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Abstract— This paper considers a flatness-based boundary
control of a hub-beam system with tip payload moving in a
vertical plane in the presence of gravity. The homogeneous
flexible beam is modelled using an Euler-Bernoulli hypothesis
which assumes no shear deformation or rotatory inertia. As
well, small transverse deformations are assumed. A linearized
system model involving a coupled PDE-ODE is derived and
a change of coordinates is introduced to simplify this model.
The method of control relies on a flatness property of the
system; namely, that the system solution can be differentially
parameterized in terms of a flat output. This parameterization
allows for straightforward motion planning and computation
of a control law. The approach is based on power series in
the spatial variable, and the convergence of these series is
ensured by choosing the flat output to be a nonanalytic, smooth
function of appropriate Gevrey class.

I. INTRODUCTION

Many important control problems involve motion plan-
ning. For example, steering a car along a prescribed tra-
jectory or controlling a chemical reactor between oper-
ating points. Methods for solving motion control prob-
lems often rely on nonlinear models because of significant
change in system behaviour for large motions. When a
finite-dimensional nonlinear system is differentially flat[1],
straightforward means for motion planning exist. In addi-
tion, feedback tracking controllers can be readily designed.
The flatness property means that trajectories of all system
variables (e.g. inputs or states) can be computed from
functions of a finite number of time derivatives of a so-
called flat output trajectory. This relationship between flat
output and system variables, which involves no integration
and only function evaluations, means motion planning ob-
jectives such as actuator saturation can be accounted for.
Having designed a flat output, an expression for an open-
loop steering control follows readily. Applications of this
flatness-based method can be found in [1], [2], [3] and the
references therein.

Recent work on flatness has dealt with the generaliza-
tion of motion planning to boundary controlled infinite-
dimensional distributed parameter systems [4], [3]. For
infinite-dimensional systems, the type of PDE determines
how the solution is parameterized by the flat output. For
example, the flatness-based approach was first applied to
distributed parameter systems on a flexible shaft problem
which can be modelled using a hyperbolic wave equation.
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The angular position of the non-drive-end of the shaft acts
as a flat output in that the torsion field can be expressed
as constant amplitude delays and predictions of this output
trajectory and its time derivatives [5], [6]. Other hyperbolic
equations modelling heat exchangers, telegraph lines, and
heavy chains lead to “distributed delay” operators requiring
the integration of the flat output over a finite time interval
[7], [8], [9]. Parabolic or biharmonic equations lead to
infinite series parameterizations [2], [10], [11], [12], [13],
[14]. Work on the biharmonic case includes the Euler-
Bernoulli beam moving in a horizontal plane [10], [15]
or a cantilever piezoelectric beam [16], [17]. Other work
considers the generalization to Rayleigh and Timoshenko
beams [3], [18].

There is a vast body of work on the control of flexible
beams which does not use a flatness-based approach. These
other methods are often based on linear ODE models
obtained by spatial discretization (e.g. modal decomposition
or finite element analysis) and linearization [19], [20]. Other
work treats the PDE-ODE system directly [21], [15], [10],
[22]. The approach taken here is in the same spirit as
the work in [10], [15] as a nondiscretized model and its
solutions are used directly to determine the control law. The
main contribution of this paper is to generalize the results
in [10], [15] to include the effects of a gravity. A more
complete account of the some of the calculations given in
this paper can be found in [23].

II. SYSTEM MODELLING

Consider a single-link flexible beam, shown in Fig. 1,
which is clamped to a motor and constrained to move in
a vertical plane in a gravitational field. A motor with fixed
translational position exerts a torqueT on the beam and the
inertia of the motor-hub assembly is denotedJh. Let the un-
deformed length of the beam beL, its constant mass density
be ρ, its constant cross-sectional area beS, its constant
cross-section area moment of inertia beI, and its Young
modulus beE. A payload of massm and inertiaJp is
attached to the non-drive-end of the beam. We assume the
Euler-Bernoulli hypothesis is valid: that plane cross sections
which are normal to the beam axis before deformation
remain plane after deformation and normal to the deformed
axis (no shear deformation) and rotatory inertia effects are
negligible. We introduce two coordinate systems shown in
Fig. 1 and which are related by a rotation of angleθ. The
inertial or fixed frame is denoted byXOY and the floating
frame is denoted byxOy. The floating-frame is defined
such that itsx-axis is aligned with the rigid motion of the
beam (i.e., the shadow beam). Letv(x, t) be the transverse
deformation of any mass point located at(x, 0) in xOy. At



x = 0 we have the boundary conditionsv(0, t) = 0 and
vx(0, t) = 0. In order to derive the dynamic model of the
beam we make use of the Generalized Hamilton’s Principle
[24] which states

∫ t2

t1

δL dt +

∫ t2

t1

Tδθ dt = 0 (1)

where L = K − V is the Lagrangian,K the system
kinetic energy,V the system potential energy,δ is the
variational operator, andt1, t2 are any times such that
t1 ≤ t2. In order to derive expressions forK and V , we
introduce a vectorr which points to an element of mass
on the beam. Represented inXOY , the vectorr pointing
to an element of mass located at(x, v(x, t)) in xOy is
r(x, θ, v) =

[

xcθ − vsθ xsθ + vcθ

]T
where cθ = cos θ

andsθ = sin θ. The kinetic energy of the system is

K =
ρS

2

∫ L

0

(x2θ̇2 + 2xv̇θ̇ + v̇2) dx +
m

2
(L2θ̇2

+ 2Lv̇Lθ̇ + v̇2
L) +

Jhθ̇2

2
+

Jp

2
(θ̇ + v̇Lx)2

wherev(L, t) = vL(t), vx(L, t) = vLx(t), and in the last
term we have taken the angle of the payload relative to
XOY asθ + vLx. This is because for smallv the angle of
the payload relative toxOy is β ≈ tan β = vLx (see Fig. 1
for a definition ofβ). Potential energy is due to the energy
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stored internally in the beam and that due to gravity [25]:

V =
EI

2

∫ L

0

(v2
xx + ρSg(xsθ + vcθ))dx + mg(Lsθ + vLcθ)

In order to use (1) the variation ofK is first computed.
This result is integrated fromt1 to t2 and integration by
parts is performed. Usingδθ(t1) = δθ(t2) = 0, δv(x, t1) =
δv(x, t2) = 0, x ∈ [0, L], andδvx(L, t1) = δvx(L, t2) = 0
we have for

∫ t2
t1

δK dt
∫ t2

t1

[

−ρS

∫ L

0

[

(xθ̈ + v̈)δv + (x2θ̈ + xv̈)δθ
]

dx

− m[L2θ̈ + Lv̈L]δθ − m(Lθ̈ + v̈L)δvL

− [Jp(θ̈ + v̈Lx) + Jhθ̈]δθ − Jp(θ̈ + v̈Lx)δvLx

]

dt (2)

The variation of the potential energy is

δV = EI(vLxxδvLx − vLxxxδvL +

∫ L

0

vxxxxδv dx)

+ ρSg

∫ L

0

(xcθδθ + cθδv − vsθδθ) dx

+ mg(Lcθδθ + cθδvL − vLsθδθ) (3)

Substituting (2) and (3) into (1) and equating coefficients
of δθ, δv, δvL, andδvLx to zero gives

(

∫ L

0

ρSx2 dx + mL2 + Jp + Jh)θ̈ +

∫ L

0

ρSxv̈ dx + Jpv̈Lx

+

∫ L

0

ρSg(xcθ − vsθ) dx+mg(Lcθ − vLsθ)+mLv̈L = T

(4a)

ρS(v̈ + xθ̈ + gcθ) + EIvxxxx = 0 (4b)

EIvLxx = −Jp(v̈Lx + θ̈) (4c)

EIvLxxx = m(v̈L + Lθ̈ + gcθ) (4d)

Substituting (4b) into (4a) and applying boundary condi-
tions (4c) and (4d) gives

T = Jhθ̈ − EIvxx(0, t) −
∫ L

0

ρSgv dxsθ − mgvLsθ

The system dynamics can be therefore described by the
coupled PDE-ODE system:

Jhθ̈ = T + EIvxx(0, t) + (

∫ L

0

ρSv dx + mvL)gsθ (5a)

ρS(v̈ + xθ̈ + gcθ) + EIvxxxx = 0 (5b)

v(0, t) = 0 (5c)

vx(0, t) = 0 (5d)

EIvLxx = −Jp[v̈Lx + θ̈] (5e)

EIvLxxx = m[v̈L + Lθ̈ + gcθ] (5f)

Linearizing this model about an equilibrium trajectoryv0

andθ0 = const. we have

Jh∆θ̈ = ∆T +

∫ L

0

Sg∆vdxsθ0
+

∫ L

0

Sgv0dxcθ0
∆θ

+ mg∆vLsθ0
+ mgvL0cθ0

∆θ + EI∆vxx(0, t) (6a)

ρS(∆v̈ + x∆θ̈ − gsθ0
∆θ) + EI∆vxxxx = 0 (6b)

∆v(0, t) = 0 (6c)

∆vx(0, t) = 0 (6d)

EI∆vLxx = −Jp[∆v̈Lx + ∆θ̈] (6e)

EI∆vLxxx = m[∆v̈L + L∆θ̈ − gsθ0
∆θ] (6f)

where∆θ = θ − θ0,∆v = v − v0.

III. FLATNESS-BASED CONTROL

We introduce the new dependent variable

w(r, τ) = ∆v(x, t)+x∆θ−
∫ t

0

∫ ξ1

0

gsθ0
∆θ(ξ) dξ dξ1 (7)



and new independent variablesx = Lr, andt = ατ where

α =
√

ρS
EI L2. In order to transform (6) into these new

coordinates we first compute

wτ (r, τ) = (∆v̇ + Lr∆θ̇ −
∫ ατ

0

gsθ0
∆θ(ξ) dξ)α

wττ (r, τ) = (∆v̈ + Lr∆θ̈ − gsθ0
∆θ)α2

wr(r, τ) = (∆vx + ∆θ)L, wrr(r, τ) = ∆vxxL2

wrrr(x, t) = ∆vxxxL3, wrrrr(x, t) = ∆vxxxxL4

wττr(r, τ) = (∆v̈x + ∆θ̈)α2L

Using the above relations the system (6) transforms to

wττ (r, τ) + wrrrr(r, τ) = 0 (8a)

w(0, τ) = −gsθ0

L

∫ ατ

0

∫ ξ1

0

∆u dξ dξ1 (8b)

wr(0, τ) = L∆θ = ∆u (8c)

wrr(1, τ) = − Jp

ρSL3
wττr(1, τ) = −λwττr(1, τ) (8d)

wrrr(1, τ) =
m

ρSL
wττ (1, τ) = µwττ (1, τ) (8e)

whereµ = m/(ρSL), λ = Jp/(ρSL3),∆u = L∆θ = u −
u0 andu0 = Lθ0. We now replace derivatives w.r.t.t by the
operators, in the sense of Mikusiński’s operational calculus
[26]:

s2ŵ(r) + ŵrrrr(r) = 0 (9a)

ŵ(0) = −α2gsθ0
∆û

Ls2
(9b)

ŵr(0) = ∆û (9c)

ŵrr(1) = −λs2ŵr(1) (9d)

ŵrrr(1) = µs2ŵ(1) (9e)

where ŵ denotes the operational function associated with
w. The general solution of (9a) can be expressed as

ŵ(r) = aC+
r + bC−

r + cS+
r + dS−

r (10)

where

C+
r =

Cr + Cr

2
=

∂S−
r

∂r
, C−

r =
Cr − Cr

2i
=

∂S+
r

∂r

S+
r =

iSr + Sr

2h
√

s
= −1

s

∂C+
r

∂r
, S−

r =
iSr − Sr

2h̄
√

s
=

1

s

∂C−
r

∂r

i =
√
−1, h = eiπ/4, h̄ = e−iπ/4, Cr = cosh[h

√
s(1 −

r)], Sr = sinh[h
√

s(1 − r)], S̄r = sinh[h̄
√

s(1 − r)],
and C̄r = cosh[h̄

√
s(1 − r)]. The operators

√
s, i

√
s are

logarithmic [26]. Coefficientsa, b, c, d are determined from
the boundary relations:

− α2gsθ0

Ls2
∆û = aC+

0 + bC−
0 + cS+

0 + dS−
0 , b = −λsd

∆û = s(−aS+
0 + bS−

0 ) + cC−
0 + dC+

0 , c = µsa

Solving this linear system gives

a =

(

π0 −
(C+

0 − λs2S−
0 )α2gsθ0

Ls2

)

∆û

Q

b = −
(

λsω0 +
λs(µsC−

0 − sS+
0 )α2gsθ0

Ls2

)

∆û

Q

c =

(

µsπ0 −
µs(C+

0 − λs2S−
0 )α2gsθ0

Ls2

)

∆û

Q

d =

(

ω0 +
(µsC−

0 − sS+
0 )α2gsθ0

Ls2

)

∆û

Q

where Q = ω0(C
+
0 − λs2S−

0 ) + π0s(µC−
0 − S+

0 ) and
ωr = C+

r + µsS+
r , πr = λsC−

r − S−
r . Using (10) and the

expressions fora, b, c, andd, we haveŵ(r) = (P (r)/Q)∆û
where

P (r) = π0ωr − ω0πr −
α2gsθ0

Ls2
[ωr(C

+
0 − λs2S−

0 )

+ πrs(µC−
0 − S+

0 )]

We can introduce aQ–basic or flat output̂y, such that

ŵ(r) = P (r)ŷ, ∆û = Qŷ

Splitting ŵ andP (r) into two parts gives

ŵ(r) = ŵ1(r) + ŵ2(r) = P1(r)ŷ + P2(r)ŷ

P1(r) = π0ωr − ω0πr

P2(r) =
α2gsθ0

Ls2
[(λs2S−

0 − C+
0 )ωr+ (S+

0 − µC−
0 )sπr]

(11)

According to [3],P1(r) can be expressed as

P1(r) =
λµs2 − 1

2
S−(r) +

λµs2 + 1

2

(

ℜ[S−(1 + i − r)]

−ℑ[S−(1 + i − r)]

)

− λsℜ[C−(1 + i − r)]

+ µℑ[C+(1 + i − r)]

whereℜ,ℑ denote real and imaginary parts respectively.
The functionP1 can also be expressed as a series

ŵ1(r) =
∞
∑

n=0

pn(r)
(−1)ns2n

(4n)!
ŷ+qn(r)

(−1)ns2n+2

(4n + 4)!
ŷ (12)

where

pn(r) =
r4n+1 + ℑ[(1 − r + i)4n+1] −ℜ[(1 − r + i)4n+1]

2(4n + 1)

+ µℑ[(1 − r + i)4n]

qn(r) =
λµ

2
(4n + 4)(4n + 3)(4n + 2)[ℑ[(1 − r + i)4n+1]

−ℜ[(1 − r + i)4n+1] − r4n+1]

− λ(4n + 4)(4n + 3)ℜ[(1 − r + i)4n+2]

According to (8c),

∆û = ŵr(0) = ŵ1r(0) + ŵ2r(0)



and

ŵ1r(0) =
∞
∑

n=0

dpn

dr
(0)

(−1)ns2n

(4n)!
ŷ +

dqn

dr
(0)

(−1)ns2n+2

(4n + 4)!
ŷ

ŵ2r(0) =
α2gsθ0

ŷ

Ls2

[

(λs2S−
0 − C+

0 )
dω0

dr

+ (S+
0 − µC−

0 )s
dπ0

dr

]

= 0

Hence∆u expressed as a function ofτ is

∆u =
∞
∑

n=0

dpn

dr
(0)

(−1)n

(4n)!

d2ny

dτ2n
+

dqn

dr
(0)

(−1)n

(4n + 4)!

d2n+2y

dτ2n+2

From (12) we have the relation betweenw1 andy:

w1(r, τ) =

∞
∑

n=0

pn(r)
(−1)n

(4n)!

d2ny

dτ2n
+qn(r)

(−1)n

(4n + 4)!

d2n+2y

dτ2n+2

Next, we obtain the series expression forw2(r, τ). From
(11), we can rewriteP2 as

P2(r) = −α2gsθ0

Ls2
[λµs2(C−

0 C−
r − sS+

r S−
0 )

− λs2(C−
r S+

0 + C+
r S−

0 ) + µs(C+
0 S+

r − C−
0 S−

r )

+ (C+
0 C+

r + sS+
0 S−

r )]

In order to expresŝw2 in a series we need the following
identities [23]:

C−
0 C−

r − sS+
r S−

0 =
1

4

[

(1 + i)C+(1 − r − i)

+ (1 − i)C+(1 − r + i) − 2C+(r)

]

C−
r S+

0 + C+
r S−

0 =
1

2

[

S+(1 − r + i) − S+(1 − r − i)

]

C+
0 S+

r − C−
0 S−

r =
1

2

[

S+(1 − r + i) + S+(1 − r − i)

]

C+
0 C+

r + sS+
0 S−

r =
1

4

[

(1 + i)C+(1 − r − i)

+ (1 − i)C+(1 − r + i) + 2C+(r)

]

Using er =
∑

n≥0 rn/(n!) we have

C−
0 C−

r − sS+
r S−

0 =
1

2

∞
∑

n=0

(−1)ns2n

(4n)!

[

ℜ[(1 − r + i)4n]

+ ℑ[(1 − r + i)4n] − r4n

]

C−
r S+

0 + C+
r S−

0 = −
∞
∑

n=0

(−1)ns2n

(4n + 1)!
ℑ[(1 − r + i)4n+1]

C+
0 S+

r − C−
0 S−

r =

∞
∑

n=0

(−1)n+1s2n+1

(4n + 3)!
ℜ[(1 − r + i)4n+3]

C+
0 C+

r + sS+
0 S−

r =
1

2

∞
∑

n=0

(−1)ns2n

(4n)!

[

ℜ[(1 − r + i)4n]+

ℑ[(1 − r + i)4n] + r4n

]

Thus

ŵ2(r) = −α2gsθ0

Ls2

∞
∑

n=0

[

p̄n(r)s2n

(4n)!
+

q̄n(r)s2n+2

(4n + 4)!

]

(−1)nŷ

with

p̄n(r) =
1

2

[

ℜ[(1 − r + i)4n] + ℑ[(1 − r + i)4n] + r4n

]

(13)

q̄n(r) =
λµ

2

4
∏

j=1

(4n + j)

[

ℜ[(1 − r + i)4n]

+ ℑ[(1 − r + i)4n] − r4n

]

+ λ

4
∏

j=2

(4n + j)ℑ[(1 − r + i)4n+1]

− µ(4n + 4)ℜ[(1 − r + i)4n+3]

Expressed as a function ofτ , w2 is given by

w2(r, τ) = −α2gsθ0
p̄0(r)

L

∫ ατ

0

∫ ξ1

0

y(ξ) dξ dξ1

− α2gsθ0

L

[ ∞
∑

n=1

p̄n(r)
(−1)n

(4n)!

d2n−2y

dτ2n−2

+

∞
∑

n=0

q̄n(r)
(−1)n

(4n + 4)!

d2ny

dτ2n

]

(14)

Transforming back to the original dependent coordinate
using (7) we have

∆v(r, τ) = w1(r, τ) − r∆u(τ)

+
α2gsθ0

L

[

∞
∑

n=1

(−1)n

(4n)!

(

dpn

dr
(0) − p̄n(r)

)

d2n−2y

dτ2n−2

+
∞
∑

n=0

(−1)n

(4n + 4)!

(

dqn

dr
(0) − q̄n(r)

)

d2ny

dτ2n

]

(15)

IV. SERIESCONVERGENCE

The convergence ofw1 (g = 0 case) is treated in [23]
and not repeated here. An outline of the convergence proof
for the series ofw2 is given here. We begin by choosing
y to be smooth and of Gevrey class less than2. That is,y
satisfies

sup
τ∈R+

∣

∣

∣

∣

dny

dτn
(τ)

∣

∣

∣

∣

≤ M
(n!)β

γn

whereM andγ are positive reals, andβ < 2 [27]. Defining

Cn(r, τ) =
α2gsθ0

(−1)n

L(4n)!
p̄n(r)

d2n−2y

dτ2n−2
,

Dn(r, τ) =
α2gsθ0

(−1)n

L(4n + 4)!
q̄n(r)

d2ny

dτ2n



Sincer ∈ [0, 1] we takez = (|r − 1| + 1)4 = (2 − r)4, so
z ≥ 1 and (13) we have

|Cn(r, τ)| ≤ α2g|sθ0
||p̄n(r)|

L(4n)!

∣

∣

∣

∣

d2n−2y

dτ2n−2

∣

∣

∣

∣

≤ 3Mα2|sθ0
|g

2L

((2n − 2)!)β

(4n)!γ2n−2
zn

=
N1((2n − 2)!)β

(4n)!γ2n−2
zn = Cnzn

and

|Dn(r, τ)| ≤α2g|sθ0
||q̄n(r)|

L(4n + 4)!

∣

∣

∣

∣

d2ny

dτ2n

∣

∣

∣

∣

≤α2g|sθ0
|

L

[

λµ

4

4
∏

j=1

(4n + j)3(2 − r)4n

+ λ

4
∏

j=2

(4n + j)(2 − r)4n+1

+ µ(4n + 4)(2 − r)4n+3

]

M [(2n)!]β

γ2n(4n + 4)!

=
α2g|sθ0

|M [(2n)!]β

L(4n)!γ2n

[

3λµz−1

4
+

λz−3/4

4n + 1

+
µz−1/4

∏3
j=0 (4n + j)

]

zn

≤N2
((2n)!)β

(4n)!γ2n
zn = Dnzn

with Cn = N1
((2n−2)!)β

(4n)!γ2n−2 , Dn = N2
((2n)!)β

(4n)!γ2n , N1 =

3Mα2g|sθ0
|/(2L), N2 = (Mα2g|sθ0

|/L)(3λµ/4 + λ +
µ/6), and n ≥ 1. Using Cauchy-Hadamard’s Theorem
for radius of convergence [28] and

√

(2nπ)(n/e)n ≤
n! ≤

√

(2nπ)(n/e)ne1/12n, the radius of convergence for
∑

n Cnzn and
∑

n Dnzn are

1

limn→∞
n
√

Cn

≥ lim
n→∞

n

√

∏3
j=0(4n − j)(4n − 4)!γ2n−2

N1((2n − 2)!)β

= lim
n→∞

(γ244−βe2β−4(n − 1)4−2β) = ∞

1

limn→∞
n
√

Dn

≥ lim
n→∞

n

√

(4n)!γ2n

N2((2n)!)β

≥ lim
n→∞

n

√

(
√

8nπ)(4n/e)4nγ2n

N2(
√

4nπ)β(2n/e)2nβ

= lim
n→∞

(γ244−βe2β−4n4−2β) = ∞

Thus, the radius of convergence for
∑∞

n=0 Cn(r, t) and
∑∞

n=0 Dn(r, t) are both infinite. Hence, the series for both
w2 andw have an infinite radius of convergence.

V. SIMULATION

The simulation demonstrates a rest to rest motion
from θ = 0 to π/4 on t ∈ [0, t∗] = [0, 2.099]. For
the system parameters considered this corresponds to

the interval τ ∈ [0, 10]. Equilibrium solutions for (5)
are given by v0(x, θ) = cos(θ)P(x) where P(x) =
(

4(ρSL + m)x − ρSx2 − 6L(ρSL + 2m)
)

gx2/(24EI).
This equilibrium solution corresponds to an equilibrium
torque T0(θ) = gLcθ(((ρSL + 2m)/2) + [3(ρSL)2 +
15ρSLm + 20m2]L2gsθ/(60EI)). The linearized
system (6) has equilibrium solutions∆v0 given by
∆v0(x,∆θ) = −∆θ sin θ0P(x) where we takeθ0 = π/8
as the point of linearization. To ensure initial and final
deformationsv = ∆v + v0(π/8) correspond tov0(0) and
v0(π/4) we set

∆v(x, 0) = v(x, 0) − v0(π/8) = v0(0) − v0(π/8)

= (1 − cos(π/8))P(x) = − sin(π/8)P(x)∆θ(0)

Hence,

∆θ(0) = (cos(π/8) − 1)/ sin(π/8) = y(0)/L (16)

where the last equality follows from the relation between
∆u andy = const. Similarly att = t∗ we have

∆θ(t∗) = (cos(π/8) − cos(π/4))/ sin(π/8) = y(t∗)/L
(17)

To ensure the rest to rest motion we incorporate conditions
(16) and (17) intoy. As well, we choosey so that all its
derivatives are zero att = 0 and t = t∗. Finally we take
y to be of Gevrey class less than2 for series convergence.
We remark thaty cannot be analytic as this would prevent
the beam from leaving its equilibrium position. We make
use of the nonanalytic C∞ function Φσ : R

+ → R defined
as

Φσ(t) =







∫ t/t∗
0

φσ(τ) dτ
∫

1

0
φσ(τ) dτ

for 0 ≤ t ≤ t∗

1 for t > t∗,
(18)

whereφσ : R
+ → R is defined as

φσ(t) =

{

exp(−1/(t(1 − t))σ) for 0 ≤ t ≤ 1

0 for t > 1.
(19)

The flat output is taken asy(t) = C1 + (C2 − C1) Φσ(t)
with C2 = L(cos(π/8) − cos(π/4))/ sin(π/8), C1 =
L(cos(π/8) − 1)/ sin(π/8), and σ = 10/9. A plot of
this function is shown in Fig. 2. We consider the same
parameters as in [15]:m = 5.9 kg, L = 1.005 m, EI =
47.25 N m2, ρS = 2.04 kg/m, Jh = 0.047 kg m2, and
g = 9.81 m/s2. Fig. 3 shows the resulting fieldv =
∆v + v0(π/8) where∆v is computed using (15) truncated
to 4 terms. The open-loop torqueT = ∆T + T0(π/8) is
shown in Fig. 4. The function∆T is computed using (6a).
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décrits par deśequations aux d́erivées partielles lińeaires,” Ph.D.
dissertation,École Nationale Suṕerieure des Mines de Paris, Paris,
France, 2000.

[15] Y. Aoustin, M. Fliess, H. Mounier, P. Rouchon, and J. Rudolph,
“Theory and practice in the motion planning and control of flexible
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