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Abstract— This paper focuses on uncertain pendulum-like
systems subject to norm-bounded parameter uncertainty in the
forward path and a vector-valued periodic nonlinearity in the
feedback path, and addresses the robust gradient-like behavior
analysis and synthesis problems for such systems. Sufficient
conditions for robust gradient-like behavior are derived in
terms of linear matrix inequalities (LMIs) and a technique for
the estimation of the uncertainty bound is proposed by solving
a generalized eigenvalue minimization problem. The problem
of robust controller synthesis is concerned with designing a
feedback controller such that the resulting closed-loop system
is gradient-like for all admissible uncertainties. It is shown
that a solution to the gradient-like control problem for the
uncertain pendulum-like system can be obtained by solving a
gradient-like control problem for an uncertainty free system.
An example is presented to demonstrate the applicability and
validity of the proposed approach.

I. I NTRODUCTION

In recent years, frequency-domain methods have been ap-
plied successfully for investigation of stability of stationary
sets, see [1], [2], [3] and the references therein. Dynamic
systems with multiple equilibria deserve investigation for
theoretical development as well as practical applications. It
is an essential feature of many nonlinear control systems
to have multiple equilibria. Many important classes of
electric and electronic systems, such as Chua’s circuits
[4] and systems of phase synchronization (phase-locked
loops) [5] can be described by a class of dynamic systems
with finite or infinite equilibria set. In reference [1], a
class of pendulum-like feedback nonlinear systems with
multiple equilibria was considered and frequency-domain
inequalities conditions guaranteeing some global properties
of solutions such as Lagrange stability, dichotomy, Bakaev
stability and gradient-like behavior have been proposed.
While in [6], the concept of Lagrange stability defined
in [1] was extended to the case of controller synthesis
and conditions of Lagrange stabilizability for pendulum-
like systems have been derived based on theH∞ sub-
optimal control theory. Since pendulum-like systems always
have an unbounded set of equilibrium points, they can-
not be asymptotically stable. A natural analog of global
asymptotical stability for such a system is the gradient-like
behavior, i.e., the convergence property of all trajectories.
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This property corresponds to the locking-in phenomenon
in nonlinear oscillations and the locking-in problem is also
a fundamental problem in the control theory of oscillators
[7]. In this paper, the frequency- domain inequalities con-
dition of gradient-like behavior given by Leonov in [1]
is converted into an LMI-based criterion, which enables
us to take account of system uncertainties and derive
feedback controllers to ensure the gradient-like behavior for
the uncertain pendulum-like systems. The uncertain system
under consideration will be described by a state-space
model which contains parameter uncertainties in both the
state and input matrices. Based on the Kalman-Yakubovich-
Popov lemma connecting the frequency-domain inequality
and linear matrix inequality (LMIs), sufficient conditions
of robust gradient-like behavior for uncertain pendulum-
like systems are given in terms of LMIs. Meanwhile the
robust synthesis problem is addressed by designing a static
state feedback controller and a dynamic output feedback
controller such that the resulting closed-loop system is
gradient-like for all admissible uncertainties respectively. It
will be shown that the robust gradient-like control problem
can be converted into a gradient-like control problem for
an uncertainty free pendulum-like system. With this LMI
approach, the largest allowable magnitude of the admissible
uncertainty can also be explicitly computed by solving
a generalized eigenvalue minimization problem which is
essentially a convex optimization problem and numerically
efficient.

In this paper, we use the following notations:Rn×n is the
set of n×n real matrices. For a matrixA, AT denotes its
transpose,A∗ its complex conjugate transpose. The matrix
inequality A > B(A≥ B) means thatA and B are square
Hermitian matrices andA−B is positive (semi-)definite.
He is Hermit operator withHeA = A+AT .

II. PRELIMINARIES

Let us consider the ordinary differential equation

ẋ = f (t,x) (1)

where f :R+×Rn→Rn is continuous and locally Lipschitz
continuous in the second argument. Suppose that every
solution x(t, t0,x0) of (1) with t0 ≥ 0 and x0 ∈ Rn may be
continued to[t0,+∞). Let Γ := {∑m

j=1k jd j | k j ∈ Z,1≤ j ≤
m}, whered j ∈Rn are supposed to be linearly independent
(m≤ n).

Definition 2.1: We say that (1) is pendulum-like with
respect toΓ if for any solutionx(t, t0,x0) of (1) we have

x(t, t0,x0 +d) = x(t, t0,x0)+d



for all t ≥ t0 and alld ∈ Γ.
Definition 2.2: System (1) is said to be gradient-like if

every solution tends to a certain equilibrium point ast tends
to +∞.

In this paper we consider the pendulum-like systems of
the form

ẋ = Ax+Bϕ(z)
ż= Cx+Dϕ(z)

(2)

whereA∈ Rn×n,B∈ Rn×m,C ∈ Rm×n,D ∈ Rm×m. We sup-
pose that(A,B) is controllable,(A,C) is observable andϕ :
Rm→Rm is a vector valued function having the components
ϕi(z) = ϕi(zi) with z = (z1,z2, · · · ,zm)T . We assume that
every componentϕi :R→R is ∆i periodic, satisfies a local
Lipschitz condition and possesses a finite number of zeroes
on [0,∆i), and for each componentϕi there existsz0i such
that ϕi(z0i) 6= 0 and ϕ̇i(z0i) 6= 0. Let us introduce the vector
di = (0, · · · ,0,∆i ,0, · · · ,0) where ∆i is the i-th component
of di , then system (2) is pendulum-like with respect to
Γ = {∑m

j=1k jd j ,k j ∈ Z}. Assume that

νi =
∣∣∣∣
∫ ∆i

0
ϕi(z)dz

∣∣∣∣
/∫ ∆i

0
|ϕi(z)|dz, i ∈m

and denotesν = diag{ν1,ν2, · · · ,νm}. The transfer function
of the linear part of (2) from the inputϕ to the output−ż
is given by

K(s) = C(A−sI)−1B−D

Lemma 2.1 ([1]): Suppose K(s) is stable and there
exist diagonal matricesκ = diag{κ1,κ2, · · · ,κm}, δ =
diag{δ1,δ2, · · · ,δm} andε = diag{ε1,ε2, · · · ,εm} with δ > 0
andε > 0 satisfying the following conditions:

1◦ 1
2 He(κK(iω))−K(iω)εK∗(iω)−δ ≥ 0;

2◦ 4εδ > (κν)2.

then system (2) is gradient-like.
Definition 2.3: System (2) is said to be gradient-like in

the sense of Lemma 2.1 if the gradient-like property of (2)
can be guaranteed via Lemma 2.1.

Lemma 2.2 ([8]): Given A∈Rn×n,B∈Rn×n,M = MT ∈
R(n+m)×(n+m), with det( jωI −A) 6= 0 for ω ∈ R and (A,B)
controllable, the following two statements are equivalent:

1◦
[
( jωI −A)−1B

I

]∗
M

[
( jωI −A)−1B

I

]
≤ 0, ∀ω ∈

R∪{∞};
2◦ there exists a matrixP = PT ∈ Rn×n such that

M +
[
He(PA) PB

BTP 0

]
≤ 0

The corresponding equivalence for strict inequalities holds
even if (A,B) is not controllable.

Lemma 2.3:Let T1 = TT
1 ,T2,T3 be real matrices of ap-

propriate size, then the following statements are equivalent:

1◦ T1 +He(T2∆T3) < 0, ∀∆ : ∆T∆≤ λ 2I ;
2◦ There exists a positive numberη > 0 such that

T1 +ηλ 2T2TT
2 +

1
η

TT
3 T3 < 0

3◦ There exists a positive numberη > 0 such that
[
T1 +ηλ 2T2TT

2 TT
3

T3 −η I

]
< 0

4◦ There exists a positive numberη > 0 such that
[
T1 +ηλ 2TT

3 T3 T2
TT

2 −η I

]
< 0

Proof: The proof of the equivalence between1◦ and
2◦ can be found in [9]. The equivalence between2◦ and3◦
or 4◦ follows immediately from Schur complement.

III. ROBUST ANALYSIS

In this section, we derive the robust analysis results
for uncertain pendulum-like system to achieve gradient-
like behavior. First, we give a theorem which establishes
the connection between the frequency-domain conditions
of gradient-like behavior given in Lemma 2.1 and an LMI-
based criterion.

Theorem 3.1:SupposeA is Hurwitz, then system (2) is
gradient-like in the sense of Lemma 2.1 if and only if there
exist P= PT ≥ 0 and diagonal matricesκ , δ > 0 andε > 0
such that
[

CTεC+He(PA) CT(εD+ 1
2κ)+PB

(DTε + 1
2κ)C+BTP δ +DTεD+ 1

2 He(κD)

]
≤ 0 (3a)

[
2ε κν
νκ 2δ

]
> 0 (3b)

Proof: Let

M =
[

CTεC CT(εD+ 1
2κ)

(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD)

]

and using Lemma 2.2, we can prove the equivalence of
(3a) and condition1◦ of Lemma 2.1. Note that the upper
left corner of M is positive semidefinite, it follows from
(3a) and Hurwitz stability ofA that P≥ 0. (3b) is directly
derived from condition2◦ of Lemma 2.1.

Remark 3.1:The significance of this theorem is that, by
using Lemma 2.2 we convert the conditions of Lemma 2.1
into an equivalent LMI requirement. From this LMI condi-
tion, it is possible to extend the results to take account of the
parameter uncertainty in the linear part of the system and
derive feedback control law which renders the closed-up
system gradient-like by using the efficient numerical linear
matrix inequalities methods.
As an immediate consequence, we have a more convenient
criterion as stated in the following.

Corollary 3.1: System (2) is gradient-like in the sense
of Lemma 2.1 if and only if there existP = PT > 0 and
diagonal matricesκ, δ > 0 andε > 0 such that
[

CTεC+He(PA) CT(εD+ 1
2κ)+PB

(DTε + 1
2κ)C+BTP δ +DTεD+ 1

2 He(κD)

]
< 0 (4a)

[
2ε κν
νκ 2δ

]
> 0 (4b)



Let us now consider the class of uncertain pendulum-like
systems described by state-space models of the form

ẋ = (A+∆A)x+Bϕ(z)
ż= Cx+Dϕ(z)

(5)

where∆A stands for the parameter uncertainties which are
norm-bounded and of the form

∆A = HFE (6)

and H ∈ Rn×i , E ∈ Ri×m are known constant matrices and
F ∈ Ri×i is an unknown matrix function satisfying

FTF ≤ λ 2I (7)

with λ > 0 a given constant. From the definition ofν in
Lemma 2.1 we knowν ≤ σ I , whereσ < 1. In the following
sections, we assume that the system is controllable and
observable for all admissible uncertainties. Then we have
the following result:

Theorem 3.2:There exist diagonal matricesε > 0,δ >
0 and κ such that (4) holds for the uncertain system (5)
satisfying (6) if and only if there exists a scaling parameter
η > 0 such that (4) holds with

ε̂ =
[

ε 0
0 aI

]
, κ̂ =

[
κ 0
0 cI

]
, δ̂ =

[
δ 0
0 dI

]
(8)

for the system

ẋ = Âx+ B̂ϕ̃(z)

ż= Ĉx+ D̂ϕ̃(z)
(9)

where

Â = A+
λ√
a+1

HE, B̂ =
[
B

λ√
(a+1)η

H
]

Ĉ =
[

C√ηE

]
, D̂ =

[
D 0
0 bI

]

anda,b,c,d satisfying

a > 0

c2 >
4(1+a)
1−σ2

b =−c+2
2a

d =
b(2−c)−2

2

(10)

Proof: Inequality (4) holds for system (9) if there
exists a positive definite solutionP = PT > 0 to the linear
matrix inequality
[

ĈT ε̂Ĉ+ ÂTP+PÂ ĈT(ε̂D̂+ 1
2κ̂)+PB̂

(D̂T ε̂ + 1
2κ̂)Ĉ+ B̂TP δ̂ + D̂T ε̂D̂+ 1

2 He(κ̂D̂)

]
< 0 (11)

with [
2ε̂ κ̂ ν̃
ν̃ κ̂ 2δ̂

]
> 0 (12)

SubstitutingÂ, B̂,Ĉ, D̂, ε̂, δ̂ , κ̂ into (11) leads to



CTεC CT(εD+ 1
2κ) (ab+ c

2)
√ηET

(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD) 0
(ab+ c

2)
√ηE 0 (d+ab2 +bc)I


+




aηETE +HeP
(

A+ λ√
a+1

HE
)

PB λ√
(a+1)η

PH

BTP 0 0
λ√

(a+1)η
HTP 0 0


 < 0

(13)

From (10) we haveab+ c
2 = −1,d + ab2 + bc= −1, then

(13) becomes



CTεC CT(εD+ 1
2κ) −√ηET

(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD) 0
−√ηE 0 −I


+




aηETE +HeP
(

A+ λ√
a+1

HE
)

PB λ√
(a+1)η

PH

BTP 0 0
λ√

(a+1)η
HTP 0 0


 < 0

Using Schur Complement, the above inequality is equivalent
to [

CTεC CT(εD+ 1
2κ)

(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD)

]
+

[
He(PA)+ λ 2

(a+1)η PHHTP+(a+1)ηETE PB

BTP 0

]
< 0

(14)
By Lemma 2.3, (14) holds if and only if for anyF satisfying
(7)
[
CTεC+He(A+HFE)TP CT(εD+ 1

2κ)+PB
(DTε + 1

2κ)C+BTP δ +DTεD+ 1
2 He(κD)

]
< 0

By noting that (10) implies4ad > σ2c2, we can verify by
straightforward manipulations that (12) is equivalent to (4b).
Thus completes the proof.

Corollary 3.2: The uncertain system (5) is gradient-like
in the sense of Lemma 2.1 if and if there exists a scaling
parameterη > 0 such that the condition in Corollary 3.1 is
satisfied for uncertainty free system (9) with the diagonal
matrices of the form (8).

Remark 3.2:The above corollary show that the gradient-
like behavior of the uncertain pendulum-like system (5) with
the parameter uncertainty form (6) can be discussed by that
of an uncertainty free pendulum-like system. This result will
play a crucial role in solving the robust synthesis problem
in this paper.
Next we consider the uncertain pendulum-like system de-
scribed by

{
ẋ = (A+∆A)x+(B+∆B)ϕ(z)
ż= Cx+Dϕ(z)

(15)

where∆A and∆B have the form of
[
∆A ∆B

]
= HF

[
E1 E2

]
(16)



and H ∈ Rn×i , E1 ∈ R j×n, E2 ∈ R j×m are known constant
matrices andF ∈ Ri× j is an unknown matrix function
satisfying FTF ≤ λ 2I with λ > 0 a given constant. Then
we have the following result:

Theorem 3.3:Suppose there existP = PT > 0, diagonal
matricesκ ,δ > 0,ε > 0 and a positive numberη > 0 such
that the following linear matrix inequalities hold



CTεC CT(εD+ 1
2κ) 0 ηλET

1
(DTε + 1

2κ)C δ +DTεD+ 1
2 He(κD) 0 ηλET

2
0 0 −η I 0

ηλE1 ηλE2 0 −η I




+




He(PA) PB PH 0
BTP 0 0 0
HTP 0 0 0

0 0 0 0


 < 0

(17a)[
2ε κν
νκ 2δ

]
> 0 (17b)

then system (15) is gradient-like.
Proof: By Corollary 3.1, the uncertain system (15)

is gradient-like if there existP > 0 and diagonal matrices
κ,ε > 0,δ > 0 such that

[
CTεC CT(εD+ 1

2κ)
(DTε + 1

2κ)C δ +DTεD+ 1
2 He(κD)

]
+

[
HeP(A+HFE1) P(B+HFE2)
(B+HFE2)

TP 0

]
< 0

(18)

and (17b) hold. Denote

M =
[

CTεC+He(PA) PB+CT(εD+ 1
2κ)

BTP+(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD)

]

then (18) can be written in the form of

M +He

([
PH
0

]
F

[
E1 E2

])
< 0

According to Lemma 2.3, the above inequality holds if and
only if there exists a positive numberη > 0 such that

M +ηλ 2
[
ET

1
ET

2

][
E1 E2

]
+

1
η

[
PH
0

][
HTP 0

]
< 0

it can be easily proved that the above inequality is equivalent
to (17a). Thus the uncertain system (15) is gradient-like.

Remark 3.3:The above result show that assessing
gradient-like behavior of the uncertain pendulum-like sys-
tem (15) satisfying (16) can be carried out by solving two
LMIs which is essentially a convex optimization problem
and numerically efficient.

From the above results, we can also derive the following
gradient-like conditions based on the determination of the
largest allowable magnitude of the admissible uncertainty
which will not destabilize the system. The significance of
this result is that it provides a basis to evaluate the quality
of the design and presents an efficient way to access the
robustness of a feedback system in engineering practice.

Corollary 3.3: The uncertain pendulum-like system (15)
with respect to (16) forFTF ≤−ζ I is gradient-like, where
ζ is the global minimum of the following generalized
eigenvalue minimization problem with respect toP= PT >
0 and diagonal matricesε > 0, δ > 0, κ and a positive
numberη > 0:

minζ

s.t.

[
T1−ζηTT

3 T3 T2
TT

2 −η I

]
< 0

[
2ε κν
νκ 2δ

]
> 0

T1 =
[

CTεC+He(PA) PB+CT(εD+ 1
2κ)

BTP+(DTε + 1
2κ)C δ +DTεD+ 1

2 He(κD)

]

T2 =
[
PH
0

]
, T3 =

[
E1 E2

]

(19)

IV. ROBUST SYNTHESIS

In this section, we consider the robust synthesis problem
for pendulum-like systems with parameter uncertainty in
the linear part. It is concerned with designing a feedback
controller such that the resulting closed-loop system is
gradient-like for all admissible uncertainties. Let us first
consider the following uncertain pendulum-like system

ẋ = (A+∆A)x+B1ξ +(B2 +∆B)u
ż= Cx+D11ξ +D12u

y = x

ξ = ϕ(z)

(20)

wherex∈Rn is the state,u∈Rp is the control input,ξ ∈Rm

is the nonlinear input,̇z∈ Rm is the controlled output and
ϕ(·) : Rm→ Rm is a vector-valued nonlinear mapping.∆A
and ∆B represent the parameter uncertainty which belongs
to certain bounded compact set. First we will show that if
there exists a dynamic output feedback controller such that
system (20) is gradient-like in the sense of Lemma 2.1,
there also exists a static state feedback controller to realize
the same purpose.

Theorem 4.1:For uncertain pendulum-like system (20),
if there exists a dynamic output feedback controllerK(s)
such that the resulting closed-loop system is gradient-like
in the sense of Lemma 2.1 for all admissible uncertain-
ties, there must exists a static state feedback controller
that achieves the same result as well. Furthermore, if the
dynamic output feedback controller is

ẋk = Akxk +Bkx

u = Ckxk +Dkx
(21)

andP is the positive definite solution to (4) corresponding
to the closed-loop system of (20) with (21) , denote

Q = P−1 =
[
Q11 Q12
QT

12 Q22

]



then the state feedback controller is

K = Dk +CkQ
T
12Q

−1
11

Proof: Denote Â = A + ∆A and B̂ = B + ∆B. The
closed-loop system of (20) with (21) is

ẋc = Ãxc + B̃ξ
ż= C̃xc +D11ξ

(22)

wherexc = [xT xT
k ]T and

Ã =
[
Â+ B̂Dk B̂Ck

Bk Ak

]
, B̃ =

[
B1
0

]
,

C̃ =
[
C+D12Dk D12Ck

]

According to Corollary 3.1, system (22) is gradient-like if
exist a positive definite matrixP> 0 and diagonal matrices
κ,δ > 0,ε > 0 such that
[

C̃TεC̃+He(PÃ) PB̃+C̃T(εD11+ 1
2κ)

B̃TP+(DT
11ε + 1

2κ)C̃ δ +DT
11εD11+ 1

2 He(κD11)

]
< 0

(23a)[
2ε κν
νκ 2δ

]
> 0 (23b)

Multiplying diag(P−1, I) on the left and right of (23a) and
substitutingQ, Ã, B̃,C̃ we have

[
C

TεC+He[(Â+ B̂Dk)Q11+ B̂CkQ12]
BT

1 +(DT
11ε + 1

2κ)C

B1 +C
T(DT

11ε + 1
2κ)T

δ +DT
11εD11+ 1

2 He(κD11)

]
< 0

where
C = (C+D12Dk)Q11+D12CkQ

T
12

Multiplying diag(Q−1
11 , I) on the left and right of the above

inequality and denotingY = Q−1
11 we have

[
(C+D12K)Tε(C+D12K) (C+D12K)T(εD11+ 1

2κ)
(DT

11ε + 1
2κ)(C+D12K) δ +DT

11εD11+ 1
2 He(κD11)

]

+
[
(Â+ B̂K)TY +Y(Â+ B̂K) YB1

BT
1Y 0

]
< 0

Note that the above inequality with (23b) guarantees the
gradient-like behavior of the closed-loop system corre-
sponding to the system (20) with the state feedbacku= Kx

ẋ = (Â+ B̂K)x+B1ξ
ż= (C+D12K)x+D11ξ

Thus completes the theorem.
In view of Theorem 4.1, we develop the following

conditions for the existence of a static state feedbackK
such that system (20) satisfying (16) is gradient-like.

Theorem 4.2:Consider the uncertain system (20) satisfy-
ing (16), then there exists a state feedback controlleru= Kx
such that the resulting closed-loop system is gradient-like
in the sense of Lemma 2.1 for all admissible uncertainties

if and only if for someη > 0 this controller achieves the
same property for the scaled system

ẋ = Ãx+ B̃1ξ + B̃2u

ż= C̃x+ D̃11ξ + D̃12u

y = x

ξ = ϕ(z)

(24)

where

Ã = A+
λ√
a+1

HE1, B̃1 =
[
B1

λ√
(a+1)η

H
]
,

B̃2 = B2 +
λ√

(a+1)η
HE2, C̃ =

[
C√ηE1

]
,

D̃11 =
[
D11 0
0 bI

]
, D̃12 =

[
D12√ηE2

]
(25)

with the diagonal matrices such that (4) holds for the closed-
loop system having the forms of

ε̂ =
[

ε 0
0 aI

]
, κ̂ =

[
κ 0
0 cI

]
, δ̂ =

[
δ 0
0 dI

]

wherea,b,c,d satisfying (10).
In the following, we will consider the output feedback
controller synthesizing to achieve gradient-like behavior for
pendulum-like systems with parameter uncertainty. Let us
consider the following uncertain system

ẋ = (A+∆A)x+B1ξ +(B2 +∆B)u
ż= C1x+D11ξ +D12u

y = C2x+D21ξ
(26)

where∆A,∆B satisfying (16).
Theorem 4.3:There exists a linear dynamic output feed-

back controllerK(s) such that the system (26) is gradient-
like in the sense of Lemma 2.1 for all admissible uncertain-
ties if and only if for someη > 0 this controller achieve
the same property for the following scaled system

ẋ = Ãx+ B̃1ξ + B̃2u

ż= C̃1x+ D̃11ξ + D̃12u

y = C2x+[D21 0]ξ
(27)

where matrices̃A, B̃1, B̃2,C̃1, D̃11, D̃12 are given in (25) and
the diagonal matrices such that (4) holds for the closed-loop
system have the form of

ε̂ =
[

ε 0
0 aI

]
, κ̂ =

[
κ 0
0 cI

]
, δ̂ =

[
δ 0
0 dI

]

wherea,b,c,d satisfying (10).

V. NUMERICAL EXAMPLE

Consider an uncertain pendulum-like system with

A =
[−63 −20

32 0

]
,B =

[
8
0

]
,C =

[
2 −2

]
,D =−0.5



The uncertainties are given as

H =
[
1 0
0 1

]
, E1 =

[
1 0
0 −1

]
, E2 =

[
1
1

]

with FTF ≤ I and the nonlinear feedbackξ = sinz. Solving
the linear matrix inequalities in Theorem 3.3 by using LMI
Toolbox [10], we get

P =
[
944.4 531.4
531.4 1946.6

]
, ε = 1165.8, δ = 101.7725,

κ = 7100.3, η = 301.5821

Thus the system is gradient-like for all admissible un-
certainty. Solve the generalized eigenvalue problem corre-
sponding to (19), we get the largest allowable uncertainty
bound |ζ | = 1.5666. From Corollary 3.3, this result guar-
antees that the uncertain pendulum-like system will be ro-
bustly gradient-like for∀F,FTF ≤ 1.5666I . This estimation
can be verified by Figure 1 where the numerical experiment
results of the system with twenty randomly generated initial
value x0,φ0 and F(‖F‖ = 1.2516) are given. The result
presented in Figure 1 where all ofxi converge to0 and
φ converges to2kπ(k = −1,0,1) shows that the systems
perturbed by thoseF are all gradient-like. This observation
coincides with Theorem 3.3 and Corollary 3.3 and confirms
the robust gradient-like behavior of the system.
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Fig. 1. Simulation for‖F‖= 1.2516

VI. CONCLUSION

In this paper, the LMI conditions of robust gradient-like
behavior and the controller existence conditions guaran-
teeing the gradient-like behavior for a class of uncertain
nonlinear systems with multiple equilibria have been first
summarized. Using the Kalman-Yakubovich-Popov lemma
in terms of linear matrix inequality as the analytical
framework, early work performed by Leonov for nominal
pendulum-like systems is extended to take account of sys-
tem uncertainties and derive feedback control law which
renders the closed-up system gradient-like. Under this LMI-
based framework, other global properties of systems with

multiple equilibria can be investigated as well as synthesiz-
ing corresponding feedback controller to ensure those global
properties. These will be the subjects of further study.
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