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Abstract— In this paper, two design methods for ”Anti-
Windup”(AW)-Extensions based on bode plots will be pro-
posed. Most control engineers are familiar with the frequency
response characteristics. Therefore the methods can easily
be applied. For applications with a large operating area, a
new adaptive structure of the AW-Extension is suggested.
The influence of measurement noise on control loops with
a constrained control signal will also be investigated using
frequency response characteristics.

I. INTRODUCTION

Nonlinearities, caused by constraints in the actuators are
often found in control loops and lead to a remarkable
deterioration of the control performance - the so-called
”Windup”-effect. In history, a lot of schemes for control
design to deal with this effect have been developed, which
are often based on heuristic rules or are limited to a specific
class of controllers (for instance PI-/PID-Controllers). Gen-
eral approaches are proposed in [1], [2]. All these schemes
are termed as ”Anti-Windup”(AW)-schemes.
In this work, the design of an extension for the linear
designed controller (AW-Extension), based on the idea in
[5] and [6], is proposed. The design procedure is based on
a simple scheme, which uses the bode plot of the linear
part of a nonlinear standard control loop. This can then
be easily applied to digital control loops after a bilinear
transformation. The stability properties of the closed loop
system with the extended controller can be affected by
the choice of the AW-Extension. Another advantage of the
proposed scheme is the possibility of conversion from the
extended controller in other popular AW-schemes, like the
”Conditioning technique” (CT) [8] or the ”Observer based
Anti-Windup” [1], and vice versa. Stability and performance
properties of these schemes can be analyzed and compared
in that way.
In order to cover a large operating range, the AW-Extension
includes an adaptive tuning parameter. This new struc-
ture leads to a better performance in case of large set-
point changes in control applications compared to an AW-
Extension with fixed parameters.
The influence of measurement noise on control performance
of the control loop with an extended AW-Controller is usu-
ally neglected and not further investigated by most authors.
It will be shown in this paper that measurement noise can
have a significant influence on the control behaviour under
certain conditions.
The design of the AW-Extension will be explained in II.
The above mentioned adaptive approach will be presented
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Fig. 1. Controller with AW-Extension

in III. A discussion about the influence of measurement
noise follows in IV.

II. DESIGN OF THE AW-EXTENSION

A. The extended compensator structure

Based on the work of Chan and Hui [6], [5] the difference
between the unconstrained and constrained control signals
will be interpreted as a nonlinear ”disturbance” D. In
order to reduce the effects of saturation, a structure similar
to a feedforward control is proposed. Fig. 1 shows the
structure of the control loop where W , L and N denote
the setpoint, a load disturbance and measurement noise
respectively. According to Fig. 1 the system output results
in (the Argument z will be neglected):

Y =
B

A ·R+B ·S · (T ·W −R ·L−S ·N)
︸ ︷︷ ︸

Ylin

− (GAW +R) ·B
A ·R+B ·S

︸ ︷︷ ︸

HD

·D

(1)
The design task is to find a suitable transfer function GAW ,
which reduces the ”disturbance”-effects to an acceptable
minimum. The term HD in (1) represents the transfer
function from the fictitious ”disturbance” D to the system
output Y and can be varied by the choice of the poles and
zeros of GAW . At first sight, one should attempt to make
HD in (1) sufficiently fast in order to avoid the influence
of D proceeding for a long time after desaturation. But it
must not be made too fast because of possible saturation
of the control signal in the opposite direction. So the
design of GAW becomes a pole-zero-placement problem.
Unfortunately, a suitable pole and zero allocation depends
on the definite bounds of the control signal and stability
problems can occur under specific conditions (see also [2]).
In the following a second, more systematic way of finding
GAW will be described in more details. It is based on the
describing function method for stability analysis.
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Fig. 2. Resulting nonlinear standard control loop

B. Use of frequency response characteristics

The structure in Fig. 1 can be easily transformed into
a nonlinear standard control loop as shown in Fig. 2. The
unconstrained control signal can be expressed as follows:

U =
1

R+GAW
· (T ·W −S ·Gs ·L−S ·N)

︸ ︷︷ ︸

HW ,HL,HN

− Gs ·S−GAW

R+GAW
︸ ︷︷ ︸

HV

·V

(2)
Different methods of stability analysis for nonlinear systems
in the frequency domain, such as the Popov-criterion and
the Circle criterion, can be applied to the structure in Fig.
2. An easy to use method for the prediction of limit cycle
oscillations is the describing function analysis, where inter-
sections between the Nyquist curve of the linear part HV and
the negative inverse describing function of the saturation
element indicates the appearance of limit cycle oscillations.
To make the method applicable to digital control systems, it
is recommended to use the following bilinear transformation
of the complex variable z:

z = es·Ta =
1+ Ta

2 w

1− Ta
2 w

⇔ w =
2
Ta

· z−1
z+1

(3)

The complex variable w is defined as:

w = ξ + jΩ (4)

Thus, a transformed frequency Ω in the range from 0 to ∞
is dedicated to the real frequency ω in the range from 0 to
π
Ta

.
The negative inverse describing function of the saturation
lies on the negative real axis in the jΩ-plane in the range
from −1 to −∞. From this it follows that for the limit cycle
prediction it is sufficient to investigate the phase response
of HV ( jΩ)+1 subject to −180◦. With

α = A ·R+B ·S (5)

as the characteristic polynomial of the closed loop, the
following relation results from (2):

HV +1 =
α

A · (R+GAW)
(6)

Based on the idea in [6], a possible approach for the design
of GAW is the use of a first-order transfer function F :

GAW =
T

t0 ·F
−R ⇒ HV +1 =

α · t0
A ·T
︸ ︷︷ ︸

Hh

·F (7)

This approach implies two advantages. First, a good compa-
rability to the above mentioned CT is guaranteed, because
F = 1 [6], [9]. Another advantage is anchored in the special
shape of the term HV + 1 in (7). As easily can be seen,
a possibly needed phase shifting of HV + 1 required to
guarantee a sufficient distance of the phase response from
−180◦ (which avoids the occurrence of limit cycles) can be
achieved by a suitable choice of the transfer function F as
a phase-lead filter in the following form:

F( jΩ) =
ZF( jΩ)

NF( jΩ)
=

αF ·β · jΩ+αF

αF ·β · jΩ+1
(8)

The parameters αF and β result from a known phase
shifting φmax at the frequency Ωmax:

αF =
1− sinφmax

1+ sinφmax
β =

1
Ωmax ·

√
αF

(9)

The design can be summarized as follows:
• Use of the bilinear transformation (3) on Hh(z) which

leads to Hh( jΩ)
• Plot of the phase response of Hh( jΩ) and check if

φmin{Hh( jΩ)} < −135◦

• if φmin{Hh( jΩ)} > −135◦ ⇒ choose F( jΩ) = 1 (no
additional phase shift is required)

• if φmin{Hh( jΩ)}<−135◦ ⇒ choose F( jΩ as a phase-
lead filter (8), where the required phase-shift is

φmax = −135◦−φmin{Hh( jΩ)} (10)

• Transformation from F( jΩ) to F(z) and determination
of GAW (z) as in (7)

So the design of the AW-Extension reduces to the determi-
nation of a first order filter. The effectiveness of this method
will be demonstrated on an example stated below.
The above described method works well if a clear minimum
of the phase response exists. If this is not the case, a
different approach using the magnitude of HV ( jΩ)+1 can
be applied. Therefore, the known design technique from
linear theory of compliance with a defined phase reserve at
the gain crossover frequency will be used for the nonlinear
control loop. If we assume F = 1, then the transfer function
from W to U following (2) becomes HW = t0. This means
that after a setpoint change the maximal unconstrained
control signal is made up of the step height w0 and the
leading coefficient of the T -Polynomial to umax = w0 · t0. If
we define k = vmax

umax
as the ratio of the maximal constrained

and unconstrained control signal, then k represents the
”degree of saturation” of the nonlinearity. The saturation
element in Fig. 2 will now be replaced by k and the stability
of the nonlinear standard control loop can be proved using
the Aizerman conjecture. The characteristic equation of the
standard control loop in Fig. 2 using k for the saturation
element can also be used for the determination of F (and
so GAW ) in (7):

1+ k · (Hh ·F −1) = 0 ⇒ k ·Hh ·F = −1+ k (11)



The first order transfer function F can be determined so
that at the gain crossover frequency |k ·Hh( jΩ)| = |−1+k|
a predefined phase reserve (for instance 45◦) is maintained.
The design is as follows:

• Use of (3) on k ·Hh(z) = k·α·t0
A·T which leads to Hh( jΩ)

which leads to k ·Hh( jΩ)
• Definition of ΩD = Ω(|k ·Hh( jΩ)|)dB = |−1+k|dB in

the bode plot as the gain crossover frequency
• if φ(ΩD) >−135◦ ⇒ choose F( jΩ) = 1 (no additional

phase shift is required)
• if φ(ΩD) < −135◦ ⇒ choose F( jΩ) as a phase-lead

filter (8), where the required phase-shift is determined
as φmax = −135◦−φ(ΩD) and Ωmax = ΩD

• Transformation from F( jΩ) to F(z) and determination
of GAW (z) following (7)

The application of this second approach will be illustrated
by another example in the following subsection.

C. Example

The following example was studied by Rönnbäck in [3]
and here it will be shown that the first approach described
above is often sufficient for a good control performance.
The model is oscillative and represents the belt tension
dynamics of a coupled electric drives laboratory process.
The sampling time is set to Ta = 20ms and the control signal
is restricted to vmax = −vmin = 10.

GS(z) =
0.19z−3 +0.01z−4 +0.088z−5

1−2.98z−1 +3.86z−2−2.5z−3 +0.67z−4 (12)

The controller was designed by LQG-Optimization with
following polynomials:

R(z) = 1−0.8z−1 +0.63z−2−0.56z−3−0.07z−4−0.2z−5

S(z) = 0.47−2.54z−1 +5.2z−2−4.52z−3 +1.43z−4 (13)

T (z) = 2.19−5.25z−1 +4.72z−2−1.89z−3 +0.28z−4

The phase responses are plotted in Fig. 3. The phase
minimum of Hh( jΩ) lies at −203◦. So a phase shifting
of 68◦ with the use of F( jΩ) is necessary. The application
of the first design approach described above (7-10) results
in the desired transfer function of the AW-Extension. The
system output after a setpoint change for two different
operating points is shown in Fig. 4. To demonstrate the
advantage of the proposed method, the curves, which result
from the use of the CT (F = 1) are also plotted in the same
figure. With the CT limit cycles arising in one operating
point (which can be excepted by consideration of the phase
response in Fig. 3), while the use of the proposed method
leads to a smooth control performance.
The success of the second way of design will be demon-
strated by another example. The plant can be described by
a discrete I2-Model and the controller is designed using the
algebraic design method with the allegation of a desired
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Fig. 4. System output of simulation example 1

closed loop transfer function and a sampling time of Ta = 1s:

GS(z) =
0.5 · z+0.5
z2 −2 · z+1

; GW (z) =
0.18 · z+0.18

z2 −0.8 · z+0.16

T (z) = 0.36 · z2−0.576 · z+0.2304 (14)
S(z) = 0.7876 · z2−1.3904 · z+0.6172
R(z) = z2 −0.7983 · z−0.2062

The control signal is restricted to |v|max = 0.01. A step in
the setpoint with height w0 = 1 results in k = 0.0278 and
for w0 = 3 we get k = 0.0093. The gain crossover frequency
at |k ·Hh( jΩ)|dB = |−1+ k|dB is not significantly different
in these two cases. For a step with w0 = 1 a gain crossover
frequency ΩD = 0.01014s−1 and a phase shift φmax = 31.5◦

are resulting. The phase responses are shown in Fig. 5 and
the system output for the two different setpoint changes is
shown in Fig. 6 compared to the curves resulting from the
use of the CT. It can be seen that the use of the CT results in
a tendency to oscillations while the proposed method works
well for the two operating points.
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III. ADAPTIVE APPROACH FOR THE AW-EXTENSION

In this section the influence of a free tuning parameter
in the AW-Extension on the control performance will be
investigated first. The use of this parameter is in particular
advantageous for applications with a large operating area.
Based on the results, an adaptive approach for the AW-
Extension will be proposed.

A. AW-Extension with a free tuning parameter

The above mentioned interpretation of the saturation
effect as a nonlinear ”disturbance” D is the fundament of
the following ideas. For a fast decay of this disturbance,
sufficiently fast poles of HD (see (1), which are influenced
by the poles of the characteristic polynomial α and the poles
of the AW-Extension GAW , are necessary. If we choose F as
a first order transfer function, the following approach with
a free tuning parameter γ leads to satisfactory results:

F(z) =
(z− γ)

z
⇒ F( jΩ) =

(1+ γ) · { 1−γ
1+γ + jΩ · Ta

2 }
1+ jΩ · Ta

2
(15)
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The amount of phase shifting rises with a growing γ
in direction 1. Unfortunately, also a deceleration of the
dynamics in HD is the consequence. So the choice of a
suitable γ is a compromise between the conflicting demands
of a fast decay of the disturbance D and a larger stability
margin served by a larger phase shifting. In Fig. 7 the
dependency of the sum squared control error ESQ from the
height of the step in the setpoint and the parameter γ for
the I2-Plant is mapped. A larger w0 requires a larger value
of γ .

B. Development of the adaptive structure

The AW-Extension with the free tuning parameter γ will
now be modified, so that γ is automatically adjusted with
respect to the length and depth of the disturbance D. The
proposed design of the AW-Extension is based on the idea
presented by Rönnbäck in [4]. There, the linear designed
controller is modified against the saturation effect. Here,
the parameter γ of the AW-Extension will be varied subject
to the ”disturbance” D. We do not use the current value
of D but a value, filtered by a first order transfer function.
So we get information about the duration of the control
signal in the saturation phase. Fig. 8 shows the structure
of the control loop with the adaptive AW-Extension. The
”Windupsignal” µ results in

µ =
z

z− e−Ta·λ ·τ ·
∣
∣
∣
∣

D
vmax

∣
∣
∣
∣

; τ = e−µ/K (16)

and comprised information about the saturation phase of the
control signal, which can be used for the determination of γ .
Roughly speaking, a large value of µ is the consequence of
a distinct ”disturbance” D. The parameters λ and K in (16)
can be arbitrarily chosen. λ determines the time constant of
the filter significantly and should be accurately determined,
so that µ approaches 0 in an adequate time if the control
signal is unconstrained for a while. An empirical formula
for λ for the continuous case and the modification of the
whole controller was developed in [4]. For our task the
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Fig. 8. Controller with adaptive AW-Extension

following term, that is suitable for digital applications, leads
to satisfactory results in most cases:

λ = 0.1 · log(zα )

Ta
(17)

with zα representing the location of the dominating poles
in the z-Plane. The time constant of the filter is also
determined by the so-called ”fastness variable” τ . A small
value of τ leads here to a large time constant. Also µ is a
component of τ and a small value of τ implies a large value
of µ (following (16)) and marks an undesirable disturbance
D. In such cases a large value of the free parameter γ of the
AW-Extension is advantageous because of the large stability
margin required. So the following relation for γ seems to
be most promising:

γ = 1− τ = 1− e−µ/K (18)

The parameter K can be used for fine-tuning. A larger value
of K leads to a larger value of τ and so to a smaller value
of γ . The function of the adaptive structure will now be
demonstrated by a simulation of the above described control
of the coupled electric drives ((12) and (13)). In Fig. 9
and Fig. 10 the system output and the curve of the free
parameter γ for two different operating points are shown.
The control performance is much better than with the use
of a fixed parameter (see Fig. 4).

IV. EFFECT OF MEASUREMENT NOISE

The influence of measurement noise is treated only in
a few publications [7], [10], because most authors assume
consequences only in the linear range. But it can be shown
that, induced by the stochastic character of the disturbance,
under certain circumstances a significant influence of the
measurement noise appears. This influence can also be in-
vestigated by the use of frequency response characteristics.
Following Fig. 2 the transfer from the measurement noise
to the control signal is characterized by the two transfer
functions HN and HV . Especially the magnitude for large
values of Ω are of interest for further investigation. If the
values of |HN( jΩ)|Ω→∞ and |HV ( jΩ)|Ω→∞ are sufficiently
small, the influence of the high-frequency disturbance is
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small. Assuming lowpass behavior of the open loop without
AW-Extension, the following relation results from (2):

|HV |Ω→∞ ≈ −|GAW
R |Ω→∞

|1+ GAW
R |Ω→∞

(19)

With a suitable choice of GAW , the noise rejection properties
can be influenced. The simulation example stated below
confirms this assumption. The influence of measurement
noise on the control loop with the coupled electric drives
(12, 13) is investigated using different AW-Extensions
(Deadbeat(Db)-observer [2], AW-Extension from 15 with
γ = 0.5, AW-Extension from (7-10)). Fig. 11 shows ESQ
and in Fig 12 the magnitude |HV | can be seen. A larger
sensitivity in the case of measurement noise for the Db-
Observer can be seen in the curve of ESQ and is confirmed
by the values of |HV ( jΩ)|Ω→∞.

V. CONCLUSION

This paper presents two design principles for Anti-
Windup-Extensions of linear designed digital controllers.
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They are based on the use of a frequency characteristic
response in the form of a bode plot. Therefore, they are
graphically demonstrative and easy to use. The design
reduces to a suitable choice of a phase shifting first order
filter, which seems to be sufficient for most applications.
The persistent design in the bode-diagram is believed to
be new and leads to a simplification of the AW-Controller
design.
A new adaptive structure for the AW-Extension is proposed,
which is advantageous for the use in applications with a
large operating range. The control performance with the
use of the new structure is better than to adhere to fixed
parameters.
In the last section it was shown that the chosen AW-
Extension can have a significant influence on the noise
rejection properties of the control loop. This influence can
also be easily investigated by the use of frequency response
characteristics.
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