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Abstract— We consider the scenario of N distributed noisy
sensors observing a single event. The sensors are distributed
and can only exchange messages through a network. The
sensor network is modelled by means of a graph, which
captures the connectivity of different sensor nodes in the
network. The task is to arrive at a consensus about the event
after exchanging such messages. The focus of this paper is
twofold: a) characterize conditions for reaching a consensus;
b) derive conditions for when the consensus converges to the
centralized MAP estimate.

The novelty of the paper lies in applying belief propagation
as a message passing strategy to solve a distributed hypothesis
testing problem for a pre-specified network connectivity. We
show that the message evolution can be re-formulated as the
evolution of a linear dynamical system, which is primarily
characterized by network connectivity. This leads to a fun-
damental understanding of as to which network topologies
naturally lend themselves to consensus building and conflict
avoidance.

I. INTRODUCTION

Recent advances in sensor and computing technolo-
gies [11] provide impetus for deploying wireless sensor
networks—a network of massively distributed tiny devices
capable of sensing, processing and exchanging data over
a wireless medium. Such networks are envisioned [11] to
provide real-time information in such diverse applications as
building safety, environmental control, power systems and
manufacturing. For instance, as part of a building safety
system an ad-hoc sensor network(SNET), may monitor
in real time hot spots, smoke, biological and chemical
contaminants, structural failures, interference sources to
provide 3D building visualization to enable rapid evacuation
and rescue of victims and personnel.

SNETs have received significant attention within the
networking, signal processing and information-theory com-
munities [2], [1]. The networking community has largely
addressed the problem from the perspective of ad-hoc
networks and generally ignored the distinction between
data and information. This distinction is critical to efficient
operation of a network as was pointed out earlier. The
signal processing [5], [16], [1], [14], [13], [12] and network
information theory [3], [15], [19], [8] communities have
addressed the problem from the perspective of charac-
terizing fundamental bounds for information quality in a
distributed, bandwidth limited but yet highly coordinated
and synchronized environments, i.e., as to how to transmit
data from known sensors to known destinations.
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In this paper we deal with situations where such coor-
dination and synchronization between different sensors is
unavailable. We focus on the scenario of N distributed
noisy sensors observing a single event. The sensors are
distributed and can only exchange messages through a
network. The sensor network is modelled by means of a
graph, which captures the connectivity of different sensor
nodes in the network. The task is to arrive at a consen-
sus about the event after exchanging such messages. If
the observations are centrally available there is a well-
established solution methodology for such problems [20].
Fundamental problems arise when data is distributed and
the centralized solutions are no longer feasible due to time
and rate constraints(finite bit budget). This question of as
to how to deal with distributed data from known sensors
to known destinations has been an active topic of research
within the control [23], [22], [4], [21], [9], [7] signal
processing communities [6], [3], [6], [15], [19], [8], [18].
Unfortunately, despite best efforts a satisfactory theory for
distributed problems is yet to emerge. The reasons can be
broadly traced to conflicting requirements together with the
generality of the setup. Information theoretic approaches
can provide bounds in the limit of infinite delay and infinite
number of sensors [3], [15]. However, real-time decisions
and control cannot generally tolerate large delays leading
to a fundamental gap between these different perspectives.

Motivated by these issues we focus on a scenario where
N distributed sensors observe an event at a single location.
The task is to classify this object among M different
hypotheses. Unlike the traditional settings our attention
is limited to: a) fixed network topology that provides a
fixed routing mechanism between different sensor nodes;
b) informative data as opposed to decisions are exchanged
between different sensor nodes. A natural mechanism for
exchanging informative data is provided by the “so called”
belief propagation algorithm [17]. The main idea can be
explained as follows: A sensor node j sending messages
to node k summarizes information received from all the
other nodes it is connected to and forwards this information
to node k. The messages can be interpreted as a node’s
conditional marginal distribution. A node k upon reception
of this message then updates its posterior probability, which
is usually called as the belief. The process continues with
node k updating its messages to be sent to its neighbors
and so on. The organization of the paper is as follows. In
Section II we provide a description of the problem setup.
In Section III belief propagation algorithm is discussed and
Section IV provides the main results.



II. SETUP

Consider a Bayesian hypothesis testing problem in which
H = {H1, H2, · · · , HM} denotes the set of hypotheses
and πo is the prior probability distribution on H. We are
interested in the MAP estimate of the true hypothesis based
on a collection (Xv : v ∈ V ) of observations that are
indexed by a set V of sensors. For each m = 1, 2, · · · ,M ,
let fm : R

V 7→ R+ be the conditional probability density
function of (Xv : v ∈ V ) given that Hm is the true hypoth-
esis. We shall assume that observations are conditionally
independent given the true hypothesis. That is,

fm(x) =
∏

v∈V

fvm(xv), x = (xv : v ∈ V ) ∈ R
V

for marginal densities fvm : R 7→ R+, v ∈ V . Given
Xv = xv for v ∈ V, the posterior distribution π of the
true hypothesis is identified uniquely by the relation

π(Hm) ∝ πo(Hm)
∏

v∈V

fvm(xv), m = 1, 2, · · · ,M. (1)

In particular hypothesis Hm∗ is a MAP estimate if

πo(Hm∗)
∏

v∈V

fvm∗(xv) = max
m

{

πo(Hm)
∏

v∈V

fvm(xv)

}

.

We concentrate on distributed applications in which a
single decision maker that has access to all observations
(Xv : v ∈ V ) is not available. Instead, it is assumed that
each sensor can communicate with a certain subset of other
sensors, and thereby forms an estimate of the posterior
distribution π based on both its own observation and its
prior correspondence with its neighbors. The objective of
the paper is to identify communication schemes which guar-
antee that each sensor eventually identifies a MAP estimate.
Furthermore applications of interest concern vast numbers
of sensors; in turn non-scalable schemes such as simple
flooding of observations are excluded from the present
discussion. Specifically, we examine the performance of
Pearl’s belief propagation algorithm [17], which is subject
to recent interest in similar statistical inference problems.

The communication structure among the sensors is rep-
resented via a directed graph G = (V,E). The vertices V
of this graph correspond to sensors, and an ordered pair
(v′, v) of vertices belongs to the edge set E if there exits a
unidirectional communication link from sensor v′ to sensor
v. We will identify each edge e ∈ E with its source vertex
s(e) and its destination vertex d(e) so that e = (s(e), d(e)).
Sensor v′ is referred to as a neighbor of sensor v if there
is a link from vertex v′ to vertex v in G, so that sensor v′

can send a message to sensor v. Let N(v) denote the set
of neighbors of sensor v so that

N(v) = {v′ ∈ V : (v′, v) ∈ E}, v ∈ V.

The communication graph G is not required to bear any
relationship to the underlying statistical model.

III. BELIEF PROPAGATION

We start with a brief digression to statistical inferenc-
ing via belief propagation [17] in order to motivate the
distributed message passing algorithm adopted here. Let
(Yv : v ∈ V ) be a random vector with values in YV ,
and for certain mappings φv : Y 7→ R+, v ∈ V , and
ψe : Y2 7→ R+, e ∈ E, let the distribution of (Yv : v ∈ V )
satisfy

P (Yv = yv : v ∈ V ) ∝
∏

v∈V

φv(yv)
∏

e∈E

ψe(ys(e), yd(e)),

(2)
for yv ∈ Y, v ∈ V . Such graphical models arise in a
variety of contexts where efficient computation of marginal
distributions P (Yv = yv), v ∈ V, is of interest. Let
the undirected graph G̃ = (V, Ẽ) be defined so that the
unordered pair [v, v′] ∈ Ẽ if and only if (v, v′) ∈ E or
(v′, v) ∈ E. It is well-known that if G̃ is a tree, then local
message passing via Pearl’s sum-product algorithm [17]
results in distributed, local computation of the marginal
distributions. Namely, let the kth message sent from sensor
v′ ∈ N(v) to sensor v be the vector m(v′,v)

k = (m
(v′,v)
k (y) :

y ∈ Y) defined by

m
(v′,v)
0 (y) = 1

m
(v′,v)
k (y) =

∑

y′∈Y

ψ(v′,v)(y
′, y)φv′(y

′)
∏

v̂∈N(v′)−{v}

m
(v̂,v′)
k−1 (y′),

k ≥ 1, and suppose that upon receiving the kth messages
from all of its neighbors, each sensor v ∈ V constructs an
estimate π̂vk of the local marginal distribution by setting

π̂vk(y) ∝ φv(y)
∏

v′∈N(v)

m
(v′,v)
k (y), y ∈ Y. (3)

Then π̂vk converges to the correct marginal distribution
(P (Yv = y) : y ∈ Y) within a finite number of steps,
provided that G̃ is a tree.

Consider now the special case

Y = H

φv(Hm) = fvm(xv)
|V |
√

πo(Hm), (4)
ψe(Hj , Hm) = 1{j = m}, j,m = 1, 2, · · · ,M,

where 1{·} denotes the indicator function whose value
is 1 if its argument is correct and is 0 otherwise. It is
straightforward to verify that equality (2) reduces to

P (Yv = yv : v ∈ V ) ∝ 1{yv = yv′ for all v, v′ ∈ V }π(yv∗),

where π is given by relation (1) and v∗ ∈ V is arbitrary.
In particular P (Yv = Yv′ for all v, v′ ∈ V ) = 1 and each
marginal Yv has distribution π. The sum-product algorithm
now prescribes the message composition

m
(v′,v)
0 (h) = 1 (5)

m
(v′,v)
k (h) = φv′(h)

∏

v̂∈N(v′)−{v}

m
(v̂,v′)
k−1 (h), (6)



for each h ∈ {H1, H2, · · · , Hm}, k ≥ 1. From the prior
discussion it is clear that if G̃ is a tree, then the algorithm
assures that π̂vk = π for large enough k, hence each
sensor can identify a MAP estimate based on the global
observation set. The message passing algorithm (5)–(6) has
an evident practical appeal: Each message is determined
locally by the observation at the sensor and the prior mes-
sages received from neighboring sensors. Furthermore, the
algorithm entails a relaxed synchronization among sensors,
as it can be implemented by programming each sensor to
send out initial messages immediately and to send out its kth
messages only after receiving (k − 1)th messages from all
of its neighbors. However, asymptotic features of the sum-
product in general topologies of G are not well-understood.
In fact, there is ample evidence that the algorithm may, in
general, fail to converge, or may converge to an inaccurate
estimate of the marginal distributions. We next address these
issues in the particular instantiation that pertains to the
present hypothesis testing problem, and give an account of
the asymptotic behavior of the estimates π̂vk : v ∈ V for
general graphs.

IV. MAIN RESULT

For each pair of edges e, e′ ∈ E let

ae,e′ = 1{d(e′) = s(e), s(e′) 6= d(e)}.

Note that ae,e′ = 1 if and only if edge e′ leads to the origin
of edge e but the ordered pair (e′, e) is not a directed cycle.
For each hypothesis h ∈ {H1, H2, · · · , Hm} let

uh(v) = log(φv(h)), v ∈ V

xhk(e) = log(me
k(h)), e ∈ E.

Taking the logarithm of both sides in equalities (5)–(6) leads
to the linear system

xhk(e) = uh(s(e))+
∑

e′∈E

ae,e′x
h
k−1(e

′), xh0 (e) = 0. (7)

Define the vector uh = (uh(s(e)) : e ∈ E) and define the
binary matrix A = [ae,e′ ]E×E , so that equality (7) takes the
vector form

xhk = uh +Axhk−1, xh0 = 0.

Note in particular that

xhk =

k−1
∑

j=0

Ajuh, k ≥ 1 (8)

and Aj = [aje,e′ ]E×E where aje,e′ is the number of directed
paths of length j that start with edge e′, end with edge e,
and that do not have any 2-hop cycles.

Suppose that A is primitive. For each e, e′ ∈ E there
exists a directed path that starts with edge e′, ends with
edge e and that does not have any 2-hop cycles. The spectral
radius of A, denoted here by ρ(A), is then strictly larger
than 1. Let (re : e ∈ E) and (le : e ∈ E) be respectively
a right and a left eigenvector of A corresponding to the

eigenvalue ρ(A), suitably normalized so that re > 0, le > 0
for e ∈ E and

∑

e∈E rele = 1. Define the weighted in-
degree i(v) and the weighted out-degree o(v) of each sensor
v ∈ V as

i(v) =
∑

v′∈N(v)

r(v′,v)

o(v) =
∑

v′:v∈N(v′)

l(v,v′).

Theorem 4.1: If A is primitive then for v ∈ V

lim
k→∞

π̂vk(Hm) = 0, (9)

for each hypothesis m ∈ {1, 2, · · · ,M} such that

∏

v∈V

φv(Hm)o(v) < max
m′

{

∏

v∈V

φv(Hm′)o(v)

}

.

Proof. Define the matrix W = [we,e′ ]E×E by setting
we,e′ = rele′ for e, e′ ∈ E. Let

α(k) =
k−1
∑

j=0

ρ(A)j .

By equality (8)

lim
k→∞

xhk
α(k)

= lim
k→∞

k−1
∑

j=0

(

Aj

ρ(A)j

)

ρ(A)j

α(k)
uh = Wuh,

where the last equality follows since ρ(A) > 1 and

lim
k→∞

∥

∥ρ(A)−kAk −W
∥

∥

∞
= 0

due to [10, Theorem 8.5.1]. The estimate π̂vk(h) of sensor
v at step k therefore satisfies

π̂vk(h) ∝ φv(h) exp





∑

v′∈N(v)

xhk(v
′, v)





= φv(h) exp

(

α(k)

(

i(v)
∑

v′∈V

uh(v′)o(v′) + ε(k)

))

,

where ε(k) → 0 as k →∞. The conclusion of the theorem
now follows since

φv(h) exp

(

α(k)i(v)
∑

v′∈V

uh(v′)o(v′)

)

=

φv(h)

(

∏

v′∈V

φv′(h)
o(v′)

)α(k)i(v)

and limk→∞ α(k) = ∞ owing to ρ(A) > 1.
We now turn to distributed hypothesis testing and inter-

pret Theorem 4.1 in terms of the posterior distribution π.
Consider first a symmetric structure for the graph G so that
o(v) = o(v′) = µ > 0 for all v, v′ ∈ V . It can be verified,
for example, that the torus of Figure 1 provides one such



Fig. 1. The 3×3 torus in which o(v) = o(v′) for all nodes v, v′.

structure. The definition (4) of node potentials φv : v ∈ V
then leads to

∏

v∈V

φv(Hm)o(v) =

(

πo(Hm)
∏

v∈V

fvm(xv)

)µ

,

for m = 1, 2, · · · ,M , and equality (9) indicates that for
each sensor v, limk→∞ π̂vk(Hm) = 0 for all m such
that Hm is not a MAP estimate with respect to π. In
particular if the MAP estimate is unique, then the sensors
unanimously identify it. This conclusion does not hold for
general graphs whose vertices may have different weighted
out-degrees. In fact it is easy to see that observations
made at sensors with larger weighted out-degrees have more
influence on the collective opinion. In the general case the
final consensus reflects the right MAP estimate for certain
values of observations (xv : v ∈ V ), but identifies wrong
choices for others.

Example 4.1: The example illustrates a 9-node asym-
metric communication graph as depicted in Figure 2(a).
Here node 0 communicates with all other nodes, whereas
every other node communicates with three nodes. The
Figure 2(b) illustrates how a single highly connected node
in an asymmetric graph can bias the consensus decision
away from the optimal.

Each edge in the graph represents two directed edges in
opposite directions. The weighted out-degrees of the sensors
with respect to this graph satisfy o(1) = o(2) = · · · =
o(8) and o(0)/o(1) = 1.5091. Suppose that the observations
(xv : v ∈ V ) translate to node potentials φ0 = [q, 1 −
q], φ1 = [p, 1− p] and φv = [0.5, 0.5] for v = 2, 3, · · · , 8,
where p, q ∈ [0, 1]. Figure 2(b) illustrates the true MAP
estimate and the final consensus due to belief propagation
for different values of p and q. Note that the consensus
is determined to a larger extent by the value of q rather
than the value of p. Note also that the consensus reflects a
flawed estimate if (p, q) lies in the area between the solid
and dashed lines. However, it is also surprising that the bias
is small even with a high degree of asymmetry. ¤

We next illustrate the asymptotic behavior of the esti-
mates π̂vk : v ∈ V in two topologies for which A is
reducible. In the scope of the following three examples,
it is understood that for vertices v, v′ ∈ V, (v, v′) ∈ E

0

1
8

7

6
5

4

3

2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

q

MAP Estimate vs. Consensus

Belief Propagation
MAP Estimate

Hypothesis−1 

Hypothesis−0 

(b)

Fig. 2. The figure illustrates how a single highly connected node
in an asymmetric graph can bias the consensus decision away from
the optimal. (a) The 9-node asymmetric communication graph where
node 0 communicates with all other nodes, whereas every other node
communicates with three nodes, (b) Decision regions for the MAP estimate
and the final consensus of belief propagation, delineated respectively by
the dashed line and the solid line. Observations (xv : v ∈ V ) correspond
to node potentials φ0 = [q, 1− q], φ1 = [p, 1− p] and φv = [0.5, 0.5]
for v = 2, 3, · · · , 8.

if and only if (v′, v) ∈ E. Note that the undirected graph
G̃ = (V, Ẽ) is such that the unordered pair [v, v′] ∈ Ẽ if
and only if (v, v′) ∈ E and (v′, v) ∈ E. The first example
concerns the case when G̃ is a tree, and it is well-known
that in this case belief propagation leads to the true posterior
distributions for general Markov fields [17].

Example 4.2: (Trees) Suppose that G̃ is a tree, so that
A is nilpotent since Aj = 0 for all integers j larger than
the diameter of G̃. Equality (8) therefore indicates that the
messages are guaranteed to converge within a number of
steps no larger than the diameter of G̃. Note that for e, e′ ∈
E

∞
∑

j=0

aje,e′ =







1 if there exists a simple directed path
in G with first edge e′ and last edge e

0 else,



hence equality (8) leads to

lim
k→∞

xhk(e) =
∑

v∈V

1{dist(v, s(e)) < dist(v, d(e))}uh(v),

for e ∈ E, where dist(v, v′) represents the length of the
unique path between vertices v, v′ ∈ V . It now follows by
equality (3) that the limit of the estimate π̂vk(h) at each
sensor v ∈ V is equal to the posterior distribution (1). ¤

Example 4.3: (Rings) Suppose that G̃ is a simple
cycle, so that for e, e′ ∈ E the sequence (aje,e′ : j =

0, 1, 2 · · · ) has period |V |. In particular Aj = Aj+|V | and
thus A is idempotent. Equality (8) then leads to

lim
k→∞

xhk
k

=
1

|V |

|V |−1
∑

j=0

Ajuh.

It is not difficult to see that
∑|V |−1

j=0 aje,e′ = 1 for all edges
e, e′ ∈ E that have a common orientation (that is, clockwise
or counter-clockwise) and that

∑|V |−1
j=0 aje,e′ = 0 otherwise;

in turn

lim
k→∞

xhk(e)

k
=

1

|V |

∑

v∈V

uh(v), e ∈ E.

Therefore for large k the estimate π̂vk(h) of each sensor
v ∈ V at step k satisfies

π̂vk(h) ∝ φv(h) exp





∑

v′∈N(v)

xhk(v
′, v)





≈ φv(h) exp

(

2k

|V |

∑

v′∈V

uh(v′)

)

= φv(h)

(

∏

v′∈V

φv′(h)

)
2k

|V |

.

Since
∏

v∈V

φv(Hm) = πo(Hm)
∏

v∈V

fvm(xv), m = 1, 2, · · · ,M,

it follows that if Hm is not a MAP estimate with respect to
π, then π̂vk(Hm) → 0 as k →∞. Note that if π leads to a
unique MAP estimate m∗ then the estimate distribution π̂vk
of each sensor v ∈ V converges so that

lim
k→∞

π̂vk(Hm) = 1{m = m∗}, m = 1, 2, · · · ,M.

In other words each sensor identifies the MAP estimate,
although the limit of π̂vk is not necessarily the correct
posterior distribution. If the MAP estimate is not unique,
then convergence of π̂vk may not hold, as illustrated by
Example 4.4. ¤

Example 4.4: (4-ring) Consider a binary hypothesis
testing problem involving 4 sensors arranged on a ring as
shown in Figure 3.

Suppose that the observations (xv : v ∈ V ) translate to
node potentials φ0 = [0.65, 0.35], φ1 = [0.3, 0.7], φ2 =
[0.5, 0.5], φ3 = [0.55, 0.45], so that H1 is the unique MAP

Fig. 3. A ring topology of a sensor network

estimate in the centralized solution. The decentralized solu-
tion identifies the same MAP estimate since the estimate of
the posterior distribution at each sensor converges to (0, 1)
as illustrated in Figure 4(a). If the node potentials are φ0 =
[0.7, 0.3], φ1 = [0.4, 0.6], φ2 = [0.6, 0.4], φ3 = [0.3, 0.7],
then the posterior distribution π assigns equal probabilities
to both hypotheses. In this case the decentralized beliefs
π̂vk display oscillations around the correct probabilities as
shown in Figure 4(b). ¤

V. CONCLUSION

We have considered the scenario of N distributed noisy
sensors observing a single event. The sensors are distributed
and can only exchange messages through a network. The
sensor network is modelled by means of a graph, which
captures the connectivity of different sensor nodes in the
network. The task is to arrive at a consensus about the
event after exchanging such messages. The paper focuses on
characterizing the fundamental conditions required to reach
a consensus.

The novelty of the paper lies in applying belief propaga-
tion as a message passing strategy to solve a distributed
hypothesis testing problem for a pre-specified network
connectivity. We show that the message evolution can be re-
formulated as the evolution of a linear dynamical system,
which is primarily characterized by network connectivity.
This leads to a fundamental understanding of as to which
network topologies naturally lend themselves to consensus
building and conflict avoidance.
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