 90◦ of phase margin, regardless of the
feedback F .

A real op amp will have additional high-frequency poles
beyond its unity-gain frequency ωu. Including the effect of
an additional pole at 2ωu, the frequency response of the
loop transfer function of the op-amp circuit with a variety
of feedback terms is shown in Figure 4. Even with this
additional high-frequency pole, the loop transfer function
always crosses over with 60◦ (or more) of phase margin
for any attenuative feedback. Thus, stability is guaranteed
for any set of feedback resistors.

The implementation of this desired op-amp transfer func-
tion is easier said than done. Even a simple op-amp circuit
model gives an unacceptable op-amp transfer function.

For example, a simplified schematic of the Fairchild
µA741 [10] op amp is shown in Figure 5. This circuit
can be modeled by the equivalent-circuit block diagram
shown in Figure 6. The frequency response of this circuit,
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Fig. 4. Frequency response of the op-amp-circuit loop transfer function
L(s) with a variety of feedback terms. Since the loop transfer function
always crosses over with 60◦ or more of phase margin for any attenuative
feedback, stability is guaranteed.
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Fig. 5. Simplified schematic of the uncompensated Fairchild µA741 op
amp, showing the signal-path transistors. The full schematic is shown and
explained in Appendix II.

when uncompensated, is shown in Figure 7. The two
low-frequency poles severely degrade the phase margin at
crossover. Additional high-frequency poles in the circuit
make matters worse.

For stability in amplifier applications, the op amp must
be compensated to achieve a frequency response similar
to the ideal transfer function in equation (1) and shown
in Figure 3. This general-purpose compensation is usually
accomplished with a capacitor [5]. (This technique is often
called “Miller compensation.” See Appendix I.) The simpli-
fied schematic of the µA741 op amp with a compensation
capacitor is shown in Figure 8. The compensation capacitor
goes around the high-gain stage as shown in the equivalent-
circuit block diagram in Figure 9.

Using two-port circuit models for each stage, the
equivalent-circuit schematic in Figure 10 can be drawn.
Each gain stage is represented by a Norton-equivalent two-
port model with input resistance, output resistance, output
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Fig. 6. Equivalent-circuit block diagram of a two-stage op amp. The
input stage A1 converts the input signal from differential to single-ended.
The second stage A2 is the high-gain stage. The output buffer provides
current gain and protection at the output.
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Fig. 7. Frequency response of an uncompensated op amp. The two low-
frequency poles in the uncompensated transfer function severely degrade
the phase margin at crossover.
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Fig. 8. Simplified schematic of the Fairchild µA741 op amp with
compensation capacitor. The compensation capacitor goes around the high-
gain second stage created by Q16 and Q17.
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Fig. 9. Equivalent-circuit block diagram of a two-stage op amp with
compensation capacitor. The compensation capacitor goes around the high-
gain second stage.
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Fig. 10. Equivalent-circuit schematic for the two-stage op amp with
compensation capacitor of Figure 9, where A1 = GM1R1 and A2 =
GM2R2.

capacitance, and a transconductance generator. The output
buffer is ignored in this equivalent circuit since the output
voltage of the second stage is equal to the buffer output
voltage Vo. The transfer function of this equivalent circuit
will be derived in the following sections, using the pole-
splitting approach in Section III and using a feedback
approach in Section IV.

III. POLE-SPLITTING APPROACH

To investigate the effects of the compensation capaci-
tor, the transfer function of the op-amp equivalent-circuit
schematic in Figure 10 is calculated to find

A(s) =
Vo

Vin
(s).

The pole-splitting approach [9] uses brute-force circuit
analysis to determine this transfer function. The approach
starts with the constitutive current equations at the two
circuit nodes V1 and Vo

GM1Vin − V1

R1
− sC1V1 − sC(V1 − Vo) = 0 (2)

sC(V1 − Vo) − GM2V1 − Vo

R2
− sC2Vo = 0. (3)

After a page of algebra (as shown in detail in Appendix III)
the transfer function is found

A(s) =
Vo

Vin
(s) =

GM1R1GM2R2(Cs/GM2 − 1)
a2s2 + a1s + 1

where the coefficients of the denominator are

a2 = R1R2(C1C2 + C1C + C2C)
a1 = R1C1 + R1C + R2C2 + R2C + GM2R2R1C.

Assuming that the gain of the second stage is large
(GM2R2 � 1), the final term in the first-order coefficient
a1 dominates the sum, and the transfer function can be
simplified as

A(s) ≈
GM1R1GM2R2(Cs/GM2 − 1)

R1R2(C1C2 + CC1 + CC2)s2 + GM2R2R1Cs + 1
.

The locations of the transfer-function poles can be found
by assuming that the pole locations are widely separated

A(s) ≈ A0

(τ1s + 1)(τ2s + 1)
=

A0

τ1τ2s2 + (τ1 + τ2)s + 1
.
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Fig. 11. The mathematical observation of “pole splitting.” As the size
of the compensation capacitor C is increased, the frequency of the first
pole ω1 decreases and the frequency of the second pole ω2 increases. The
poles apparently “split” in frequency.

If the two poles are widely separated (τ1 � τ2), then

A(s) ≈ A0

τ1τ2s2 + τ1s + 1
.

Therefore, the approximate pole locations of the op-amp
transfer function are

ω1 =
1
τ1

=
1
a1

=
1

GM2R2R1C
(4)

ω2 =
τ1

τ1τ2
=

a1

a2
=

GM2C

C1C2 + CC1 + CC2
. (5)

Figure 11 shows the resulting “pole-splitting” behavior
in the frequency response of this transfer function. It is
observed that as the size of the compensation capacitor
is increased, the low-frequency pole location ω1 decreases
in frequency, and the high-frequency pole ω2 increases in
frequency. The poles appear to “split” in frequency. For
a large enough compensation capacitor, a single-pole roll
off over a wide range of frequency results, as shown in
Figure 11, which matches the desired transfer function in
Figure 3.

IV. MINOR-LOOP FEEDBACK

While the above results are correct and useful, they are
an impediment to intuition [11]. Treating the compensation
capacitor C as a minor-loop feedback path, instead of as
just another circuit element, simplifies the analysis of the
compensated op amp. The concept of op-amp compensation
by minor-loop feedback provides useful design insight into
the flexibility of this topology and opens up a wide range
of applications for special-purpose compensation schemes.

In the minor-loop approach, the capacitor C is treated
as a feedback path as shown in Figure 12. If the gain of
the second stage is large, then the first-stage voltage V1

will be much smaller than the second-stage voltage Vo.
Comparatively, the node V1 appears to be a virtual ground.
Therefore the effect of the capacitor can be modeled as an
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Fig. 12. Equivalent-circuit schematic for the op amp with the compensa-
tion capacitor modeled as a block. The admittance of the capacitor injects
a current Ic = sCVo into the output node of the first stage.
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Fig. 13. High-frequency model of the effective capacitive loading by the
compensation capacitor. When the compensation capacitor C is removed
from the circuit at left, the circuit is transformed into the circuit at right
so that the capacitive loading on each stage is maintained.

admittance Yc(s) that injects a current Ic into the first stage
that depends only on the voltage of the second stage Vo

Ic = Yc(s)Vo = sCVo.

When the compensation capacitor C is removed from the
circuit and replaced with this block, the capacitive loading
on each stage must be maintained. A high-frequency model
of the effective capacitive loading of the compensation
capacitor is shown in Figure 13. Therefore the capacitors
C1 and C2 in Figure 12 are replaced with the capacitors C3

and C4, where

C3 = C1 +
C2C

C2 + C

and
C4 = C2 + C.

In the equivalent circuit in Figure 12, the voltage V1 is the
total current flowing into the first node times the impedance
of R1 and C3

V1 = (GM1Vin + Ic)
(

R1

R1C3s + 1

)
. (6)

The voltage Vo is the current flowing into the second stage
times the impedance of R2 and C4

Vo = −GM2V1

(
R2

R2C4s + 1

)
. (7)

From equations (6) and (7) the block diagram of the
equivalent circuit with minor-loop feedback can be drawn,
as shown in Figure 14. The block diagram can be rearranged
into Figure 15 by pushing the GM1 block inside the loop.

As shown in Figure 15, the forward path of the op amp
is

G(s) =
(

GM1R1

R1C3s + 1

)(
GM2R2

R2C4s + 1

)
(8)
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Fig. 14. Block diagram of the equivalent circuit with the compensation
capacitor shown as a minor-loop feedback block. This block diagram is
drawn from the node equations (6) and (7).
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Fig. 15. Equivalent block diagram of the op amp, with the outside block
from Figure 14 moved inside the minor loop. This block diagram produces
the forward-path and feedback-path transfer functions (8) and (9).

and the feedback path is

H(s) =
Yc(s)
GM1

=
sC

GM1
. (9)

The transfer function of the op amp can now be calculated
from this block diagram with Black’s formula

A(s) =
Vo

Vin
(s) =

G(s)
1 + G(s)H(s)

or it can be determined from G(s) and 1/H(s) on the
asymptotic Bode plot shown in Figure 16 (as explained in
Appendix IV).

An accurate rendering of the Bode magnitude plot of
the forward-path and the inverse-feedback-path transfer
functions is shown in Figure 17. The Bode magnitude plot
of the resulting op-amp transfer function A(s) is shown in
Figure 18.

Finally, the locations of the resulting poles of the op-amp
transfer function A(s) can be found from the intersections
of the two curves in Figure 16. The low-frequency intersec-
tion occurs when the low-frequency behavior of the forward
path (below the frequencies its poles) intersects with the
inverse of the feedback path. At low frequency

lim
ω→0

|G(jω)| = GM1R1GM2R2

therefore, the intersection occurs when

GM1R1GM2R2 =
GM1

ωC
at a frequency of

ω1 =
1

R1GM2R2C
.

This result agrees exactly with the result (4) found in
Section III using brute-force circuit analysis.

The high-frequency intersection occurs when the high-
frequency behavior of the forward path intersects with the
inverse of the feedback path. At high frequency

lim
ω→∞ |G(jω)| =

GM1GM2

ω2C3C4

ω1

ω2

GM1
sC

(
GM1R1

R1C3s+1

)(
GM2R2

R2C4s+1

)

Fig. 16. Asymptotic Bode plot showing G(s) and 1/H(s) for the op
amp from the block diagram in Figure 15. The asymptotic op-amp transfer
function A(s) is simply the lower of these two curves.
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Fig. 17. Bode magnitude plot of the forward-path G(s) and inverse-
feedback-path 1/H(s) transfer functions from the block diagram in
Figure 15. This plot is a more accurate rendering of the asymptotic plot
in Figure 16.
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Fig. 18. Bode magnitude plot of the closed-minor-loop transfer function
of the op amp A(s). This plot is the lower of the two curves from Figure 17
and matches the desired transfer function in Figures 3 and 4.
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Fig. 19. Schematic for an inverting gain-of-one op-amp amplifier.

therefore, the intersection occurs when

GM1GM2

ω2C3C4
=

GM1

ωC

at a frequency of

ω2 =
GM2C

C3C4

where
C3C4 = C1C2 + C1C + C2C.

Again, this result agrees exactly with the result (5) found
above using brute-force circuit analysis.

Using this minor-loop feedback approach to calculating
the compensated transfer function of the op amp produced
the same results with less work. In addition, a better
understanding of the internals of the op amp is achieved.
The minor-loop feedback path created by the compensa-
tion capacitor (or the compensation network) allows the
frequency response of the op-amp transfer function to be
easily shaped.

V. COMPENSATION FOR STEADY-STATE ERROR

This feedback approach to op-amp compensation can be
exploited in the design of special-purpose op-amp transfer
functions. Such transfer functions can be used to improve
the performance characteristics of many op-amp circuits.
Using these minor-loop techniques, these special-purpose
op-amp transfer functions are easier to design.

For example, the dynamic-tracking behavior of an op-
amp amplifier circuit can be modified with appropriate
changes to the op-amp transfer function A(s). An inverting
op-amp amplifier is shown in Figure 19. With standard
capacitive compensation, the steady-state error to a step
input is nearly zero, since the op-amp transfer function
looks like an integrator

A(s) ≈ GM1

Yc(s)
=

GM1

sC

with a single pole near the origin. If zero steady-state error
to a ramp input is desired, the transfer function of the op
amp can be changed to achieve this specification. As seen
in Section IV, the op-amp transfer function can be designed
by appropriate choice of the compensation network. An op-
amp transfer function such as

A(s) ≈ GM1(τs + 1)
Cτs2

Ic
C C

R

Vo

Fig. 20. Two-port compensation network to replace the compensation
capacitor in Figure 10. The capacitor terminals connect around the high-
gain stage, and the resistor connects to ground. The transfer admittance
Yc(s) = Ic/Vo of this network has two zeros at the origin.
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Fig. 21. Bode magnitude plot of the forward-path and inverse-feedback-
path transfer functions for single-pole and two-pole compensation.

can be achieved with a compensation admittance of the form

Yc(s) =
Cτs2

τs + 1
.

This double-integrator transfer function will exhibit zero
steady-state error to an input ramp.

The transfer admittance of the two-port compensation
network shown in Figure 20 has two zeros at the origin

Yc(s) =
Ic

Vo
=

RC2s2

2RCs + 1
.

Therefore, with this compensation, the open-loop transfer
function of the op amp is approximately

A(s) ≈ GM1(2RCs + 1)
RC2s2

with two poles at the origin. This “two-pole” compensa-
tion network [12] creates a slope of −2 in the frequency
response of the op-amp transfer function.

A Bode magnitude plot of the forward-path and inverse-
feedback-path transfer functions for standard single-pole
compensation and two-pole compensation is shown in Fig-
ure 21. A comparison of the resultant op-amp transfer
functions is shown in Figure 22. The open-loop gain of the
two-pole op-amp transfer function exceeds the gain for the
single-pole transfer function for all frequencies between 102
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Fig. 22. Comparison of the single-pole and two-pole op-amp transfer
functions A(s). The open-loop gain of the two-pole op-amp transfer
function exceeds the gain for the single-pole transfer function for all
frequencies between 102 and 107 rps.
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Fig. 23. Response of the error signal for a fast input ramp. The increased
gain of the two-pole op-amp transfer function significantly reduces the
magnitude of the steady-state error. The error signal for the two-pole
compensated system is always smaller than for the single-pole op amp.

and 107 radians per second (rps). The response of the error
signal for a fast input ramp of 1 V/µs is shown in Figure 23.
The increased gain of the two-pole op-amp transfer function
significantly reduces the magnitude of the steady-state error,
and this op-amp transfer function is easier to design using
minor-loop feedback techniques.

VI. COMPENSATION FOR CAPACITIVE LOADS

This feedback approach to op-amp design can also il-
luminate and diagnose subtle problems in compensation
network design. Some special-purpose op-amp transfer-
function designs exhibit insidious stability problems that
can be difficult to diagnose using only circuit analysis
techniques.
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Fig. 24. Schematic for a unity-gain buffer circuit with a capacitive load.
The output resistance and the capacitive load create a low-pass filter in the
feedback loop. There is no way to feedback from output to input without
including this pole.
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Fig. 25. Block diagram for the buffer in Figure 24 showing the minor-
loop topology of the two-stage op amp. The low-frequency pole from the
capacitive load appears between the second stage of the op amp and the
output node of the circuit.

A. Compensation that Introduces a Zero

Consider an op-amp unity-gain buffer circuit with capac-
itive load, as shown in Figure 24. The output resistance of
the op amp and the capacitance of the load create a low-pass
filter in the feedback loop

L(s) =
A(s)

ROCLs + 1
.

Because the output resistance is inside the op amp, feed-
back from the output terminal always includes the effects
of this additional pole. The block diagram of the buffer
circuit showing the minor loop of the op amp is shown
in Figure 25. The low-frequency pole from the capacitive
load appears between the second stage of the op amp and
the output node of the circuit.

As an example, consider the op-amp model in Figure 12
with an input-stage transconductance of

Gm = GM1 = 10−4 ✵,

a second-stage transresistance of

Ga(s) =
R1GM2R2

(R1C1s + 1)(R2C2s + 1)
=

1010 Ω
(10−5s + 1)2

,

and standard capacitive compensation of

Yc(s) = sC = 10−11s ✵.

The Bode plot of the forward-path and inverse-feedback-
path transfer functions for this op amp is shown in Fig-
ure 26. With this choice of Yc(s), the high-frequency pole of
the op amp occurs two orders of magnitude above crossover.

The op-amp transfer function is

A(s) =
GmGa(s)

1 + Ga(s)Yc(s)
≈ Gm

Yc(s)
=

107

s
.
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Fig. 26. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the example op amp with standard compensation. This op
amp appears to be over-compensated since the second pole of the op amp
occurs two orders of magnitude above crossover.
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Fig. 27. Bode plot of the closed-minor-loop transfer function of the
op amp A(s). This transfer function has nearly ninety degrees of phase
margin at unity-gain crossover. This op amp is over-compensated and is
much more stable than it would need to be for most applications.

The Bode plot of the op-amp transfer function is shown
in Figure 27. This transfer function A(s) has nearly ninety
degrees of phase margin at crossover. This op amp is much
more stable than it needs to be for most applications. The
step response of the op-amp buffer (without capacitive load)
is shown in Figure 28. With ninety degrees of phase margin,
the response is first order.

However, with a finite output resistance and a capacitive
load on the output (RO = 10 Ω and CL = 0.1 µF),
the stability of the op amp is severely compromised. The
transfer function due to the load is

Gl(s) =
1

ROCLs + 1
=

1
10−6s + 1

.

With this capacitive load, the loop transfer function of the
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Fig. 28. Step response of the op-amp buffer without the capacitive load.
With ninety degrees of phase margin, the response is first order.

−200

−150

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

10
0

10
2

10
4

10
6

10
8

10
10

−270

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 40 dB (at 3.16e+07 rad/sec) ,  Pm = 17.8 deg (at 3.08e+06 rad/sec)

Frequency  (rad/sec)

Fig. 29. Bode plot of the loop transfer function L(s) for the op-amp buffer
with capacitive load. The pole due to the capacitive load occurs below
crossover, and stability is significantly compromised. The load capacitor
reduces the phase margin from ninety degree (as shown in Figure 27) to
less than eighteen degrees shown here.

whole circuit is approximately

L(s) = A(s)Gl(s) ≈ GmGl(s)
Yc(s)

=
107

s(10−6s + 1)
.

The Bode plot of the loop transfer function for the op-amp
circuit with capacitive load is shown in Figure 29. The pole
due to the capacitive load occurs below crossover, so the
loop transfer function crosses over with a slope of −2 and
a small phase margin. Stability of the circuit is significantly
compromised and the phase margin has decreased from
ninety degrees to less than eighteen degrees.

This reduction in phase margin degrades the transient
performance of the circuit. The step response of the op-
amp buffer with capacitive load is shown in Figure 30.
Clearly, the response is no longer first order. With less
than eighteen degrees of phase margin, the response exhibits



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Step Response

Time (sec)

A
m

pl
itu

de

Fig. 30. Step response of the op-amp buffer with capacitive load. With less
than eighteen degrees of phase margin, the response exhibits considerable
peak overshoot and ringing.

RC CC

Fig. 31. Compensation network with an admittance pole. This pole in the
feedback-path Yc(s) introduces a zero into the op-amp transfer function
A(s). This zero will be used to cancel the capacitive-load pole.

considerable peak overshoot and ringing. In general, most
op amps behave badly with a capacitive load.

Using the minor-loop feedback approach to op-amp com-
pensation from Section IV to shape the transfer function, the
op amp can be redesigned to compensate for the capacitive
load. The op-amp transfer function A(s) is changed to
include a zero near the frequency of the additional pole
in the circuit loop transfer function L(s).

A compensation network that introduces a zero in the
op-amp transfer function [13] is shown in Figure 31. The
admittance of this network is

Yc(s) =
Ic

Vo
=

CCs

RCCCs + 1
.

The pole in the admittance Yc(s) becomes a zero in the
op-amp transfer function A(s). This zero will be used to
cancel the effects of the capacitive load at the output. With
this compensation network the op-amp transfer function is

A(s) ≈ Gm

Yc(s)
=

Gm(RCCCs + 1)
CCs

and the loop transfer function of the circuit is

L(s) = A(s)Gl(s) ≈ Gm(RCCCs + 1)
CCs

(
1

ROCLs + 1

)
.

If the time constant of the admittance is chosen to be
equal to the time constant of the output pole (RCCC ≈
ROCL) then the term from the minor loop and the term
from the capacitive load will cancel, and the loop transfer
function returns to single-pole roll-off behavior.
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Fig. 32. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the op amp with compensation that introduces a zero. The
pole in Yc(s) becomes a zero in A(s).
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Fig. 33. Bode plot of the closed-minor-loop transfer function of the
op amp A(s). The transfer-function zero introduced by the compensation
network is clearly visible near 3·106 rps. The resonance is blithely ignored.

For this example, the minor-loop transfer admittance is

Yc(s) =
10−11s ✵

3 · 10−7s + 1
and the circuit loop transfer function is approximately

L(s) ≈ 107(3 · 10−7s + 1)
s

(
1

10−6s + 1

)

(the RC products are chosen to be slightly different to
remain distinct on the Bode plots and to be a bit more
realistic). The Bode plot of the forward-path and inverse-
feedback-path transfer functions for the op amp with this
compensation is shown in Figure 32. The Bode plot of the
closed-minor-loop transfer function of the op amp A(s) is
shown in Figure 33. The transfer function zero is clearly
visible at 3 · 106 rps.

The Bode plot of the loop transfer function for the op-
amp circuit with capacitive load is shown in Figure 34. The
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Fig. 34. Bode plot of the loop transfer function L(s) for the op-amp
buffer with capacitive load. The zero from the compensation network
nearly cancels the pole from the capacitive load. The phase margin has
increased from eighteen degrees in Figure 29 to more than sixty degrees.
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Fig. 35. Step response of the compensated op-amp buffer with capacitive
load. The peak overshoot is greatly improved from Figure 30, but the high-
frequency ringing indicates that the system is on the edge of instability.

zero from the compensation network nearly cancels the pole
due to the capacitive load. The phase margin has increased
from eighteen degrees to more than sixty degrees.

However, the step response shows a problem. The step
response of the compensated op-amp buffer with capacitive
load is shown in Figure 35. While the peak overshoot is
greatly improved from Figure 30, the long-lasting high-
frequency ringing indicates that the system is on the edge of
instability. The cause of this ringing is the resonant peak in
Figure 33 and the absence of gain margin in Figure 34. The
frequency of the ringing and of the resonant peak indicate
a minor-loop instability.

B. Compensation with Minor-Loop Stability

The problem with the compensation network in Figure 31
is that the minor loop is nearly unstable, which can be
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Fig. 36. Bode plot of the minor-loop transfer function Lm(s) for the
op amp with the compensation network from Figure 31. The pole in the
admittance Yc(s) becomes a zero in A(s), but the pole appears in the
minor-loop transfer function and degrades the stability of the minor loop.

CD

RC CC

Fig. 37. Compensation network with a shunt capacitance. The capacitor
CD introduces a zero into the minor-loop transfer function that can be
used to increase the stability of the minor loop.

demonstrated by examining the minor-loop transfer func-
tion. As shown in the block diagram in Figure 25, the minor-
loop transfer function is

Lm(s) = Ga(s)Yc(s).

The Bode plot of this minor-loop transfer function is shown
in Figure 36. The admittance pole from the compensation
network appears directly in the minor-loop transfer function
and degrades the stability of the minor loop.

To improve the stability the minor loop, the compensation
network is augmented with a shunt capacitance [12] as
shown in Figure 37. The capacitor CD introduces a zero
into the minor-loop transfer function and is used to improve
the minor-loop phase margin. The compensation network
admittance is

Yc(s) =
s(CC + CD)(RCCSs + 1)

RCCCs + 1
where

CS =
CCCD

CC + CD
.

Using RCCS = 10−8 second, the Bode plot of the minor-
loop transfer function for the op amp with this improved
compensation is shown in Figure 38. The additional zero
from the capacitor CD increases the minor-loop phase
margin to thirty-five degrees.
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Fig. 38. Bode plot of the minor-loop transfer function Lm(s) for the op
amp with the compensation network from Figure 37. The additional zero
from the capacitor CD increases the minor-loop phase margin to thirty-five
degrees.
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Fig. 39. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the op amp with the compensation network from Figure 37.
The zero to cancel the capacitive-load pole is still visible near 3 · 106

rps. The pole from the capacitor CD appears beyond both minor-loop
crossover and major-loop crossover at 108 rps.

The Bode plot of the forward-path and inverse-feedback-
path transfer functions for the op amp are now shown in
Figure 39. The zero to cancel the output capacitance pole is
still visible at 3·106 rps. The pole from CD appears beyond
both the major-loop crossover and minor-loop crossover
frequencies.

The Bode plot of the op-amp transfer function is shown
in Figure 40. The resonance from the minor loop has been
greatly reduced compared to Figure 33.

The Bode plot of loop transfer function for op-amp circuit
with capacitive load is shown in Figure 41. In contrast to
Figure 34, the loop transfer function now has adequate gain
margin as well as sixty degrees of phase margin.

The step response of the compensated op-amp buffer with
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Fig. 40. Bode plot of the closed-minor-loop transfer function of the op
amp A(s). The resonance from the minor loop has been greatly reduced
from Figure 33.

−150

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

10
0

10
2

10
4

10
6

10
8

10
10

−270

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 21.6 dB (at 5.7e+07 rad/sec) ,  Pm = 61.2 deg (at 3.85e+06 rad/sec)

Frequency  (rad/sec)

Fig. 41. Bode plot of the loop transfer function L(s) for the op-amp
buffer with capacitive load. In contrast to Figure 34, the loop transfer
function now has adequate gain margin.
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Fig. 42. Step response of the compensated op-amp buffer with capacitive
load. The peak overshoot from Figure 30 is greatly reduced, and the high-
frequency ringing from Figure 35 is gone.
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Fig. 43. Step response of the compensated op-amp buffer with the
capacitive load removed. The special-purpose compensation developed
here requires the capacitive load to be present for proper loop behavior.
Without the capacitive load, the loop transfer function of the circuit is the
transfer function of the op amp alone from Figure 40, which does not have
adequate phase margin.

capacitive load is shown in Figure 42. The peak overshoot
from Figure 30 is greatly reduced, and the high-frequency
ringing from Figure 35 is gone.

As a final note, the step response of the compensated
op-amp buffer with the capacitive load removed is shown
in Figure 43. This special-purpose compensation developed
here requires the capacitive load to be present for proper
loop behavior. Without the capacitive load, the loop transfer
function of the circuit is the transfer function of the op amp
alone from Figure 40, which does not have adequate phase
margin. However, with the capacitive load, the compensated
op amp performs quite well.

Using the feedback approach to op-amp compensation
design helped diagnose and solve the minor-loop stability
problem. Without this approach, the solution to the high-
frequency ringing in Figure 35 would have been extremely
difficult to determine using direct circuit analysis tech-
niques.

VII. CONCLUSIONS

In all applications, op amps require a deliberately de-
signed frequency response to ensure stability and satisfac-
tory transient performance. Standard frequency compen-
sation, using a capacitor around the high-gain stage, is
designed for general-purpose op-amp applications such as
amplifiers, buffers, and integrators. Sophisticated compen-
sation techniques can be employed in specific applications
in which standard compensation methods perform poorly.

These compensation techniques are necessary to under-
stand in the design of internally compensated op amps or
in the use of externally compensated op amps. A pole-
splitting approach to the compensation design is harmful
to understanding. All of these techniques can be easily
understood in a simple classical-control framework. Using

A

C

VoV1

I1
_

Fig. 44. Close-up of Figure 9 showing the compensation around the high-
gain second stage. The effective input impedance of this stage is modified
by the Miller effect.

a feedback approach to the compensation network design,
insight and intuition into the behavior and flexibility of the
system are gained.

APPENDIX I
MILLER COMPENSATION

The Miller effect is the apparent scaling of an impedance
connected from input to output of a gain stage, which was
first noticed in vacuum tubes [14]. The input current into
the second stage, as shown in Figure 44, depends on the
total voltage across the capacitor

I1 = (V1 − Vo)sC = V1(1 + A)sC.

Thus for an amplifier with a large negative gain, the
effective input capacitance appears (1 + A) times larger
than the capacitor C.

From this effective capacitance, the low-frequency pole
of the equivalent-circuit in Figure 10 can be estimated as

ω1 =
1

RCeff
=

1
R1(1 + A2)C

≈ 1
R1(GM2R2)C

which agrees with equation (4). For this reason, op-amp
compensation with a capacitor around the second gain stage,
as shown in Figure 8, is often called “Miller compensation.”

APPENDIX II
FAIRCHILD µA741 COMPLETE SCHEMATIC

The complete schematic for the Fairchild Semiconductor
µA741 operational amplifier is shown in Figure 45. This
topology is classic and simple.

The primary signal path is comprised of three blocks.
The first stage is the differential quad of transistors Q1–Q4

with active current-mirror load Q5–Q7. The second stage
is the Darlington common-emitter amplifier Q16 and Q17

with current source load Q13. A push-pull emitter-follower
output buffer is implemented by transistors Q14, Q20, and
Q22.

The remaining transistors provide biasing and protection.
The network of current mirrors Q8–Q13 produce bias cur-
rents for the transistors in the signal path. Compensation of
the output-buffer dead-zone region is provided by Q18 and
Q19. Output-current limiting and short-circuit protection is
implemented by Q15 and Q21–Q25.

And of course, the frequency compensation is accom-
plished by the 30 pF capacitor around Q16 and Q17, as
discussed in Section II.
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Fig. 45. Complete Fairchild µA741 schematic [10]. The primary signal path is comprised of two gain stages. The first gain stage is a differential pair
with active load (transistors Q1–Q6). The second gain stage is a common-emitter amplifier (transistors Q16 and Q17). The output buffer is a push-pull
emitter follower (transistors Q14, Q20, and Q22).

APPENDIX III
EXACT TRANSFER FUNCTION MATH

The exact transfer function for the equivalent circuit in Figure 10 can be found directly from the node equations (2)
and (3). Solving the output-node equation (3) for V1

Vo

(
sC +

1
R2

+ sC2

)
= V1(sC − GM2)

Vo(R2(C2 + C)s + 1) = V1(R2Cs − GM2R2)

V1 =
(

R2(C2 + C)s + 1
R2Cs − GM2R2

)
Vo.

Massaging the input-node equation (2)

GM1Vin + sCVo = V1

(
1

R1
+ sC1 + sC

)

GM1R1Vin + R1CsVo = (R1(C1 + C)s + 1)
(

R2(C2 + C)s + 1
R2Cs − GM2R2

)
Vo

GM1R1Vin = Vo

(
(R1(C1 + C)s + 1)(R2(C2 + C)s + 1)

R2Cs − GM2R2
− R1Cs

)
.

Solving for the transfer function

Vo

Vin
(s) =

GM1R1(R2Cs − GM2R2)
(R1(C1 + C)s + 1)(R2(C2 + C)s + 1) − (R2Cs − GM2R2)R1Cs

Vo

Vin
(s) =

GM1R1GM2R2(Cs/GM2 − 1)
R1R2(C1C2 + C1C + C2C)s2 + (R1C1 + R1C + R2C2 + R2C + GM2R2R1C)s + 1

.

This second-order transfer function is the expected result from the topology in Figure 10. All of this math can be avoided
using the feedback techniques in Section IV and Appendix V.
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H(s)

Fig. 46. General block diagram for a feedback system. Standard notation
uses R(s) for the reference input, C(s) for the controlled output variable,
G(s) for the forward-path transfer function, and H(s) for the feedback-
path transfer function.

APPENDIX IV
CLOSED-LOOP TRANSFER FUNCTION TRICK

The work for finding an approximate transfer function
of a feedback system, such as shown in Figure 46, can be
simplified by taking advantage of a useful trick involving
Black’s formula

C

R
(s) =

G(s)
1 + G(s)H(s)

.

Black’s formula can be simplified when

|G(s)H(s)| � 1

or equivalently, when

|G(s)| � 1
|H(s)| .

When this inequality is true, the GH term dominates in the
denominator, and the magnitude of the closed-loop transfer
function can be rewritten as∣∣∣∣CR (s)

∣∣∣∣ =
∣∣∣∣ G(s)
1 + G(s)H(s)

∣∣∣∣ ≈ 1
|H(s)| .

Similarly, when
|G(s)H(s)| � 1

or equivalently, when

|G(s)| � 1
|H(s)|

the unity term dominates in the denominator. The magnitude
of the closed-loop transfer function is then approximately∣∣∣∣CR (s)

∣∣∣∣ =
∣∣∣∣ G(s)
1 + G(s)H(s)

∣∣∣∣ ≈ |G(s)|.

Therefore, the asymptotic frequency response of a closed-
loop feedback system, can be plotted by graphing |G(s)|
and |H(s)|−1 and then tracing the lower curve for all
frequencies.

APPENDIX V
RIGHT HALF-PLANE ZERO

In the analysis in Section IV, the effect of the voltage
V1 on the current through the compensation capacitor was
ignored. Unfortunately, the output voltage of the first stage,
while indeed small, is not zero. Both currents that flow

V1 Vo

Ic

Ir

Fig. 47. The two currents that flow through the compensation capacitor.
The feedback current Ic is the compensation current discussed in Sec-
tion IV. The feedforward current Ir causes a right half-plane zero in the
op-amp transfer function.

R2

Vo

GM2V1

V1

C

Fig. 48. Close-up of Figure 10 showing the effect of the feedforward
current Ir on the second stage. The output voltage is zero when the total
current flowing into the output stage is zero.

through the compensation capacitor are shown in Figure 47,
where

Ic = sCVo

and
Ir = sCV1.

The feedback current Ic is the compensation current dis-
cussed in Section IV. The feedforward current Ir causes a
right half-plane zero in the op-amp transfer function. By
superposition, the sum of these two currents is the total
current flowing in the compensation capacitor.

A close-up of the effect of the feedforward current Ir on
the second stage is shown in Figure 48. The output voltage
is zero when the total current flowing into the output stage
is zero, that is

sCV1 − GM2V1 = 0.

This zero occurs at a frequency

ωz = +
GM2

C
.

Therefore equation (7) must now be written as

Vo = (−GM2V1 + sCV1)
R2

R2C4s + 1
.

The complete block diagram of the op-amp equivalent
circuit, including the feedforward current through the com-
pensation capacitor, is shown in Figure 49. The parallel
blocks in the forward path can be collapsed into a single
block

−GM2 + sC = −GM2

(
1 − sC

GM2

)
.

Thus the feedforward current causes a right half-plane zero.
The negative phase shift from this right half-plane zero can
place considerable limits on op-amp performance.
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Fig. 49. Block diagram of the op-amp equivalent circuit, including the
feedforward current through the compensation capacitor. The feedforward
term causes a right half-plane zero in the op-amp transfer function.

C R

Fig. 50. Compensation network to cancel the right half-plane zero due
to the feedforward current through the compensation capacitor.

This problem can be fixed. A compensation network to
cancel the right half-plane zero is shown in Figure 50 with
admittance

Yc(s) =
Ic

Vo
=

Cs

RCs + 1
.

The compensating admittance Yc(s) shows up in both the
feedback path and the feedforward path. The block in the
forward path becomes

−GM2 +
Cs

RCs + 1
=

−GM2RCs − GM2 + Cs

RCs + 1

= −GM2
(R − 1/GM2)Cs + 1

RCs + 1
.

Thus, for a choice of R = 1/GM2, the zero moves out of
the right half-plane to infinity.

The right half-plane zero is usually not a problem in
bipolar op amps. For example, in the µA741

fz =
GM2

2πC
=

6.8 m✵

2π30 pF
= 36 MHz.

In a CMOS op amp, where transistor transconductances can
be much lower, the right-half plane zero frequency can be
quite close to the unity-gain frequency of the op amp.
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