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Abstract— The stability and robustness analysis of PD-plus-
feedforward controllers comprised of a nonlinear gain PD
feedback controller and a nominal manipulator dynamics
feedforward term is presented for the tracking control of rigid
robot manipulators. Exponential convergence and the uniform
ultimate boundedness of the tracking errors are established.
Simulation results are presented.

I. I NTRODUCTION

Control schemes for the trajectory tracking control of
rigid robot manipulators can be broadly classified as [1]:
PD-plus-feed-forward (PD+) control schemes, robust con-
trol designs and adaptive control methods. PD+ control
schemes are comprised of a feedback component for closed-
loop stability and a feedforward component for tracking
performance [2]. The feedback component is often a linear
constant gain PD controller and the feedforward component
may consist of complete manipulator dynamics, partial
dynamics, or it may be absent completely. For the case of
the feedforward term consisting of complete manipulator
dynamics, stability analysis of linear PD+ control schemes
has established the global asymptotic and exponential sta-
bility for the tracking control of rigid manipulators [2],
[3], [4], [5]. When the feedforward term does not contain
the complete manipulator dynamics, the origin of the state-
space is no longer guaranteed to be an equilibrium point of
the closed-loop system and the tracking errors do not vanish
as time increases. For these cases, stability and robustness
analysis of the linear PD+ controllers has established expo-
nential convergence and theuniform ultimate boundedness
of the errors for tracking control of manipulators[2].

Although the stability of closed-loop systems using the
PD+ control laws is assured, performance is governed by the
choice of controller gains. The constant gain PD+ controller
requires comparatively large initial actuator torques and
actuator size can become a limiting factor for controller
performance. To improve closed-system performance, inde-
pendent joint nonlinear gain PD controllers have been intro-
duced [6], [7], [8], [9]. These controllers have proportional
and derivative gains that are nonlinear functions of the joint
position and velocity errors. The benefits of using the non-
linear gain PD+ controllers have been demonstrated using
simulation and experimental studies on rigid manipulators
and global asymptotic stability results have been established
for position control with independent joint nonlinear gain

PD feedback controllers and a feedforward term containing
complete manipulator dynamics [7], [8], [9].

II. M ANIPULATOR DYNAMICS AND PROPERTIES

The dynamics of ann-joint rigid robot manipulator can
be described by the Euler-Lagrange equations [10]

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fdq̇ + fs(q̇) + ud = u (1)

where q ∈ Rn denotes joint coordinates,M(q) is the
symmetric positive definite inertia matrix,C(q, q̇)q̇ is the
vector of centripetal and Coriolis terms,g(q) is the vector
of gravity terms,Fd is the diagonal positive semi-definite
matrix of dynamic friction coefficients,fs(q̇) is the vector
of static friction terms,u is the vector of control inputs, and
ud is the vector of unknown but bounded disturbance terms.
The model (1) exhibits some important properties [1] which
can be exploited to facilitate controller design. For subse-
quent developments we use the following notation:λm(A)
and λM (A) denote the smallest and largest eigenvalues,
respectively, of a symmetric matrixA, ‖x‖ =

√
xT x

denotes the norm of a vectorx, and‖A‖ =
√

λM (AT A)
denotes the induced matrix norm of any real matrixA.
Property 1: Ṁ(q) = C(q, q̇) + CT (q, q̇) [10].
Property 2: There exists a positive constantkC such that

‖C(x,y)z‖ = ‖C(x, z)y‖ ≤ kC‖y‖‖z‖ ∀x,y, z (2)

The constantkC satisfies the following bound [11]:

kC ≥ n2

(
max
i,j,k,q

|cijk(q)|
)

(3)

wherecijk(q) is the (i, j, k)-th Christoffel symbol used in
the definition of matrixC(q, q̇).
Property 3: Since the inertia matrixM(q) is symmetric
positive definite and bounded for anyq, there exist positive
constantsm1 andm2 such that

m1‖x‖2 ≤ xT M(q)x ≤ m2‖x‖2, ∀q,x ∈ Rn (4)

wherem1 = inf
q∈Rn

λm(M(q)), m2 = sup
q∈Rn

λM (M(q)).

For the following control design it is assumed that the
friction effects, disturbance terms, and joint angle velocities
are bounded as follows:

0 ≤ kfd1 = λm(Fd) ≤ λM (Fd) = kfd2 (5)

kfs = sup
q̇∈Rn

‖fs(q̇)‖ kud = sup
t∈R+

‖ud(t)‖ (6)

kqd1 = sup
t∈R+

‖q̇d(t)‖, kqd2 = sup
t∈R+

‖q̈d(t)‖. (7)



The Control Problem: Given the desired joint angle trajec-
tory qd(t) with finite first and second derivativesq̇d(t) and
q̈d(t), design a control law which assures that for any initial
conditions and any admissible uncertainties, the position
and velocity trajectoriesq(t) and q̇(t) exponentially track
the reference trajectoriesqd(t) andq̇d(t) with some desired
rate of convergence and within some desired degree of
accuracy. The joint angles and rates are assumed available
for feedback.

III. N ONLINEAR CONTROLLERS FORTRAJECTORY

TRACKING OF RIGID MANIPULATORS

The goal of the tracking control problem for robotic
manipulators is to design a control lawu(q, q̇,qd, q̇d, q̈d)
so that(q, q̇) tracks(qd, q̇d) in some sense. To accomplish
this, the following general control structure is considered:

u = ufb(q, q̇,qd, q̇d) + uff (q, q̇,qd, q̇d, q̈d) (8)

whereufb is the feedback portion anduff is the feedfor-
ward term. Here we investigate the stability robustness of
a class of nonlinear controllers with the feedforward term:

uff = Mn(q)q̈d + Cn(q, q̇)q̇d + gn(q) (9)

whereMn(q), Cn(q, q̇) andgn(q) represent the nominal
or estimated values forM(q), C(q, q̇) and g(q), respec-
tively, and are subject to the following bounds:

δM = sup
q∈Rn

‖M(q)−Mn(q)‖ (10)

δC = sup
q∈Rn,‖q̇d‖≤kqd1

‖C(q, q̇d)−Cn(q, q̇d)‖ (11)

δg = sup
q∈Rn

‖g(q)− gn(q)‖ (12)

Even though the subsequent stability and robustness anal-
ysis requires the existence of the above bounds, onlyδC

needs to be known explicitly anda priori to ensure stability
and robustness. In the case of manipulators with a known
range of uncertainty only in the inertia parameters, the
bound δC can be determined using (2) and (3). In many
applications an unknown payload is the main source of
uncertainty thus leaving a single uncertain inertia parameter
affecting the computation ofδC .

The general structure ofufb is motivated by the fact
that rigid manipulators belong to a class of mechanical
systems that can be stabilized by PD-type control laws. The
proposed feedback term is a general affine function of the
tracking errors as per:

ufb = Kp(q, q̇,qd, q̇d)q̃ + Kd(q, q̇,qd, q̇d) ˙̃q (13)

whereq̃ = qd−q and ˙̃q = q̇d−q̇ are the joint position and
velocity errors, andKp(q, q̇,qd, q̇d) andKd(q, q̇,qd, q̇d)
are function matrices selected to satisfy stability and per-
formance requirements. In their simplest form,Kp andKd

are diagonal positive definite constant matrices yielding the
most common independent joint linear PD control law. To
improve certain performance characteristics or satisfy con-
straints on the control torques the class of representations

for ufb has been extended to nonlinear gain PD controllers
[7], [8], [9].

Here a more general structure of the gain matrices is
considered for further extending the class of representations
of ufb for trajectory tracking control ofn-joint rigid robotic
manipulators with nonlinear and coupled dynamics as given
by equation (1). The nonlinear controllers of this class are
defined according to

ufb = Kp(q̃)q̃ + Kd(q, q̇,qd, q̇d) ˙̃q (14)

where the derivative gain matrixKd(q, q̇,qd, q̇d) is as-
sumed symmetric positive definite and bounded for all
q, q̇,qd, q̇d. In the following, we denote the symmetric
positive definite derivative gain matrix asKd(q̃, ˙̃q), but
the subsequent developments equally hold for the more
general case,Kd(q, q̇,qd, q̇d). To ensure global asymptotic
stability of nonlinear gain PD controllers for manipulator
position control, previous studies [7], [8], [9] have con-
sidered positive definite diagonal proportional gain matrix
Kp(q̃) with kpii(q̃i) > 0, i = 1 . . . n as its diagonal
elements. Here, the proportional gain matrixKp(q̃) is
assumed symmetric with the structure:

Kp(q̃) =


kp11(q̃1) kp12 · · · kp1n

kp21 kp22(q̃2) · · · kp2n

...
...

...
...

kpn1 kpn2 · · · kpnn(q̃n)

 (15)

The diagonal elements ofKp(q̃) have an upper bound and
a positive lower boundi.e. they satisfy

kM
pii ≥ kpii(q̃i) ≥ km

pii > 0, ∀q̃i ∈ R, (16)

for i = 1, . . . , n. Define constant symmetric positive defi-
nite matricesKm

p andKM
p as

Km
p = Kp(q̃)− diag[Kp(q̃)] + diag(km

p11, . . . , k
m
pnn) (17)

and

KM
p = Kp(q̃)−diag[Kp(q̃)]+diag(kM

p11, . . . , k
M
pnn) (18)

Given kM
pii > km

pii > 0, i = 1, · · · , n, one can always
constructKm

p and KM
p as defined in (17) and (18). For

example,Km
p andKM

p can be defined asdiagonally dom-
inant symmetric positive definite matrices satisfying

kM
pii > km

pii >
n∑

j=1,j 6=i

|kpij |

with possibly non-zero off-diagonal elementskpij .
The following properties of the above gain matrices are

used for the stability analysis of nonlinear controllers.
Property 4: Since the proportional gain matrixKp(q̃) and
the constant matricesKm

p and KM
p are symmetric and

positive definite, there exist positive constantskp1 andkp2

such that∀q̃,x ∈ Rn,

kp1‖x‖2 ≤ xT Km
p x ≤ xT Kp(q̃)x ≤ xT KM

p x ≤ kp2‖x‖2



wherekp1 = λm(Km
p ) andkp2 = λM (KM

p ).
Property 5: Since the derivative gain matrixKd(q̃, ˙̃q) is
symmetric and positive definite, there exist positive con-
stantskd1 andkd2 such that for all̃q, ˙̃q,x ∈ Rn,

kd1‖x‖2 ≤ xT Kd(q̃, ˙̃q)x ≤ kd2‖x‖2

wherekd1 = inf λm(Kd(q̃, ˙̃q)), kd2 = sup λM (Kd(q̃, ˙̃q)).

IV. STABILITY AND ROBUSTNESSANALYSIS

Here we present the results concerning the stability of
the closed-loop system when the controller (14) is used for
trajectory tracking with the dynamics described by (1). The
closed-loop system of (1), (9) and (14) is given as

M(q)¨̃q+C(q, q̇) ˙̃q+Kp(q̃)q̃+ [Kd(q̃, ˙̃q) +Fd] ˙̃q = ∆u
(19)

where

∆u = [M(q)−Mn(q)]q̈d + [C(q, q̇)−Cn(q, q̇)]q̇d

+ [g(q)− gn(q)] + Fdq̇d + fs(q̇) + ud (20)

and (19) is anon-autonomousdifferential equation since
qd and q̇d are time-varying trajectories. Before stating the
stability results, we present the following lemmas.
Lemma 1: Consider a dynamical system

ẋi = fi(x1, . . . ,xm, t) (21)

wherexi ∈ Rni , for i = 1, . . . ,m and t ≥ 0. Let fi be
locally Lipschitz with respect tox1, . . . ,xm uniformly in t
on bounded intervals and continuous int for t ≥ 0. Suppose
a scalar functionV (x, t) : RN × R+ → R+ is given such
that

V (x, t) ≥ ci‖xi‖2 (22)

wherexT = [xT
1 , . . . ,xT

m], N = n1 + . . . + nm, ci > 0 for
i = 1, . . . ,m, and along the solution trajectories of (21)

V̇ (x, t) ≤ −
∑
i∈I1

γi −
∑

j∈I2i

γij‖xj‖rij

 ‖xi‖2 + ε

whereγi, γij , rij > 0, ε ≥ 0 and I2i ⊆ I1 ⊆ {1, . . . ,m}.
If ∀i ∈ I1 (with reference to (22))

γi >
∑

j∈I2i

γij

(
V0

cj

)rij/2

(23)

whereV0 = V (x1(0), . . . ,xm(0), 0), then

∀βi ∈

0, γi −
∑

j∈I2i

γij

(
V0

cj

)rij/2
 ,

the following inequality holds

V̇ (x, t) ≤ −
∑
i∈I1

βi‖xi‖2 + ε (24)

for ‖x‖ > R whereR =
√

ε/(minβi).
Proof: The proof follows from Lemma 2.1 in [5].

Definition 1 Uniform Ultimate Boundedness (u.u.b.) [12]:
A solution x(t) : [t0,∞) → RN of (21) with initial
condition x(t0) = x0 is said to beuniformly ultimately
bounded if there exist positive constantsb and c, and
for every σ ∈ (0, c) there is a positive constantT (σ)
such that‖x0‖ < σ implies that ‖x(t)‖ ≤ b for all
t ≥ t0 + T (σ). Here the constantb is referred to as the
ultimate bound. Uniform ultimate boundedness says that the
solution trajectory of the system (21) beginning atx0 at time
t0 will ultimately enter and remain within the closed ball
B(b). If B(b) is a small region about the equilibrium, then
u.u.b. is a practical notion of stability, which is also called
practical stability. The next lemma contains conditions that
guarantee the u.u.b. and the global exponential convergence
(to a closed ball) of the solution trajectories of (21) [13].
Lemma 2: Suppose there exists a continuously differen-
tiable scalar functionV (x, t) : RN × R+ → R+ with the
following properties: (i) there are positive constants cand
c̄ such that∀x ∈ RN and t ∈ R+,

c‖x‖2 ≤ V (x, t) ≤ c̄‖x‖2,

(ii) there are constantsµ > 0 andε ≥ 0 such that along the
solution trajectories of (21)

V̇ (x, t) ≤ −µV (x, t) + ε (25)

for all x s.t. µV (x, t) > ε and t ∈ R+. Then the solution
trajectories of (21) are uniformly ultimately bounded and
globally exponentially convergent to the closed ballB(r)
of radius r =

√
ε/(µc). If in addition, ε = 0, then the

system (21) is globally exponentially stable about its origin
[13].

In the following, sufficient conditions are given for the
u.u.b. and exponential convergence of the solutionq̄ =
[q̃, ˙̃q]T of the closed-loop system (19).
Theorem 1: Consider the robot model in (1) together with
the nonlinear gain PD+ controller in (14). Let the derivative
gain matrixKd(q̃, ˙̃q) be symmetric positive definite for all
q̃, ˙̃q ∈ Rn with kd1 > δC , and the proportional gain matrix
Kp(q̃) be symmetric and has the structure given by (15)
with diagonal elements satisfying (16). If the symmetric
matricesKm

p and KM
p as described in (17) and (18) are

positive definite, then the solution̄q of the closed-loop sys-
tem (19) is uniformly ultimately bounded and exponentially
convergent to the closed ballB(r) defined below.
Proof: Consider the following scalar function:

V (q̃, ˙̃q) =
1
2

˙̃qT M(q) ˙̃q +
∫ q̃

0

zT Kp(z)dz + αq̃T M(q) ˙̃q

(26)
where the integral term can written as

n∑
i=1

(∫ q̃i

0

zikpii(zi)dzi

)
+

1
2

n∑
i=1

n∑
j=1,j 6=i

kpij q̃iq̃j

andα is a sufficiently small positive constant such that

min
{

kp1

m2
,
m1

m2
,
2(kd1 + kfd1 − δC)
3ωkC + 2m2 + ρk∗

}
> α > 0 (27)



wherek∗ = kd2 + kCkqd1 + kfd2 + δC and constantρ is

ρ >
kd2 + kCkqd1 + kfd2 + δC

2kp1
> 0 (28)

and constantω > 0 which will be defined later.
The first term ofV (q̃, ˙̃q) is a positive definite function

with respect tȯ̃q becauseM(q) is a positive definite matrix.
To show that the integral term in (26) is a positive definite
function, rewrite it as∫ q̃

0

zT Kp(z)dz =
n∑

i=1

(∫ q̃i

0

zikpii(zi)dzi

)

+
1
2
q̃T Km

p q̃− 1
2

n∑
i=1

km
piiq̃

2
i (29)

=
n∑

i=1

(∫ q̃i

0

zikpii(zi)dzi −
1
2
km

piiq̃
2
i

)
+

1
2
q̃T Km

p q̃

From (16), we have fori = 1, . . . , n∫ q̃i

0

zikpii(zi)dzi ≥
∫ q̃i

0

zik
m
piidzi =

1
2
km

piiq̃
2
i (30)

which yields using, (29) and Property 4,∫ q̃

0

zT Kp(z)dz ≥
1
2
q̃T Km

p q̃ ≥ 1
2
kp1‖q̃‖2 (31)

Therefore, the lower-bound of (26) can be given as

V (q̃, ˙̃q) ≥ 1
2
m1‖ ˙̃q‖2 +

1
2
kp1‖q̃‖2 + αq̃T M(q) ˙̃q

Now, the cross term in (26) can be upper-bounded as

|αq̃T M(q) ˙̃q| ≤ αm2‖q̃‖‖ ˙̃q‖ ≤ 1
2
αm2(‖q̃‖2 + ‖ ˙̃q‖2)

(32)
Hence, we haveαq̃T M(q) ˙̃q ≥ −1

2αm2(‖q̃‖2 + ‖ ˙̃q‖2).
Therefore, we can lower-boundV (q̃, ˙̃q) as

V (q̃, ˙̃q) ≥ 1
2
m1‖ ˙̃q‖2 +

1
2
kp1‖q̃‖2 −

1
2
αm2(‖q̃‖2 + ‖ ˙̃q‖2)

≥ c1‖q̃‖2 + c2‖ ˙̃q‖2 (33)

wherec1 =
1
2
(kp1−αm2) andc2 =

1
2
(m1−αm2) (34)

Sinceα satisfies (27) implyingmin{c1, c2} > 0, we have
ensured thatV (q̃, ˙̃q) in (26) is globally positive definite
and radially unbounded and is zero at the equilibrium point
(q̃ = 0, ˙̃q = 0). Therefore, the scalar functionV (q̃, ˙̃q) in
(26) is a Lyapunov function candidate. To show that the
scalar function (26) is decresent, rewrite the integral term
as ∫ q̃

0

zT Kp(z)dz =
n∑

i=1

(∫ q̃i

0

zikpii(zi)dzi

)

+
1
2
q̃T KM

p q̃− 1
2

n∑
i=1

kM
piiq̃

2
i (35)

=
n∑

i=1

(∫ q̃i

0

zikpii(zi)dzi −
1
2
kM

piiq̃
2
i

)
+

1
2
q̃T KM

p q̃

From (16), we have fori = 1, . . . , n∫ q̃i

0

zikpii(zi)dzi ≤
∫ q̃i

0

zik
M
piidzi =

1
2
kM

piiq̃
2
i (36)

which yields using, (36) and Property 4,∫ q̃

0

zT Kp(z)dz ≤
1
2
q̃T KM

p q̃ ≤ 1
2
kp2‖q̃‖2. (37)

Therefore, using (32) with Properties 3 and 4, we can place
an upper-bound onV (q̃, ˙̃q) as

V (q̃, ˙̃q) ≤ 1
2
m2‖ ˙̃q‖2 +

1
2
αm2(‖q̃‖2 + ‖ ˙̃q‖2) +

1
2
kp2‖q̃‖2

≤ c3‖q̃‖2 + c4‖ ˙̃q‖2 (38)

wherec3 =
1
2
(αm2 + kp2) andc4 =

1
2
(α + 1)m2 (39)

Thus the candidate Lyapunov functionV (q̃, ˙̃q) in (26) is a
globally positive definite, radially unbounded and decresent
function satisfying the inequalities:

c(‖q̃‖2 + ‖ ˙̃q‖2) ≤ V (q̃, ˙̃q) ≤ c̄(‖q̃‖2 + ‖ ˙̃q‖2) (40)

where c= min{c1, c2} > 0 and c̄ = max{c3, c4} > 0.
From Property 1, the time derivative ofV (q̃, ˙̃q) along

the solution trajectories of (19) is given by

V̇ (q̃, ˙̃q) = − ˙̃qT [Kd(q̃, ˙̃q) + Fd] ˙̃q + α ˙̃qTM(q) ˙̃q
+ αq̃T C(q, q̇)T ˙̃q− αq̃T Kp(q̃)q̃ (41)

− αq̃T [Kd(q̃, ˙̃q) + Fd] ˙̃q + ( ˙̃qT + αq̃T )∆u

Now, we establish upper bounds on the following terms.
Using Property 2, we have

αq̃T C(q, q̇)T ˙̃q = αq̃T C(q, q̇d − ˙̃q)T ˙̃q
≤ αkC‖q̇d − ˙̃q‖‖q̃‖‖ ˙̃q‖ (42)

≤ αkCkqd1‖q̃‖‖ ˙̃q‖+ αkC‖q̃‖‖ ˙̃q‖2

and sinceM(q), Kp(q̃) andKd(q̃, ˙̃q) are positive definite
matrices, using Properties 3-5, we obtain

α ˙̃qT M(q) ˙̃q ≤ αm2‖ ˙̃q‖2 (43)

− ˙̃qT [Kd(q̃, ˙̃q) + Fd] ˙̃q ≤ −(kd1 + kfd1)‖ ˙̃q‖2 (44)

−αq̃T Kp(q̃)q̃ ≤ −αkp1‖q̃‖2 (45)

| − αq̃T [Kd(q̃, ˙̃q) + Fd] ˙̃q| ≤ α(kd2 + kfd2)‖q̃‖‖ ˙̃q‖ (46)

From Property 2 and the bounds (5)-(7), (10)-(12), we have

‖[C(q, q̇)−Cn(q, q̇)]q̇d‖ = ‖[C(q, q̇d)−Cn(q, q̇d)]q̇‖
≤ δC‖q̇d − ˙̃q‖ (47)

‖∆u‖ ≤ δMkqd2 + δC(kqd1 + ‖ ˙̃q‖) + δg

+ kfd2kqd1 + kfs + kud

= η1 + η2‖ ˙̃q‖
(48)

whereη1 = δMkqd2 + (δC + kfd2)kqd1 + δg + kfs + kud

andη2 = δC , and

( ˙̃qT + αq̃T )∆u ≤ ‖ ˙̃q‖‖∆u‖+ α‖q̃‖‖∆u‖
≤ αη1‖q̃‖+ η1‖ ˙̃q‖
+ αη2‖q̃‖‖ ˙̃q‖+ η2‖ ˙̃q‖2

(49)



It now follows from the inequalities (42)-(46) and (49) that
the time derivative ofV (q̃, ˙̃q) becomes

V̇ (q̃, ˙̃q) ≤ −(kd1 + kfd1 − αm2 − η2)‖ ˙̃q‖2 − αkp1‖q̃‖2

+ α(kd2 + kfd2 + kCkqd1 + η2)‖q̃‖‖ ˙̃q‖
+ η1‖ ˙̃q‖+ αη1‖q̃‖+ αkC‖q̃‖‖ ˙̃q‖2 (50)

which can be rewritten as

V̇ (q̃, ˙̃q) ≤ −(kd1 + kfd1 − a)‖ ˙̃q‖2 − αkp1‖q̃‖2

+ αb‖q̃‖‖ ˙̃q‖+ η1‖ ˙̃q‖+ αη1‖q̃‖+ αkC‖q̃‖‖ ˙̃q‖2

≤ −(kd1 + kfd1 − a)‖ ˙̃q‖2 − αkp1‖q̃‖2

+
αb

2
(
‖q̃‖2

ρ
+ ρ‖ ˙̃q‖2)

+ η1‖ ˙̃q‖+ αη1‖q̃‖+ αkC‖q̃‖‖ ˙̃q‖2

≤ −ν1‖ ˙̃q‖2 − αν2‖q̃‖2

+ η1‖ ˙̃q‖+ αη1‖q̃‖+ αkC‖q̃‖‖ ˙̃q‖2

where a = αm2 + η2, b = kd2 + kCkqd1 + kfd2 + η2,
ν1 = kd1 + kfd1 − a − 1

2αρb, ν2 = kp1 − b
2ρ , and ρ is

a positive constant satisfying (28). Since the conditions in
(27) and (28) imply thatν1, ν2 > 0, now by completing the
squares, the following inequalities hold:

η1‖ ˙̃q‖ ≤
(

η1√
ν1

)2

+
(√

ν1

2

)2

‖ ˙̃q‖2 (51)

η1‖q̃‖ ≤
(

η1√
ν2

)2

+
(√

ν2

2

)2

‖q̃‖2 (52)

and using the above inequalities, the upper bound of
V̇ (q̃, ˙̃q) can be written as

V̇ (q̃, ˙̃q) ≤ −3
4
ν1‖ ˙̃q‖2 − 3

4
αν2‖q̃‖2 + αkC‖q̃‖‖ ˙̃q‖2

+
η2
1

ν1
+

αη2
1

ν2
(53)

= −γ1‖q̃‖2 − γ2‖ ˙̃q‖2 + γ21‖q̃‖‖ ˙̃q‖2 + ε

whereγ1 = 3αν2/4, γ2 = 3ν1/4, andγ21 = αkC (54)

ε =
η2
1

ν1
+

αη2
1

ν2
(55)

Define ω in (27) as ω = (V0/c1)1/2 > 0 where V0 =
V (q̃, ˙̃q)|t=0 > 0 for positive definiteV (q̃, ˙̃q) and c1 > 0
is given by (34). Sinceα satisfies (27), we have

γ2 > γ21ω (56)

and hence, using Lemma 1 forβ2 ∈ (0, γ2 − γ21ω) with
‖q̄‖ >

√
ε/ min{γ1, β2}, the following inequality holds

V̇ (q̃, ˙̃q) ≤ −γ1‖q̃‖2 − β2‖ ˙̃q‖2 + ε

≤ −min{γ1, β2}(‖q̃‖2 + ‖ ˙̃q‖2) + ε

≤ −µV (q̃, ˙̃q) + ε

(57)

whereµ = min{γ1, β2}/c̄. Now using Lemma 2, we can
conclude that the solution̄q of the closed-loop system
(19) is uniformly ultimately bounded and exponentially

convergent to the closed ballB(r) where r =
√

ε/(µc)
(c̄ and care given by (40)).
Remark 1: Since the lower-bound ofα is zero, (56) can be
satisfied for any initial conditionsV0 by choosing arbitrarily
small α. Therefore, the domain of convergence is in fact
the entire state space and the solutionq̄ of the closed-
loop system (19) is globally exponentially convergent to
the closed ballB(r) though without a uniform rate.

V. SIMULATION RESULTS

Results are presented to illustrate the exponential con-
vergence and the u.u.b. of tracking errors when using the
nonlinear PD+ controller for the tracking control of a two-
link rigid manipulator. Results are also presented to allow
comparison, in terms of tracking error convergence rates and
ultimate bounds, between the performance of the nonlinear
PD+ controller and the linear PD+ controller.

The planar elbow manipulator used in the simulation is
assumed to be actuated by two direct drive motors: motor
1 is attached to the ground and motor 2 is attached to link
1 and has a mass ofma2 = 0.5kg. The links have lengths
l1 = l2 = 1m, massesm1 = m2 = 1kg concentrated at
their mid-points (lc1 = lc2 = 0.5m), and gravity is taken as
9.81m/s2. The manipulator carries a payload ofml = 1kg
located at the distal end of link 2. The moments of inertia
of both links are taken to beI1 = I2 = 0.0833kg.m2.
For the purpose of illustration, the manipulator dynamics
without friction and disturbance terms are used with the
only uncertainty due to payload varying in the range of
[0− 1]kg.

The desired trajectories of the joints are specified as

qd1 = 0.25π + 0.5(1− cos(0.5πt))
qd2 = 0.5π + 0.25(1− cos(πt))

(58)

These trajectories were tracked using two controllers whose
feedforward component is given by (9) with the nominal
dynamic termsMn(q), Cn(q, q̇), andgn(q) are computed
using a nominal payload ofml = 0.5kg which is different
from the actual payload of 1kg used for this simulation.
The feedback components of these controllers areufb−pd =
Kpq̃ + Kd

˙̃q for the linear PD controller, and

ufb−npd = Kp(q̃)q̃ + Kd(q̃, ˙̃q) ˙̃q (59)

for the nonlinear PD controller.
As stated in the previous section, theonly requirements

for ensuring thestability of the above controllers are
positive definite proportional and derivative gain matrices
chosen such thatkd1 > δC . From (58), the bound on
the joint velocities is given as‖q̇d‖ ≤ 1.1 rad/sec. Using
the above numerical values for manipulator parameters and
Property 2, the positive constantkC calculated based on
C(q, q̇d) − Cn(q, q̇d) is given askC = 2. Therefore,
we obtain the boundδC using Property 2 and (11) as
δC = 2.2. Now, theperformanceof the feedback controllers
are dictated by the type of nonlinear gain functions and the
actual parameters chosen for entries of the gain matrices.



In this section, the feedback controllers are designed using
a numerical optimization technique[14] and the Lyapunov
function based conditions are used only as stabilitycon-
straints for the optimization problem.

Using this optimization process, the following diagonal
gain matrices were obtained

Kp = diag[197.06, 41.94] and Kd = diag[70.11, 14.6]

for ufb−pd, and Kp(q̃) = diag
[

194.2
0.2+|q̃1| ,

74.3
0.2+|q̃2|

]
and

Kd(q̃, ˙̃q) chosen as

diag

[
74.4

(0.5 + |q̃1|)(1 + 0.07| ˙̃q1|)
,

7.6
(0.1 + |q̃2|)(1 + 0.07| ˙̃q2|)

]
for ufb−npd. For the range of values considered for the
tracking and velocity errors in the simulation, namely
for |q̃i| ≤ 1.6 rad and | ˙̃qi| ≤ 10 rad/sec, it is readily
verified that the diagonal entries are positive andkd1 > δC

for the selected gain matrices thus satisfying the stability
requirements. The parameter values inufb−npd andufb−pd

were selected to achieve minimal tracking errors subject to
maximum joint torquesumax

1 = 200N.m, umax
2 = 80N.m,

and the above stated stability constraints. The particular
choice of nonlinear gain functions in (59) is motivated by
the task of tracking the desired trajectories (58) quickly
and accurately subject to the maximum torque and stability
constraints.

The results of the simulation are shown in Fig. 1.
Fig. 1(a) shows the exponential convergence of tracking
errors for both controllers and demonstrates that improved
convergence is obtained using the nonlinear PD+ controller
while satisfying actuator limits (Fig. 1(d)). Fig. 1(b) & (c)
illustrate the improved ultimate bounds obtained for the
tracking errors of joint 1 & 2 using nonlinear gain PD+
controller. The improvements in the closed-system perfor-
mance using nonlinear gain PD controllers are attributed to
their exploitation of nonlinear gain variations (that depend
on q̃ and ˙̃q) as depicted by the difference in torque profiles
in Fig. 1(d).

VI. CONCLUSIONS

The tracking control of rigid manipulators using a gen-
eral nonlinear PD+ controller with incomplete feedforward
dynamics has been shown to have exponential convergence
and uniform ultimate boundedness of the tracking errors
and sufficient conditions have been established using a
modification to the energy Lyapunov function and a lemma
for addressing higher order terms in Lyapunov function
derivatives. Simulation results illustrate the stability and
robustness analysis and demonstrate the potential for per-
formance improvement with this class of nonlinear PD+
controllers.
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