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Abstract— This paper describes optimal nonlinear filtering
algorithms for recovering trends of system performance vari-
ables (fault intensities) from noisy sensor data.

A key underlying assumption for the algorithms is that
the performance can only deteriorate with time, never im-
prove. This assumption describes accumulating damage to
the system components. Mathematically, the trend is obtained
as a maximum likelihood estimate of an orbit in a hidden
Markov model from the noisy output data. The empirical
signal model and the overall problem setup are very close
to optimal Kalman filtration. The main difference is that
instead of a gaussian noise driving the random model of the
fault a one sided exponentially distributed noise is assumed.
Such a statistical model leads to a nonlinear batch filter.
The trend is estimated by solving a quadratic programming
problem. Unlike Kalman filters that can be implemented
through recursive computations, the developed algorithms run
in a batch mode. Though being more complex computationally,
the developed trending algorithms demonstrate performance
superior to Kalman filters in the fault trending applications.

I. INTRODUCTION

The focus of this work is on trending fault parameter
estimates for system health management applications, in
particular for predictive maintenance. The specific problem
statement considered herein follows from this application
but is quite fundamental. The health state estimates are
computed from the data collected in a serviced equipment
unit. So far, the applications have been in the aerospace
area but the methodology should be applicable to health
management of ground vehicles, process plants, and other
complex and maintenance-critical systems.

Ii is assumed that the collected data is stored in a
computer memory and processed by a trending computer
between the usage cycles. Since the processing is done off-
line, computational complexity of the processing algorithm
is not a major issue.

This paper describes algorithms for estimating the trends
of system performance variables (fault intensities) from
noisy sensor data. A key assumption in the basis of the
algorithms is that the performance can only deteriorate
with time, never improve. This assumption is reasonable
for the performance losses associated with accumulating
mechanical damage to the system components. The paper
shows that trending algorithms based on this monotonicity
assumptions allow reliable detection and estimation of weak
trends in very noisy data.

The simplest approach to trending is to perform the
estimation of the fault parameters independently at each
cycle and then perform a low-pass filtering of the data, e.g.,
see [2]. In this approach a single parameter (filter factor)
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provides a tradeoff between noise rejection and a delay in
detecting a trend. Low-pass filtering is anad hocapproach
and it does not allow for incorporating a prior understanding
of how the faults develop with time. When the filtering
is heavy enough to reject the noise, the trend estimation
would have a significant phase lag meaning a fault-caused
deterioration might not be detected early enough.

A more sophisticated approach to the trending is to use
a Kalman Filter approach. Kalman filtering formulation
defines easy-to-understand statistical model handles (covari-
ances of various gaussian noises) and provides an optimized
way for incorporating the prior information about the fault
evolution into the filtering framework. The Kalman Filter
approach was demonstrated to be sufficiently practical in
many industrial applications. For instance, most modern
navigation systems routinely use Kalman Filters with first
or second-order dynamical models for trending motion of
mobile platforms.

The prior information about fault variable being mono-
tonic non-increasing can be utilized in the framework of
monotonic regression. Monotonic regression is an advanced
statistical regression method that has been extensively stud-
ied and applied for some time, e.g., see [6], [7]. The existing
monotonic regression methods, provide ad hoc solutions to
the problem. These solutions are guaranteed to be mono-
tonic but are not guaranteed to be optimal in some sense.
There is no regular way of incorporating additional infor-
mation about the data model and fault evolution with these
monotonic regression methods into the framework. For an
optimal solution developed herein, additional assumptions
can be always consistently incorporated by changing the
models, constraints, or optimality index.

In this paper, the trend is determined as a maximum
likelihood estimate of the orbit in a hidden Markov model
from the noisy output data. The empirical signal model
of the trend and the overall problem setup are very close
to optimal Kalman filtration. The main difference is that
instead of a gaussian noise driving the random model of
the fault (performance variable) a one-sided exponentially
distributed noise is assumed. Such a statistical model leads
to a nonlinear filter, different from the Kalman least square
regression solution. The trend is estimated by the filter
through a solution of a QP (quadratic programming) prob-
lem. Unlike the Kalman filter that can be implemented
through recursive computations, the developed algorithm
processes the data in a batch mode. The formulation of
a maximum likelihood estimate in a hidden Markov model
presented herein is a special case of one found in [1].

To the best of the author’s knowledge and literature
search ability, the monotonic regression ideas - though



simple - have not been considered in system health manage-
ment, diagnostics, prognostics, and performance trending
areas. The main contributions of this work are in (i)
formulating specific nonlinear monotonic regression filter-
ing problems that are simple and especially suitable for
performance (fault) trending applications, (ii) demonstrating
practically acceptable solutions of these problems through
use of QP technology. The results of this work were
practically implemented and are used in aerospace systems
health management applications.

II. DATA MODEL

Consider a univariate case of trending an estimate of a
single fault. The trending algorithms described below allow
a straightforward extension towards a case of multiple faults
and multiple measurements. The single fault case herein
affords for better clarity of presentation.

Let x(t) be a scalar performance deterioration (gradual)
fault parameter at the usage cycle numbert. As one example
the performance parameterx(t) can describe aerodynamic
efficiency of a turbomachine stage. Lety(t) be an estimate
of the parameterx(t) calculated from the data collected at
this usage cycle. The estimate could be based on data about
ambient conditions as well as data from internal sensors in
the equipment unit.

Because of the modeling errors, sensor noise, and ambi-
ent condition variation, the estimatey(t) contains an error
and differs fromx(t)

y(t) = x(t) + γ(t), (1)

whereγ(t) is a scalar ‘noise’ variable. The data model (1)
is used as a basis for the estimation and trending algorithms
in this paper.

Consider the data sequencesx(t), y(t) in (1), on the
interval t = 1, . . . , N and denote them as

YN = {y(1), . . . , y(n)} (2)

XN = {x(1), . . . , x(n)} (3)

The fault trending problem is to build an estimate of the
underlying fault parameter sequenceXN (3) based on the
observed data sequenceYN (2). This is the main problem
studied in the paper.

In most practical applications of trending the contribution
of the noiseγ(t) in the model residual (1) is significant
compared to the faults that need to be estimated. Thus,
carefully designed statistical estimation ofx(t) is required.

III. F IRST-ORDER TRENDING FILTER

In what follows, it is assumed thatγ(t) is an uncorrelated
(white) noise sequence, where variableγ is zero mean
gaussian distributed with the covarianceΓ

γ ∼ N(0,Γ) (4)

To formulate a filtering problem, the statistical model
of the observation noise (4) should be complemented by
a statistical model of the underlying trend sequencex(t).

As a baseline, next subsection considers a classical random
walk model. An optimal estimation of the trend in this
case is given by a Kalman Filter. The following subsection
considers a non-standard model of the random walk driven
by a random sequence with an exponential distribution for
each term. This second model leads to the nonlinear optimal
estimator implementing the monotonic regression.

A. Gaussian noise and Kalman Filter

One of established approaches to probabilistic modeling
of an unknown data sequencex(t) in (1) is given by a
Random Walk model

x(t + 1) = x(t) + ξ(t), (5)

whereξ(t) in an uncorrelated gaussian noise sequence with
covarianceΞ.

Since the random variablesξ(t) are independent, the
probabilistic model (1), (5) describes a Markov chain. The
distribution of the chain statex(t) at timet fully defines its
future statistics evolution. As usual, to complete the model
there is a need to describe the probabilistic properties of the
initial conditions. The initial state is assumed to be normally
distributed with the meanx0 and covarianceQ0

x(t = 1) ∼ N(x0, Q0) (6)

Given the model (1)–(6), the problem is to estimate
the underlying trendx(t) from the noisy datay(t). This
problem is known as an estimation of theorbit x(t) of the
Markov chain. Since variables are gaussian, a Maximum A
posteriori Probability (MAP) estimate ofx(t) can be found
by solving the batch least square problem:pXN |YN

→ max.
DenoteJ = − log pXN |YN

. Then the problem is (see [1] for
derivation)

J =
[x(1) − x0]

2

2Q0
+

N
∑

t=1

[x(t) − y(t)]2

2Γ

+
N

∑

t=2

[x(t) − x(t − 1)]2

2Ξ
→ min (7)

In trending, the decisions are usually made based on most
recent estimatex(N). Instead of solving the orbit estimation
problem, the last estimate can be found as a solution of
a filtering problem. In this case a Kalman Filter provides
the recursion for the optimal estimate. A derivation of the
Kalman Filter is well-known and can be found in [4]. A
Riccati equation describing the filter gain evolution con-
verges to a steady state solution relatively quickly after an
initial transient process and a stationary Kalman Filter can
be used with little loss of performance. For the system (1)–
(6), the stationary Kalman Filter equation can be presented
in the form

x̂(t + 1) = x̂(t) + K∗ [y(t) − x̂(t)] , (8)

where K∗ is the filter gain. Since the noises are scalars,
the stationary Ricatti equation can be solved analyticallyto



yield the steady state gain

K∗ =
√

α2 + 2α − α; α = Ξ/(2Γ), (9)

whereα has the meaning of the signal to noise ratio:Ξ is
the covariance of the noiseξ driving the signalx(t) andΓ
is the covariance of the measurement noiseγ. For smallα,
the filter gainK approaches zero. Forα → ∞, the filter
gain K approaches unity.

The steady-state Kalman Filter (8) is a simple exponential
filter. An example of using such a filter for trending engine
data can be found, for instance, in [2].

B. Monotonic regression

Consider now the random walk model of the form (5)
where ξ(t) in an uncorrelated noise sequence with each
ξ(t) distributedexponentially. In statistics, the exponential
distribution is used to model the behavior of units that
have a constant failure rate. This is the only memoryless
random distribution. In that regard, one can think about the
performance fault evolution as a process of accumulating
independent microscopic failures.

Note that accumulation of the fault related damage
described by (5) follows the spirit of Palmgren–Miner’s
cumulative damage theory, which is well known in the
analysis of fatigue damage for mechanical elements [3], [5].

The exponential distribution depends on single parameter
that has meaning of the average failure rate.

ξ ∼ E(λ) : p(x) =
1

λ
e−x/λ (10)

The same probability distribution of the initial conditions
(6) as in the previous subsection is assumed.

Consider now a problem of estimating the orbitx(t) of
the Markov chain (1), (4), (5), (6), (10). The orbitXN in
(3) should be estimated from the observed dataYN (2).

Let us find a Maximal Likelihood (ML) estimate of the
orbit x(t). The Markov chain model is stationary – the
update equations and the probability distributions do not
depend ont. Hence, the Markov process in question is
homogeneous and its statistical properties are completely
defined by thetransition density function

φ(r; s) = px(t)|x(t−1)(r, s), (11)

wherepx(t)|x(t−1)(r, s) is the conditional probability den-
sity and the functionφ(·, ·) (11) is the same for anyt. From
(5), it follows that the conditional probability density is
defined by the probability density (10) of the update noise
and can be presented in the form

φ(r; s) =

{

1
λe−(r−s)/λ, r ≥ s

0, r < s
(12)

The conditional expectationpXN |YN
can be calculated

through the conditional probability density for the se-
quences (2), see [1] for more detail. The MAP estimate
of the orbitx(t) is obtained by solving the problem

− log pXN |YN
→ min, pXN |YN

6= 0 (13)

Applying the Bayes’ rule for conditional probabilities
yields (see [1])

pXN |YN
= p0(x(1)) ·

N
∏

t=1

pγ(y(t) − x(t))φ(x(t); x(t − 1)), (14)

where p0(x(1)) is the probability density function of the
initial condition andpγ(·) is the gaussian probability density
of the noise (1).

The second inequality in (12) leads to the constraint

x(1) ≤ x(2) ≤ . . . ≤ x(N) (15)

If the monotonicity condition (15) is violated, then at least
one of the multipliersφ(x(t);x(t−1)) (12) contributing to
the expression forpXN |YN

in (14) is zero. By substituting
(6), (10), and (12) into (14) we get the problem of mini-
mizing the loss indexJ = − log pXN |YN

that needs to be
solved for finding the sequencex(t):

J =
[x(1) − x0]

2

2Q0
+

N
∑

t=1

[x(t) − y(t)]2

2Γ

+

N
∑

t=2

x(t) − x(t − 1)

λ
→ min, (16)

where (15) should be taken into account as a hard constraint.
Note that all termsx(t) in the last sum (16) cancel out,
except forx(1) andx(N).

The problem (16) subject to (15) is a QP (Quadratic
Programming) problem and very efficient computational
methods, such as interior point methods, are available for
such problems. A few QP-related codes are a part of Matlab
Optimization Toolbox.

In case when no apriori information aboutx0 is available,
one can assume the initial condition covarianceQ0 → ∞
and drop the first term in the r.h.s of (16). In that case, the
MAP estimate of the orbitx(t) becomes a ML estimate and
depends on the single tuning knob parameter,β = λ/Γ).

The main difficulty with the problem (15), (16) is in
the presence of the of the monotonicity constraints (15).
Note, that the third term in the performance index (16)
provides a penaltyβ−1[x(N)−x(1)] for the overall increase
of the fault estimatex through the observation time. The
weight at this penalty is essentially a ratio of the observation
noise covarianceΞ to the fault driving noise covarianceλ.
The parameterβ has the same essential meaning as the
parameterα in the Kalman filter gain (9) and could be
tuned empirically to achieve the desired performance of the
filter, similar to how an exponential filter gain is tuned in
practice.

C. Filter performance simulation and comparison

The developed monotonic regression trending algorithm
was validated in extensive simulations. A random noise
was added to systematic trends and the algorithm attempted
recovering the underlying trend.

In addition to the source data, the trending results depend
on the single tuning parameterβ of the algorithm. This



parameterβ = λ/Γ depends (i) on the covarianceΓ
of the gaussian observation noise and (ii) on the width
(covariance)λ of the exponentially distributed innovation
noise in the Markov chain model for the underlying trend.
In the simulations, the observation noise was uniformly
distributed, not gaussian; the underlying trend was a deter-
ministic function, not a Markov chain realization. Thus,β
was considered just as a tuning parameter of the algorithm
without assigning to it any other special meaning.

An intuitive explanation of howβ influences the results
can be obtained by considering a case where the last data
value is much larger than the second last trend value. For
large β, the algorithm will draw a monotonic regression
that jumps up in the end to accommodate this last data
point. For smallβ, the algorithm assumes that the observed
increase in the data is a random outlier and follows an
average monotonic regression trend observed through many
previous data points. Thus,β is essentially a smoothing
parameter similar to the (inverse) time constant of an
exponential filter.
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Fig. 1. Monotonic regression vs. exponential filtering. Dotted line -
underlying trend. Solid line - monotonic regression withβ = 1/2. Dashed
line - exponential filtering with the filter factor 0.85. Dots- raw data.

For β → ∞, the regularization penalty given by the last
term in (16) vanishes. In that case the trending becomes very
sensitive to outliers, especially those coming as a first or the
last point in the data batch. Consider a data sequence where
y(1) ≤ y(t) or y(N) ≥ y(t). Then, forλ → ∞ (which is
the same asβ → ∞) the minimum in (16) is achieved at
x(1) = y(1) or x(N) = y(N) respectively. The filter does
not have any smoothing action.

For β → 0 we haveλ → 0 and the regularization penalty
given by the last term in (16) dominates the optimization
problem. In that case one can prove that an optimal es-
timate of the trend is given by a constant valuex(t) =
mean(YN ) = const. The value ofβ = 1/2 was selected for
the problem in hand. In Figure 1, this monotonic regression
trend is compared against the exponential filtering results.
By trial and error, the exponential filter factor of 0.85
was selected. This corresponds to the gainK∗ = 0.15 in
the stationary Kalman filter (8). By using (9), the signal-
to-noise ratio parameterα = Ξ/(2Γ) can be found as
α = 9/68 ≈ 0.132. In addition to the two estimated trends,

Figure 1 shows the raw data and the underlying trend.
The monotonic regression estimate is much closer to the
underlying trend than the result of the exponential filtering.

IV. SECOND-ORDER FILTER, PROGNOSTICS

A. Second-order Kalman Filter, linear trend

The Random Walk model (5) of the unknown signal se-
quencex(t) in (1) does not adequately describe systematic
trends in the data. In fault diagnostics and prognostics, such
trends can be an important indication of impending failure
and might be used for evaluating the need for preventive
maintenance.

A systematic way of modeling regular trends in the data
for filtering, is through a second-order model

x1(t + 1) = x1(t) + ξ1(t), (17)

x2(t + 1) = ax1(t) + x2(t) + ξ2(t) (18)

In (18), a is scalar parameter. The model (17)–(18) is
a generalization of (5). The first equation, (17) describes
the evolution of the fault growth rate. In the absense of the
random excitationξ1(t) this rate is assumed to be constant.
The second equation, (18) describes the evolution of the
fault itself.

In the absense of the random excitationξ2(t) the fault
parameterx2(t) grows at the ratex1(t).

The uncorrelated gaussian white noise sequencesξ1(t)
and ξ2(t) in (17)–(18) are assumed to be independent and
have covariancesΞ1 andΞ2 respectively.

The signal model (17)–(18) should be complemented by a
measurement model explaining the observed data sequence
y(t). This model is similar to (1) and has the form

y(t) = x2(t) + γ(t), (19)

whereγ(t) is a Gaussian white noise described by (4).
Update equations (17)–(18) and observation equation

(19) make a data model in the form suitable for Kalman
filtering. A model of that form (constant velocity model)
is commonly used in navigation, motion estimation, and
tracking applications.

In order to formulate Kalman Filter equations similar to
(8), consider the matrix form of (17)–(19). With an overload
of notation, denotex(t) = [x1(t) x2(t)]

T , then

x(t + 1) = Ax(t) + ξ(t) (20)

y(t) = Cx(t) + γ(t) (21)

whereξ(t) = [ξ1(t) ξ2(t)]
T is a noise vector. With further

overload of notation, the initial conditions and state noise
are distributed as

x(t = 1) ∼ N(x0, Q0) : Q0 = diag{Q01, Q02},(22)

ξ ∼ N(0,Ξ) : Ξ = diag{Ξ1,Ξ2} (23)

For the system (4), (20)–(23), the stationary Kalman
Filter is a second-order filter that gives an estimate of the
underlying trend̂y(t) = Cx̂(t) for the datay(t) as

ŷ = C[Iz − A − K∗C]−1K∗y (24)



The stationary Kalman filter gainK∗ can be found from
an algebraic Riccati equation. The filter gainK∗ and, hence,
the transfer function (24) depend on the following four
design parameters: noise covariancesΞ1, Ξ2, Γ and the
dynamic model parametera. Note that only three parame-
ters here are independent because of the possible variable
changex1 → ax1, ξ1 → aξ1. This variable change leads to
the parameters scaled asa → 1, Ξ1 → a2Ξ1. The second-
order linear filter (24) can be applied to fault data trending
in a straightforward way.

B. Second-order monotonic regression, secondary damage

The stochastic model (4), (20)–(23), allows modeling
a regular trend in the data. This is expecially useful for
prognostics applications of predictive trending. Yet, this
model does not take into account inherent monotonicity
(irreversibility) of the fault damage accumulation.

This section considers the model (17)–(18) with the initial
conditions (22). The observation noiseγ in (19) is again
assumed to be gaussian distributed white noise (4). The
state noisesξ1(t) and ξ2(t) are now assumed to have one
sided distributions. At eacht, the random variablesξ1(t)
and ξ2(t) are independent and exponentially distributed in
accordance with (10) as

ξ1(t) ∼ E(λ1), ξ2(t) ∼ E(λ2) (25)

The described model can be best explained as a primary
and secondary damage model. It is based on a practically
reasonable assumption that the system operates normally
till an onset of fault condition. This condition shows up
as a systematic deterioration trend of the performance
variabley(t). The systematic deterioration rate isx1(t) and
it can only increase with time. The ratex1(t) must be
watched and defines prognostics of the trend. In addition to
the systematic and accelerating trend, the random variable
ξ2(t) describes monotonic accumulation of the damage that
follows the Palmgren–Miners rule.

The deterioration ratex1(t) could include a systematic
average performance loss for the cycle. The model can
be conveniently used for describing the accumulation of
secondary damage in the system caused by a primary fault
condition. In that case,x1(t) corresponds to the intensity
of the primary fault condition andx2(t) describes the
secondary damage accumulating because of this primary
fault condition.

Having described and explained the second order mono-
tonic regression model, let us consider the problem of
estimating the orbitx(t) = [x1(t) x2(t)]

T (3) of the Markov
chain (4), (17)–(18), (22), (25) from the observed data
sequencey(t) (2). The derivation of the nonlinear filter
largely repeats (and extends) the derivation for the first-
order monotonic regression filter in the previous section.

To find a MAP estimate of the orbitx(t), consider the
transition density function (12)φ(r; s) = px(t)|x(t−1)(r, s),
wherepx(t)|x(t−1)(r, s) is the conditional probablity density.

From (17)–(18), (25), it follows that the transition density
can be presented in the form

φ(r; s) =
1

λ1
e−(r1−s1)/λ1

1

λ2
e−(r2−as1−s2)/λ2 (26)

for r1 ≥ s1, r2 ≥ s2; and φ(r; s) = 0 if r1 < s1 or
r2 < s2.

The conditional expectation for MAP estimation yields
the loss indexJ = − log pXN |YN

,

J =
1

2
(x(1) − x0)

T Q−1
0 (x(1) − x0) +

N
∑

t=1

[y(t) − x2(t)]
2

2Γ

+
x1(N) − x1(1)

λ1
+

x2(N) − x2(1)

λ2
−

N−1
∑

t=1

ax1(t)

λ2
(27)

where it is assumed that fort = 1, . . . , N − 1

x1(t + 1) − x1(t) ≥ 0, x2(t + 1) − x2(t) − ax1(t) ≥ 0 (28)

The MAP estimate of the orbitx(t) is obtained by
solving the optimization problemJ → min as defined by
(27) with the constraints (28). This is a QP (Quadratic
Programming) problem. Note that unlike the first-order
monotonic regression problem (16), (28), the second-order
monotonic regression problem (27), (28), is ill-defined
(underspecified). That is, the Hessian of the quadratic form
(27) has onlyN nonzero singular values out of2N total.
Not every QP solver can deal with such problems.

Similar to the first-order monotonic regression problem,
in most cases there is no information about the initial value
x0 of the trend. Thus, the initial condition covariance can be
assumed infinite,Q0 = ∞, and the second term in the loss
index (27) disappears. Consider now the variable change
x1 → ax1, ξ1 → aξ1. It leads to the parameter changea →
1, λ1 → aλ1. With that in mind, the Maximum Likelihood
estimate of orbit (assumingQ−1

0 = 0) can be multiplied
through byΓ and shown to depend on two tuning knob
parameters only:

β1 = aλ1/Γ, β2 = λ2/Γ (29)

The parameterβ2 provides a penalty of the fault estimate
x through the observation time and is essentially similar
to the parameterβ in the first-order monotonic regression
problem of previous section. The parameterβ1 provides a
penalty for the linear trend in the data and characterizes
the amplitude of the driving noiseξ1 in (17). If β1 → 0,
the second-order monotonic regression estimate coincides
with the first-order monotonic regression. Ifβ1 → ∞, an
average linear trend only is estimated.

C. Filter performance simulation

The described second-order monotonic regression trend-
ing algorithm was validated in simulation. The data set was
similar to one used for testing the first-order monotonic
regression trending and included 80 points. The underlying
trend held a constant value for 15 samples, then stepped up
by 0.4 then was constant for 35 more samples, then started



ramping up with the slope of 0.04 per sample. In the data
set this underlying trend (the orbit) was distorted by adding
an uncorrelated random noise uniformly distributed on the
[−1, 1] interval. The noise was produced by Matlab random
number generator functionrand.

The trending results depend on the tuning parameters
of the algorithm: β1 and β2. These parametersβj =
λj/Γ, j = 1, 2 are defined by the covarianceΓ of the
gaussian observation noise and the parametersλj of the
exponential distribution for innovation noises in the second-
order Markov model of the trend. In the test data set, the
observation noise is uniformly distributed, not gaussian.
In reality a trend is a deterministic function. Thus, we
consideredβ1 andβ2 as tuning parameter of the algorithm
without assigning to them any other meaning. As explained
above,β1 and β2 are smoothing parameters similar to the
(inverse) time constant of the exponential filter.

For smallβ2, the solver fits a concave piece-wise linear
trend into the data. For largeβ2, the second-order mono-
tonic regression yields a piece-wise constant trend, whichis
similar to a first-order monotonic regression solution of the
previous section. This is because largeβ2 corresponds to
large covarianceλ2 in the state noise model (10), (25). In
turn, large state equation noise means slower filtering - this
is well recognized in Kalman filtering. A slow filter for the
coordinatex2 means a piece-wise constant solution that is
not very responsive to changes in the data. Similarly, small
β2 corresponds to smallλ2 and this leads to the part of the
filter that follows the model for the coordinatex1 providing
the dominant (slow) dynamics yielding a piece-wise linear
concave function.

Based on experimentation, the tuning knob values were
selected asβ1 = 1, β2 = 1/2. Figure 2 compares the
designed second-order monotonic regression filter against
the result for the stationary Kalman Filter described earlied
in this section. By trial and error, the noise covariances
Γ = 104, Ξ1 = 1, Ξ2 = 50 were found to provide the
best trending quality for the Kalman Filter. In addition
to the two estimated trends, Figure 2 shows the raw data
and the underlying trend. As one can see, the second-order
monotonic regression estimate recovers the underlying trend
with by far superior quality of estimation compared to the
second-order Kalman Filter.

V. CONCLUSIONS

Nonlinear filtering algorithms have been developed for
trending fault estimate sequence. The fundamental statistical
model used for the nonlinear filtering in obtaining trends is
based on the assumption of monotonic increase of the fault
parameters. The faults can only accumulate, and the fault
condition would never improve unless a maintenance action
is taken. The two fault models were discussed including
a first-order model describing fault accumulation and a
second order-model describing secondary damage caused by
accumulating primary fault. The deterioration rate caused
by the secondary damage can be assumed sustained and
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Fig. 2. Comparison of second order Kalman Filter and the secondorder
monotonic regression filter. Solid line - Kalman filtering results. Dashed
line - monotonic regression. Dash-dotted line - underlying trend.

is used for the prognostics of the fault condition. The
developed algorithms have similarity with basic Kalman
filtering methods. Unlike linear Kalman filters that are based
on gaussian noise models, the developed filters are nonlinear
and are based on exponential one-sided noise statistics.
Comparison with Kalman filters shows superiority of the
developed trending approaches. They are suitable for a
broad use in the trend monitoring applications.
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