
A Feasible Two-Stage LQ Reliable Control Via Partial

Actuator Failures Estimation

Chien-Shu Hsieh
Department of Electrical Engineering, Ta Hwa Institute of Technology, Chiunglin, Hsinchu 30740, Taiwan, R.O.C.

Abstract

This paper introduces a feasible version of the
previously proposed two-stage LQ reliable control
(TSLQRC) in order to overcome the infeasible problem
encountered in the control structure of the TSLQRC
in which the controller has exactly known the faults
in the preselected set of actuators. A modified uni-
fied gain margin constraint and a parameter estimating
technique are proposed to facilitate the design. Ana-
lytical and simulated results show that the proposed
feasible TSLQRC serves as a practical implementation
of the TSLQRC.

1 Introduction

Reliable controller designs guaranteeing stability while
permitting control component failures (e.g., actuator
failures and/or sensor failures) have received great at-
tentions in the literature [1]-[9]. Among these, three ap-
proaches have been used to facilitate the design. One is
the redundant control in which the reliability of control
structures is guaranteed by using multiple controllers
[1, 6]. The second is the reliable control where the de-
signs will tolerate failures within a preselected set of
actuators or sensors, while maintaining stability and a
known performance bound [2, 3, 4, 8]. All of the above-
mentioned works are focused on an H∞ framework. On
the other hand, Veillette [5] presented a reliable LQ
design approach, and Yang et al. [7] also presented
a discrete-time LQ reliable guaranteed cost controller.
The last is the adaptive control which is capable of deal-
ing with systems for unknown actuator failures (see [9]
and the references therein). It should be stressed that
most of the aforementioned works, except [7], are de-
veloped for continuous-time systems. However, in this
paper we focus on the extension of Veillette’s reliable
LQ design results [5] to discrete-time systems.

To extend the stability/performance gain margin prop-
erties of Veillette’s reliable LQ regulator [5] to discrete-
time systems, the author has successfully proposed the
two-stage LQ reliable control (TSLQRC) [11]. It was
further shown in [12] that the TSLQRC also serves as
a reliable guaranteed cost control which guarantees the

performance cost to be within a certain bound. How-
ever, the gain margin results of the TSLQRC may be
too restricted to be applied for a certain system, and
the upper and lower bounds of the considered failure
model of actuators are assumed to be in the same dis-
tance with the nominal condition. In [13], a modi-
fied version of the TSLQRC, i.e., MTSLQRC, was pro-
posed to relax the above restrictions. Furthermore, the
gain margin issues of the MTSLQRC were addressed in
[15]. Nevertheless, it should be stressed that the control
structure of the TSLQRC may encounter the following
infeasible problem: the controller presumes a need of
feedback of the actuator faults which are associated
with the selected subset of unreliable actuators. This
may disturb the TSLQRC in further development.

The main aim of this paper is to propose a feasible ver-
sion of the TSLQRC in order to overcome the afore-
mentioned infeasible problem encountered in the orig-
inal control structure of the TSLQRC. The paper is
organized as follows. The problem of interest and a re-
view of the TSLQRC are given in Section 2. In Section
3, the derivation of the feasible TSLQRC is presented.
A modified unified gain margin constraint is proposed
to facilitate the design. The gain margin issues of the
feasible TSLQRC are then addressed in Section 4. The
issue of determining the design parameters of the pro-
posed feasible TSLQRC is given in Section 5. A nu-
merical example is given in Section 6 to illustrate the
usefulness of the proposed results. Section 7 has some
concluding remarks.

2 Problem Statement and Preliminaries

Consider the following discrete-time linear system:

xk+1 = Axk + Buk (1)

where xk ∈ Rn is the system state, uk ∈ Rm is the
control input whose components may fail during system
operation, and matrices A and B are known constant
matrices. The quadratic performance index associated
with the system is given by

J =
∞∑

k=0

(x′kQxk + u′kRuk) (2)



where Q ≥ 0 and R > 0 are given weighting matrices
and ′ denotes transpose.

In a fault-tolerant control system design, the standard
optimal control may not be the most suitable one in the
sense that it does not generally tolerate the complete
outage of any actuators. On the other hand, the reli-
able LQ regulator of Veillette [5] seems to be an attrac-
tive mean to guarantee system’s stability and perfor-
mance. However, Veillette’s results are derived mainly
for continuous-time systems. In [11], the author has
proposed the TSLQRC to extend the Veillette’s reli-
able LQ regulator to discrete-time systems where the
failed control input uF

k is expressed as follows:

uF
k = −

[
NΩ̄K̄Ω̄(I −BΩNΩK̄Ω)

NΩK̄Ω

]
Axk. (3)

In (3), K̄Ω̄ and K̄Ω are the designed controller gain
matrices which are given as follows:

K̄Ω̄ = S−1
Ω̄

B ′̄
ΩP, SΩ̄ = B ′̄

ΩPBΩ̄ + RΩ̄ (4)

K̄Ω = S−1
Ω B′

ΩP̄ , SΩ = B′
ΩP̄BΩ + RΩ (5)

P̄ = P (I −BΩ̄K̄Ω̄) (6)
P = A′P (I −BΩ̄K̄Ω̄)A + Q (7)

NΩ̄ and NΩ are their corresponding gain perturbation
matrices, and B and R are partitioned as follows: B =[

BΩ̄ BΩ

]
and R = diag{RΩ̄, RΩ}. Note that in

the above formulations, Ω denotes the selected subset
of unreliable actuators within which outages must be
tolerated while Ω̄ denotes the complementary subset of
actuators within which actuator outages are not taken
into account by the design. Also note that the actuator
failure considered in this paper is given as follows [5]:

K̄Ω̄ → NΩ̄K̄Ω̄, K̄Ω → NΩK̄Ω. (8)

The key task of the considered LQ reliable control de-
sign problem is to determine the admissible gain per-
turbation matrices, i.e., NΩ̄ and NΩ, such that in the
presence of actuator failures in (8), the performance
index (2) is still bounded. As given in [12], the consid-
ered problem is solved if the gain perturbation matrices
satisfy the following unified gain margin constraint:

K̄ ′
ΩDΩK̄Ω − Ū ′K̄ ′̄

ΩDΩ̄K̄Ω̄Ū + aQ̃ ≥ 0 (9)

where a ∈ R,

DΩ = SΩ − (I −NΩ)′SΩ(I −NΩ) (10)
DΩ̄ = (I −NΩ̄)′SΩ̄(I −NΩ̄) (11)
Q̃ = Ū ′K̄ ′̄

ΩN ′̄
ΩRΩ̄NΩ̄K̄Ω̄Ū + K̄ ′

ΩN ′
ΩRΩNΩK̄Ω(12)

Ū = I −BΩNΩK̄Ω. (13)

Through (9), the stability and performance gain mar-
gin results of Veillette [5] may be seen as limiting cases
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Figure 1: Block diagram of the feasible TSLQRC

of the presented results in case that the sampling time
is considered to be sufficiently small.

Unfortunately, the control structure of the TSLQRC
may encounter the following infeasible problem: the
controller presumes a need of feedback of the actuator
faults associated with the set Ω. The main aim of this
paper is to propose a feasible version of the TSLQRC
in order to overcome the aforementioned restriction.

3 The Feasible TSLQRC

In the following discussions, the perturbation gain ma-
trices NΩ̄ and NΩ are assumed as follows:

NΩ̄ = diag{n1
Ω̄, n2

Ω̄, · · · , np

Ω̄
}, ni

Ω̄ ≤ ni
Ω̄ ≤ n̄i

Ω̄ (14)

NΩ = diag{n1
Ω, n2

Ω, · · · , nm−p
Ω }, nj

Ω ≤ nj
Ω ≤ n̄j

Ω(15)

where 0 < ni
Ω̄
≤ 1, n̄i

Ω̄
≥ 1, 0 ≤ nj

Ω ≤ 1, and n̄j
Ω ≥ 1.

In order to achieve the aim of the paper, the author
proposes the following feasible TSLQRC:

uk = −
[

K̄Ω̄Û
K̄Ω

]
Axk (16)

where Û , K̄Ω̄, and K̄Ω are calculated as follows:

Û = I −BΩN̂ΩK̄Ω (17)
K̄Ω̄ = (SΩ̄ΦΩ̄)−1B ′̄

ΩP (18)
K̄Ω = (SΩΦΩ)−1B′

ΩP̄ (19)
P̄ = P (I −BΩ̄ΦΩ̄K̄Ω̄) = P − PBΩ̄S−1

Ω̄
B ′̄

ΩP (20)

P = A′P (I −BΩ̄ΓΩ̄K̄Ω̄)A + Q (21)

in which N̂Ω, ΦΩ̄, ΦΩ, and ΓΩ̄ are design parameters,
which will be determined in the next section. Note
that the controller gain matrices of the above feasible
TSLQRC adopt the forms given in [13]. The structure
of the proposed feasible TSLQRC in a practical faulty
system is depicted in Fig. 1. Thus, the failed control
input uF

k (3) becomes

uF
k = −

[
NΩ̄K̄Ω̄(I −BΩN̂ΩK̄Ω)

NΩK̄Ω

]
Axk. (22)



Using (22) in (1) yields the following system dynamics
matrix:

F = F̄ + BΩ(N̂Ω −NΩ)K̄ΩA (23)

where

F̄ = (I −BΩ̄NΩ̄K̄Ω̄)ÛA. (24)

Using (23) and (24), the main result of this paper,
which shows the general performance gain margin prop-
erty of the feasible TSLQRC, is given in the following
theorem.

Theorem 1. The state-feedback system obtained by
applying the feasible TSLQRC (16)-(21) satisfies the
performance bound

J ≤ x′0(P + aP̃ )x0 (25)

where x0 is the initial state, P is the stabilizing solution
of (21), a ∈ R, and P̃ is the stabilizing solution of the
following equations:

P̃ = F ′P̃F + A′Q̄A (26)
Q̄ = Û ′K̄ ′̄

ΩN ′̄
ΩRΩ̄NΩ̄K̄Ω̄Û + K̄ ′

ΩN ′
ΩRΩNΩK̄Ω (27)

if the gain matrices NΩ̄ and NΩ satisfy the following
modified unified gain margin constraint:

K̄ ′
ΩDΦ

ΩK̄Ω + K̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄ + aQ̄

≥ Û ′K̄ ′̄
ΩDΦ

Ω̄K̄Ω̄Û + K̄ ′
ΩE1K̄Ω + E2 (28)

where

DΦ
Ω = Φ′ΩSΩΦΩ − (ΦΩ −NΩ)′SΩ(ΦΩ −NΩ) (29)

DΦ
Ω̄ = (ΦΩ̄ −NΩ̄)′SΩ̄(ΦΩ̄ −NΩ̄) (30)

E1 = (N̂Ω −NΩ)′B′
ΩK̄ ′̄

Ω(N ′̄
ΩSΩ̄NΩ̄ −DΦ

Ω̄)

×K̄Ω̄BΩ(N̂Ω −NΩ) (31)
E2 = K̄ ′

Ω(N̂Ω −NΩ)′B′
ΩPBΩ̄(ΦΩ̄ −NΩ̄)K̄Ω̄Ū

+Ū ′K̄ ′̄
Ω(ΦΩ̄ −NΩ̄)′B ′̄

ΩPBΩ(N̂Ω −NΩ)K̄Ω.

(32)

Proof. First, we note that the performance index (2),
in the presence of actuator failures, can be represented
as follows:

J =
∞∑

k=0

{x′k(Q + A′Q̄A)xk}. (33)

Then, the key point to prove the theorem is to show
the following equation:

F ′(P + aP̃ )F − (P + aP̃ ) + Q + A′Q̄A

= −A′(K̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄ + {•}+ aQ̄)A (34)

where

{•} = K̄ ′
Ω(DΦ

Ω − E1)K̄Ω − Û ′K̄ ′̄
ΩDΦ

Ω̄K̄Ω̄Û − E2. (35)

Using the same procedures as given in deriving (34) of
[13], one obtains

F̄ ′PF̄ + A′Q̄A = P −Q−A′ΨA (36)

where

Ψ = K̄ ′
ΩDΦ

ΩK̄Ω − Û ′K̄ ′̄
ΩDΦ

Ω̄K̄Ω̄Û + Ū ′P̄ Ū

+K̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄ − Û ′P̄ Û . (37)

Next, using (13) and (17), we obtain

Ū ′P̄ Ū − Û ′P̄ Û

= K̄ ′
Ω(N̂Ω −NΩ)′B′

ΩP̄ Ū + Ū ′P̄BΩ(N̂Ω −NΩ)K̄Ω

−K̄ ′
Ω(N̂Ω −NΩ)′B′

ΩP̄BΩ(N̂Ω −NΩ)K̄Ω. (38)

Then, using (13), (17)-(18), (20), (23)-(24), (30)-(32),
and (38), we obtain

F̄ ′PF̄ = F ′PF −A′ΥA (39)

where

Υ = K̄ ′
Ω(N̂Ω −NΩ)′B′

ΩP (I −BΩ̄NΩ̄K̄Ω̄)Û
+Û ′(I −BΩ̄NΩ̄K̄Ω̄)′PBΩ(N̂Ω −NΩ)K̄Ω

+K̄ ′
Ω(N̂Ω −NΩ)′B′

ΩPBΩ(N̂Ω −NΩ)K̄Ω

= K̄ ′
ΩE1K̄Ω + E2 + Ū ′P̄ Ū − Û ′P̄ Û . (40)

Using (26), (35)-(37), and (39)-(40), (34) is verified.
Finally, using (34) one can easily show that the perfor-
mance index (33) can be represented alternatively as
follows:

J = x′0(P + aP̃ )x0 − x′0

∞∑

k=0

(AF k)′{•}1AF kx0 (41)

where

{•}1 = K̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄ + {•}+ aQ̄. (42)

From (41), the performance bound (25) holds if ma-
trix {•}1 is positive semidefinite, which establishes the
constraint (28). 2

4 Gain Margin Issues of the Feasible TSLQRC

In this section, we shall evaluate the stability gain mar-
gins (SGM) and the performance gain margins (PGM)
of the proposed feasible TSLQRC. First, we give the
SGM of the feasible TSLQRC, which is closely related
to the reliable control design problem, in the following
corollary.

Corollary 1. The state-feedback system obtained by
applying the feasible TSLQRC (16)-(21) remains sta-
ble provided that the independent gains NΩ̄ associated



with Ω̄ and the gains NΩ associated with Ω satisfy the
following constraints:

{•}ΦΩ̄ = N ′̄
ΩRΩ̄NΩ̄ − (ΦΩ̄ −NΩ̄)′SΩ̄(ΦΩ̄ −NΩ̄)

≥ 0 (43)
{•}ΦΩ = N ′

ΩRΩNΩ + Φ′ΩSΩΦΩ

−(ΦΩ −NΩ)′SΩ(ΦΩ −NΩ) ≥ 0 (44)
{•}ΓΩ̄ = K̄ ′̄

ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄ − K̄ ′
ΩE1K̄Ω − E2

≥ 0. (45)

Proof. Using (26)-(27), (29)-(30), (34)-(35), and (43)-
(45), we obtain

P − F ′PF = A′(K̄ ′
Ω{•}ΦΩK̄Ω + (K̄Ω̄Û)′{•}ΦΩ̄K̄Ω̄Û

+{•}ΓΩ̄)A + Q. (46)

From [16] and (46), it is clear that the state-
feedback system remains stable provided that the
matrices {•}Φ

Ω̄
, {•}ΦΩ, and {•}Γ

Ω̄
are all positive

semidefinite, which establishes the constraints (43),
(44), and (45), respectively. This completes the
proof. 2

Next, we shall determine the PGM of the feasible
TSLQRC, which is related to the guaranteed-cost con-
trol design problem. The obtained result is a special
case of that given in Theorem 1 and is list in the fol-
lowing corollary without proof.

Corollary 2. The state-feedback system obtained by
applying the feasible TSLQRC (16)-(21) satisfies the
performance bound

J ≤ x′0Px0 (47)

if NΩ̄ and NΩ satisfy the following new modified gain
margin constraint:

K̄ ′
ΩDΦ

ΩK̄Ω + K̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ − ΓΩ̄)K̄Ω̄

≥ Û ′K̄ ′̄
ΩDΦ

Ω̄K̄Ω̄Û + K̄ ′
ΩE1K̄Ω + E2 (48)

where DΦ
Ω, DΦ

Ω̄
, E1, and E2 are given by (29), (30),

(31), and (32), respectively.

Remark 1: If one chooses N̂Ω = NΩ, then one has
E1 = 0, E2 = 0, and Û = Ū , and hence (48) becomes
to the modified gain margin constraint given in [13,
Thm. 2].

5 Parameters Determination for the Feasible
TSLQRC

In this section, the issue of determining the design pa-
rameters of the proposed feasible TSLQRC, i.e., N̂Ω,
ΦΩ̄, ΦΩ, and ΓΩ̄, is addressed. It is known from [14]

that the two-stage structure of the TSLQRC has no ob-
vious advantage over the single-stage LQ reliable con-
trol (SSLQRC) in the PGM point of view. Hence, in
the following discussions we only focus on the SGM
problem. Furthermore, instead of treating (14) and
(15) directly, the perturbation gain matrices: NΩ̄ and
NΩ are handled as follows:

NΩ̄ = nΩ̄I, NΩ = nΩI (49)

where

min{ni
Ω̄}p

i=1 = nΩ̄ ≤ nΩ̄ ≤ n̄Ω̄ = max{n̄i
Ω̄}p

i=1 (50)

min{ni
Ω}m−p

i=1 = nΩ ≤ nΩ ≤ n̄Ω = max{n̄i
Ω}m−p

i=1 . (51)

The design parameters: N̂Ω, ΦΩ̄, ΦΩ, and ΓΩ̄ are then
taken as the following specific forms:

N̂Ω = n̂ΩI, ΦΩ̄ = φΩ̄I, ΦΩ = φΩI, ΓΩ̄ = γΩ̄ΦΩ̄. (52)

First of all, we shall determine parameter γΩ̄. It is
chosen as a suitable value that will yield a satisfactory
worst-fault performance, i.e., x′0Px0, where P is the
stabilizing solution of the following discrete-time alge-
braic Riccati equation (DARE):

P = A′P (I − γΩ̄BΩ̄S−1
Ω̄

B ′̄
ΩP )A + Q. (53)

Next, we consider parameters φΩ̄ and φΩ. Using (49)
and (52), the stability constraints (43) and (44) be-
come, respectively,

n2
Ω̄RΩ̄ − (φΩ̄ − nΩ̄)2SΩ̄ ≥ 0 (54)

n2
ΩRΩ + nΩ(2φΩ − nΩ)SΩ ≥ 0. (55)

Solving (54) and (55), one obtains the following SGM:

φΩ̄

1 + α
≤ nΩ̄ ≤

φΩ̄

1− α
, 0 ≤ nΩ ≤ 2φΩ

1− β
(56)

where α = [λmin{RΩ̄S−1
Ω̄
}]1/2 and β = λmin{RΩS−1

Ω },
in which λmin{•} represents the minimum eigenvalue of
a matrix. Assuming that a dedicated actuator failure
model is given by (50) and (51), then the design pa-
rameters φΩ̄ and φΩ are determined by satisfying the
following constraints:

(1− α)n̄Ω̄ ≤ φΩ̄ ≤ (1 + α)nΩ̄, φΩ ≥ 0.5(1− β)n̄Ω (57)

where the former has a solution if the following condi-
tion holds

λmin{RΩ̄S−1
Ω̄
} ≥ [(n̄Ω̄ − nΩ̄)/(n̄Ω̄ + nΩ̄)]2. (58)

Then, the proposed feasible TSLQRC design is com-
pleted by verifying the stability constraint (45). To



achieve this end, we reformulate (32) by using (18) as
follows:

E2 = K̄ ′
Ω(N̂Ω −NΩ)′B′

ΩK̄ ′̄
ΩΦ′̄ΩSΩ̄(ΦΩ̄ −NΩ̄)K̄Ω̄Ū

+Ū ′K̄ ′̄
Ω(ΦΩ̄ −NΩ̄)′SΩ̄ΦΩ̄K̄Ω̄BΩ(N̂Ω −NΩ)

×K̄Ω. (59)

Next, using (31), (52), and (59) in (45) yields the fol-
lowing inequality:

ñ2
ΩM + ñΩH + N ≥ 0 (60)

where ñΩ = n̂Ω − nΩ,

M = φΩ̄(φΩ̄ − 2nΩ̄)X ′Y X (61)
H = −φΩ̄(φΩ̄ − nΩ̄)(X ′Y Ū + Ū ′Y X) (62)
N = φ2

Ω̄(1− γΩ̄)Y (63)

in which X = BΩK̄Ω and Y = K̄ ′̄
Ω
SΩ̄K̄Ω̄. Since N ≥ 0,

it is clear from (60) that if the estimate n̂Ω is more
accurate, i.e., ñΩ → 0, then the performance of the
feasible TSLQRC will be more approximate to that of
the MTSLQRC [14].

Finally, we suggest a possible solution to determine n̂Ω.
This problem can be solved if one recasts the original
control design problem into a parameter filtering prob-
lem [10]. Using (22) and (52) in (1) yields

[
xk+1

zk+1

]
=

[
A −B̄k

0 I

] [
xk

zk

]
+

[
0

wz
k

]
(64)

yk =
[

I 0
] [

xk

zk

]
(65)

where z =
[

nΩ̄ nΩ

]′ and

B̄k =
[

BΩ̄K̄Ω̄ÛkAxk BΩK̄ΩAxk

]
(66)

Ûk = I − n̂Ω,kBΩK̄Ω. (67)

The parameter filtering problem at hand is then to es-
timate nΩ,k, which can be solved by using the following
reduced-order filter:

n̂Ω,k =
[

0 1
]
zk|k (68)

where zk|k is obtained by using the following OMOLSE
(optimal minimum-order least-squares estimator) [15]:

zk|k−1 = zk−1|k−1 (69)
zk|k = zk|k−1 + Kz

k(xk − x̄k|k−1 − Skzk|k−1)(70)
P z

k|k−1 = P z
k−1|k−1 + Qz

k−1 (71)

Kz
k = P z

k|k−1S
′
k{SkP z

k|k−1S
′
k + P̄ x

k|k−1}−1 (72)
P z

k|k = (I −Kz
kSk)P z

k|k−1 (73)

where

x̄k|k−1 = Axk−1 − B̄k−1zk−1|k−1 − Skzk|k−1 (74)
P̄ x

k|k−1 = B̄k−1P
z
k−1|k−1B̄

′
k−1 − SkP z

k|k−1S
′
k (75)

Sk = −B̄k−1P
z
k−1|k−1(P

z
k|k−1)

−1. (76)

Now, we are in the position to simplify the above zk|k
filter. Using (69) and (74)-(76) in (70) and (72) yields,
respectively,

zk|k = (I + Kz
kB̄k−1)zk−1|k−1 + Kz

k(xk −Axk−1)
(77)

Kz
k = −P z

k−1|k−1B̄
′
k−1{B̄k−1P

z
k−1|k−1B̄

′
k−1}−1(78)

Note that if the dimension of state xk is greater than
that of state zk, i.e., dim(xk) > dim(zk), then the in-
verse in (78) does not exist. If this is the case, (78) is
replaced by the following

Kz
k = −P z

k−1|k−1B̄
′
k−1{B̄k−1P

z
k−1|k−1B̄

′
k−1}+ (79)

where M+ is an arbitrary generalized inverse of M sat-
isfying MM+M = M . Without loss of generality, in
the following derivations, we only consider the case:
dim(xk) > dim(zk). Assuming P z

k|k > 0 and letting

P z
k|k = ΛkΛ′k, B̄kΛk = Uk

[
Σk

0

]
V ′

k (80)

then one has

Λ−1
k Kz

k+1B̄kΛk

= −Λ′kB̄′
k{B̄kΛk(B̄kΛk)′}+B̄kΛk = −I

which yields

Kz
k+1B̄k = −I. (81)

Using (68), (71), (73), (76)-(78), and (81), one obtains
the following more compact reduced-order filter n̂Ω,k:

n̂Ω,k =
[

0 1
]
Kz

k(xk −Axk−1) (82)
Kz

k = −Qz
k−2B̄

′
k−1{B̄k−1Q

z
k−2B̄

′
k−1}+. (83)

Remark 2: Using (64) and (81) in (82) yields

n̂Ω,k = − [
0 1

]
Kz

kB̄k−1zk−1 = nΩ,k−1. (84)

From (84), it is clear that the failure estimate (82) can
achieve the goal, i.e., satisfies (60), if the rate of change
of the actuator failure is small enough.

6 An Illustrative Example

To illustrate the proposed results, the author consid-
ered the system given in [13] and the following actuator
failure model:

0.6 ≤ nΩ̄ ≤ 8, 0 ≤ nΩ ≤ 30. (85)

The design parameters of the feasible TSLQRC are cho-
sen as follows:

φΩ̄ = 1.12, φΩ = 1.31, γΩ̄ = 0.85. (86)



Table 1: Analytical stable estimation error margins of the
feasible TSLQRC

nΩ̄ nΩ ñΩ bounds
0.6 0 -0.6 ≤ ñΩ ≤ 0.495
0.6 30.05 -0.016 ≤ ñΩ ≤ 18.584
8.44 0 -0.035 ≤ ñΩ ≤ 0.042
8.44 30.05 -1.32 ≤ ñΩ ≤ 0.001

Table 2: Simulated stable estimation error margins of the
feasible TSLQRC

nΩ̄ nΩ ñΩ bounds
0.6 0 -245.295 ≤ ñΩ ≤ 6.68
0.6 30.05 -2.395 ≤ ñΩ ≤ 155.115
8.44 0 -0.212 ≤ ñΩ ≤ 14.855
8.44 30.05 -14.115 ≤ ñΩ ≤ 0.221

Using (86) in (56) yields the following SGMs:

0.6 ≤ nΩ̄ ≤ 8.44, 0 ≤ nΩ ≤ 30.05 (87)

which meet the specifications of the desired actuator
failure model (85). The analytical stable estimation
error margins associated with the above SGMs, which
guarantee the stability constraint (60), are depicted in
Table 1. From Table 1, it is clear that if |ñΩ| ≤ 0.001
then the SGMs of the proposed feasible TSLQRC will
be equivalent to those of the MTSLQRC [14]. Note
that this stability requirement is guaranteed by using
the actuator failure estimator (82)-(83). Also shown
in Table 2 are the corresponding simulated stable esti-
mation error margins, which clearly indicate that the
stability constraints (43)-(45) are conservative ones.

Based on the above discussions, we conclude that the
proposed feasible TSLQRC serves as a practical imple-
mentation of the previously proposed TSLQRC and its
performance may not be degraded.

7 Conclusion

In this paper, we have introduced a feasible version
of the previously proposed TSLQRC in order to over-
come the inherently infeasible problem. A modified
unified gain margin constraint is proposed to facilitate
the discussions of the SGM and the PGM of the pro-
posed feasible TSLQRC. Analytical and simulated re-
sults showed that the SGM of the feasible TSLQRC is
almost the same as that of the MTSLQRC [14].
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sign for discrete-time systems,” Proceedings of the American
Control Conference, pp. 190–195, 1991.

[3] M. H. Shor and W. R. Perkins, “Reliable control
in the presence of sensor/actuator failures: A unified dis-
crete/continuous approach,” Proceedings of the 30th Con-
ference on Decision and Control, pp. 1601–1606, Dec. 1991.

[4] R. J. Veillette, J. V. Medanić, and W. R. Perkins,
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