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Abstract— A new robust delay-dependent stability criterion
for a class of uncertain systems with delay is established
based-on Park inequality. The result for robust delay-
dependent stability is presented in terms of linear matrix
inequalities (LMIs) by using Lyapunov-Krasovskii functional
method. By this result, we give an estimate of the maximum
admissible delay, which can be transformed into a generalized
eigenvalue problem. Furthermore, a mixed delay stability
criterion for this class of uncertain systems with multi-delays
is obtained. Finally, two numerical examples are also worked
out to illustrate the efficiency and feasibility of the present
result.
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matrix inequality (LMI).

I. INTRODUCTION

In the mathematical description of a practical control
process, one generally assumes that the process depends
only on the present state. However, time-delay is ubiq-
uitous in the practical control systems and may lead to
destabilization. Studies of stability and stabilization of time-
delay systems have become an important problem in control
theory (see [1]). If an uncertain delay term is constant but
unlimited, i.e., the time-delay belongs to[0,∞), researchers
have provided some delay-independent stability criterion
(see [2]–[6] and the references therein). It is necessary to
study the delay-dependent stability if an unknown delay
term is bounded. There are many valuable results on delay-
dependent stability (see [7]–[13] and the references therein).
Generally speaking, delay-dependent results are less conser-
vative than delay-independent results authors. To the best
of the authors’ knowledge, very few results concerning the
robust delay-dependent (or delay-independent, mixed delay)
stability for the following system model are available. The
aim of this paper is to present a new result on robust delay-
dependent stability of delay systems.

We will study robust delay-dependent stability of a more
general case of linear delay systems subject to norm-
bounded uncertainties described by the section 2. By con-
structing an appropriate Lyapunov-Krasovskii functional,
we derive an linear matrix inequality result on robust delay-
dependent stability of the systems based on Park inequality.
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Furthermore, we will extend the result to the case of a
mixed delay stability criterion for this class of uncertain
systems with multi-delays. Finally, two numerical examples
are worked out to illustrate the efficiency and feasibility of
the present result.

II. PRELIMINARIES

In the sequel, denote byAT andA−1 the transpose and
the inverse of matrixA (if it is invertible), and byI the
unit matrix of appropriate dimensions.̄σ(·) denotes the
maximum singular value of matrix.

Consider the following uncertain linear system with delay
described byΣ:

ẋ(t) = Ax(t) +Aτx(t− τ) +Bp(t)
q(t) = Cx(t) +Dp(t)
p(t) = ∆q(t), ‖∆‖ ≤ 1, σ(D) < 1
x(t0 + s) = ψ(s), s ∈ [−τ, 0],

(1)

where x(·) : R → Rn is the state vector,p, q are
the uncertain input and output of the plant, respectively.
(t0, ψ) ∈ R × Cn,τ , where Cn,τ = C([−τ, 0],Rn) is
the Banach space consisting of all continuous vector-valued
functions from [−τ, 0] to Rn. The coefficient matrices
Cτ , A,Aτ , B,C,D are real constant matrices of appropriate
dimensions. A description of such type of uncertainties can
be found in [14], [15].

By Newton-Leibnitz formula:

x(t− d) = x(t)−
∫ t

t−d

ẋ(s)ds,

the above form can be rewritten as the following algebraic-
differential equations including integration for descriptor
systems with distributed delay in the variabley:

ẋ(t) = (A+Aτ )x(t) +Bp(t)−Aτ

∫ t

t−τ
ẋ(ξ)dξ

q(t) = Cx(t) +Dp(t)
p(t) = ∆q(t), ‖∆‖ ≤ 1, σ(D) < 1
x(t0 + s) = ψ(s), s ∈ [−τ, 0],

(2)
Similar transformations of a delay system into such a form
have been used for delay-dependent stability analysis of
retarded type systems [7].

In this paper, we shall focus on the problem of the delay-
dependent robust stability of the system (1) with respect
to (w.r.t.) the uncertainty∆ (i.e., finding robust stability



conditions containing delay information). The following
result will be useful in the sequel.

Recall Schur complement formula (see [14], [15]),
namely

R =
[
R11 R12

RT
12 R22

]
< 0 (≤ 0)

if and only if one of the following conditions holds:
1) R22 < 0 andR11 −R12R

−1
22 R

T
12 < 0 (≤ 0);

2) R11 < 0 andR22 −RT
12R

−1
11 R12 < 0 (≤ 0).

Lemma 1. (see [11]) For any positive definite matrixX
and any matrixM of appropriate dimensions, the following
inequality holds

±2xT y ≤
[
x
y

]T [
X XM

MTX (2, 2)

] [
x
y

]
,

where (2, 2) =: (MTX + I)X−1(XM + I) and x, y are
arbitrary dimensional vectors.

III. ROBUST DELAY-DEPENDENT STABILITY

To analyze delay-dependent robust stability of the system
(1), the Lyapunov-Krasovskii functional for the system (1)
can be chosen as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t). (3)

where
V1(t) = xTPx, P > 0; (4)

V2(t) =
∫ 0

−τ

∫ t

t+θ

ẋT (ξ)AT
τ XAτ ẋ(ξ)dξdθ, X > 0; (5)

V3(t) =
∫ 0

t−τ

xT (s)Qx(s)ds, Q > 0; (6)

V4(t) =
∫ t

0

qT (s)q(s)− pT (s)p(s)ds . (7)

Notice thatV (t) is radially unbounded with respect tox(t),
andV4(t) ≥ 0 since‖∆‖ ≤ 1.

From (4)–(7), it follows that

dV1
dt |(1) = 2xTP (A+Aτ )x+ 2xTPBp(t)−

2xTPAτ

∫ t

t−τ

ẋ(ξ)dξ
(8)

dV2

dt
|(1) = τ ẋT (t)AT

τ XAτ ẋ(t)−
∫ t

t−τ

ẋT (ξ)AT
τ XAτ ẋ(ξ)dξ ,

(9)
dV3

dt
|(1) = xT (t)Qx(t)− xT (t− τ)Qx(t− τ) , (10)

and
dV4
dt |(1) = qT (t)q(t)− pT (t)p(t)

=
[
x
p

]T [
CTC CTD
DTC DTD − I

] [
x
p

]
.

(11)

Moreover, by Lemma 1,

−2
∫ t

t−t

xT (ξ)PTAτ ẋ(ξ)dξ

≤
∫ t

t−t

[
Aτ ẋ(ξ)
Px

]T [
X XM

MTX (2, 2)

] [
Aτ ẋ(ξ)
Px

]
dξ

= τxTP (MTX + I)X−1(XM + I)Px

+2xTPMTXAτ +
∫ t

t−τ

ẋ(ξ)dsξ

+
∫ t

t−τ

ẋT (ξ)AT
τ XAτ ẋ(ξ)dξ.

Thus, from (8)–(11) and the above inequality, we can
obtain

dV
dt |(1) = dV1

dt |(1) + dV2
dt |(1) + dV3

dt |(1) + dV4
dt |(1)

≤ xT [P (A+Aτ ) + (A+Aτ )TP
+τP (MTX + I)X−1(XM + I)P ]x
+2xTPBp+ 2xTPMTXAτ (x(t)− x(t− τ))
+τ ẋT (t)AT

τ XAτ ẋ(t) + xT (t)Qx(t)
−xT (t− τ)Qx(t− τ)

+
[
x
p

]T [
CTC CTD
DTC DTD − I

] [
x
p

]
= πT

 Ξ11 Ξ12 Ξ13

ΞT
12 Ξ22 Ξ23

ΞT
13 ΞT

23 Ξ33

π
whereπ = [x(t) x(t− τ) p(t)]T ,

Ξ11 = P (A+Aτ ) + (A+Aτ )TP
+CTC +Q+ τATAT

τ XAτA
+τP (MTX + I)X−1(XM + I)P
+PMTXAτ +AT

τ XMP,
Ξ12 = τATAT

τ XAτA− PMTXAτ

Ξ13 = CTD + PB + τATAT
τ XAτB

Ξ22 = −Q+ τAT
τ A

T
τ XAτAτ

Ξ23 = τAT
τ A

T
τ XAτB

Ξ33 = DTD − I + τBTAT
τ XAτB.

TakingW =: XMP , one has that

Ξ11 = P (A+Aτ ) + (A+Aτ )TP + CTC +Q
+τATAT

τ XAτA+ τ(WT + P )V −1(W + P )
+WTAτ +AT

τ W,

Thus, it is guaranteed the negativeness ofV̇ (t) wheneverπ
is nonzero if the following linear matrix inequality holds:

Π11 Π12 Π13 0 Π15

ΠT
12 Π22 Π23 0 0

ΠT
13 ΠT

23 DTD − I τBTAT
τ X 0

0 0 τXAτB −τX 0
ΠT

15 0 0 0 −τX

 < 0,

(12)



where

Π11 =: P (A+Aτ ) + (A+Aτ )TP + CTC
+Q+ τATAT

τ XAτA+WTAτ +AT
τ W,

Π12 =: τATAT
τ XAτA−WTAτ

Π13 =: CTD + PB + τATAT
τ XAτB

Π15 =: WT + P
Π22 =: −Q+ τAT

τ A
T
τ XAτAτ

Π23 =: τAT
τ A

T
τ XAτB.

By Schur complement formula, the above matrix inequality
is equivalent to the negativeness of the coefficient matrix
of V̇ (t), this shows that the system (1) is robustly delay-
dependently stable.

We summarize the result as follows.

Theorem 1.For system (1), if there exist positive definite
matricesP,X,Q and matricesW ∈ Rn×n such that the
following LMI holds:

Σ11 −WTAτ Σ13 Σ14 Σ15

−AT
τ W −Q 0 Σ24 0

ΣT
13 0 Σ33 Σ34 0

ΣT
14 Σ24 ΣT

34 −τX 0
ΣT

15 0 0 0 −τX

 < 0, (13)

where
Σ13 =: CTD + PB,
Σ14 =: τATAT

τ X,
Σ24 =: τAT

τ A
T
τ X,

Σ33 =: DTD − I
Σ34 =: τBTAT

τ X,
Σ15 =: Π15

and

Σ11 =: P (A+Aτ ) + (A+Aτ )TP + CTC
+Q+WTAτ +AT

τ W
(14)

then the system is robustly delay-dependently stable w.r.t.
∆.

Proof. By Schur complement formula, (12) is equivalent
to (13). This completes the proof. ♦

Remark 1. TakingV =: τX, Theorem 1 can be rewritten
as:

Theorem 1’. For system (1), if there exist positive
definite matricesP,X,Q and matricesW ∈ Rn×n such
that the following LMI holds:

Σ11 −WTAτ Σ13 ATAT
τ V τΣ15

−AT
τ W −Q 0 AT

τ A
T
τ V 0

ΣT
13 0 DTD − I BTAT

τ V 0
V AτA V AτAτ V AτB −V 0
τΣT

15 0 0 0 −V

 < 0,

(15)
whereΣ11 is defined in (14), then the system is robustly
delay-dependently stable w.r.t.∆. ♦

Remark 2. From Theorem 1’, lettingB = C = D ≡ 0,
we obtain the following result (see [11]) without uncer-
tainty.

Corollary 1. If there exist positive definite matrices
P,X,Q and matricesW ∈ Rn×n such that the following
LMI holds:

Σ11 −WTAτ ATAT
τ V τ(WT + P )

−AT
τ W −Q AT

τ A
T
τ V 0

V AτA V AτAτ −V 0
τ(W + P ) 0 0 −V

 < 0,

(16)
where Σ11 is defined in (14), then the system is delay-
dependently stable. ♦

The condition in the corollary has also been obtained
recently in [11] for delay-dependent stability, therefore, our
result is a direct extension of Theorem 1 in [11].

Remark 3. To estimate the maximal admissible delayed-
time τ such that the system is robustly delay-dependently
stable, we first note that the problem can be formulated as

max τ > 0

s.t. there exist positive definite matricesP,X,Q and matri-
cesW ∈ Rn×n such that (13) holds. By Schur complement
formula, (13) is equivalent to

Σ11 −WTAτ Σ13 ATAT
τ V Σ15

−AT
τ W −Q 0 AT

τ A
T
τ V 0

ΣT
13 0 Σ33 BTAT

τ V 0
V AτA V AτAτ V AτB −V 0
ΣT

15 0 0 0 − 1
τ2X

 < 0.

Letting δ = τ−2, we can transform the problem into the
following generalized eigenvalue problem (see [14]) for
more details):

min δ > 0

s.t. there exist positive definite matricesP,X,Q and matri-
cesW ∈ Rn×n satisfying

Σ11 −WTAτ Σ13 ATAT
τ V Σ15

−AT
τ W −Q 0 AT

τ A
T
τ V 0

ΣT
13 0 Σ33 BTAT

τ V 0
V AτA V AτAτ V AτB −V 0
ΣT

15 0 0 0 −δX

 < 0.

This problem can be solved numerically by using LMI
toolbox in [16]. ♦

IV. ROBUST MIXED DELAY

(DELAY-DEPENDENT/DELAY-INDEPENDENT) STABILITY

In the sequel, we will give a direct extension of the
obtained result in the last section. Now we consider the
following uncertain system with multi-delays:

ẋ(t) = Ax(t) +Adx(t− d) +Aτx(t− τ) +Bp(t)
q(t) = Cx(t) +Dp(t)
p(t) = ∆q(t), ‖∆‖ ≤ 1, σ(D) < 1
x(t0 + s) = ψ(s), s ∈ [−τ̄ , 0],

(17)



where τ̄ = max{τ, d}. For system (17), we can take
candidate Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t). (18)

whereV1(t)− V4(t) are given by (4)–(7) and

V5(t) =
∫ t

t−d

xT (ξ)Rx(ξ)dξ, R > 0 .

Similar to the proof of Theorem 1, we can obtain the
following result.

Theorem 2. For system (17), if there exist positive
definite matricesP, V,Q,R and matricesW ∈ Rn×n such
that the following LMI holds:

Φ11 −WTAτ 0 Σ13 Φ15 τΣ15

−AT
τ W −Q 0 0 Φ25 0
0 0 −R 0 Φ35 0

ΣT
13 0 0 Σ33 Φ45 0

ΦT
15 ΦT

25 ΦT
35 ΦT

45 −V 0
τΣT

15 0 0 0 0 −V

 < 0,

(19)
where

Φ11 =: P (A+Aτ ) + (A+Aτ )TP + CTC
+Q+R+WTAτ +AT

τ W,
Φ15 =: ATAT

τ V,
Φ25 =: AT

τ A
T
τ V,

Φ15 =: AT
dA

T
τ V,

Φ15 =: BTAT
τ V,

then the system is robustly (w.r.t.∆) delay-dependently
stable w.r.t. the delayτ and delay-independently stable w.r.t.
the delayd. ♦

Remark 4. Similar to Remark 3, we can estimate the
maximal delay for mixed delay stability. ♦

Remark 5. For the simple delay system (i.e.,Ad ≡ 0),
we can establish the same result of the delay-dependent
stability as Theorem 1. IfAτ ≡ 0, then Theorem 2 gives a
criterion on delay-independent stability of system (17).♦

V. NUMERICAL EXAMPLES

Example 1.Consider the example from [11], that is, the
system (1) with the following parameters:

A =
[
−2 0
0 −0.9

]
,

Aτ =
[
−1 0
−1 −1

]
and Ad = 0, B = 0, C = 0, D = 0. Since the matrix
A+Aτ is stable andA−Aτ is not, the time-delay system
is stable dependent on the size of the delayτ as noted
in [1]. Any delay-independent stability criterion fails to
verify asymptotical stability. In [11], the author showed a

comparative result for the maximal delay bound according
to different method in the references. In fact, the maximal
delay can be taken as larger than 4.3588. By Corollary 1,
using the LMI-Matlab Toolbox in [16], we find that (16) is
feasible forτ = 15. We obtain a solution to (16) forτ = 15
as follows:

P = 104

[
2.8130 −0.7091
−0.7091 3.9714

]
,

Q = 104

[
6.7799 0.7290
0.7290 6.7739

]
,

V = 104

[
2.2160 −1.1795
−1.1795 1.2785

]
,

W = 103

[
−9.6070 2.1342
2.1342 −8.6951

]
.

In fact, solving the optimization problem formulated in
Remark 3, we can obtainτmax = 1.2517e + 07 such that
the system is stable for allτ : 0 < τ ≤ τmax. This greatly
enlarge the admissible delay bound.

Example 2. Consider system (1) with the following
parameters:A,Aτ are the same as Example 1 and

B =
[

0.1 0
0 1

]
,

C =
[

0.1 0
0 0.1

]
,

D =
[

0.1 0
0 0.2

]
.

By Theorem 1’ and Remark 3, we obtain the maximal
delayτmax = 0.2559 and a solution to (15) forτ = 0.2559
as follows:

P =
[

369.5786 0.1496
0.1496 1.8021

]
,

Q = 107

[
2.4046 0.0059
0.0059 1.0139

]
,

V =
[

62.5000 −0.5920
−0.5920 0.9563

]
,

W = 107

[
2.3987 −1.0080
−1.0080 1.0139

]
.

Therefore, the uncertain system is robustly delay-
dependently stable for arbitrarȳσ(∆) ≤ 1 by Theorem 1.



VI. CONCLUSIONS

We have addressed the stability problems for a class
of uncertain systems with delay. A sufficient condition of
robust delay-dependent stability for this class of systems
was established in terms of linear matrix inequalities. By
the result, an extended result on mixed delay stability for
systems with multi-delays was further obtained. We also
considered the issue of estimating the maximum admissible
delay for stability and formulated it as a generalized eigen-
value problem which can be solved numerically with the
efficient LMI Tool Box. Finally, two numerical examples
showed less conservatism and the feasibility of our results.
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