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Abstract—Modeling for coupled vibrations of a varying
length flexible cable transporter system with arbitrary axial
velocity is presented using the extended Hamilton’s principle.
Both transverse and longitudinal vibrations are considered si-
multaneously in the derivation. The inertia and damping of the
pulleys and actuators are included in the model. The derived
governing equations provide guidelines for future research on
cable systems. Numerical solution of the derived nonlinear
coupled partial differential equations (PDEs) is obtained using
Galerkin’s method. Simulation results show that increase in
damping of the system can reduce the longitudinal vibration
dramatically, but has little effect on the transverse vibration.

I. INTRODUCTION

Axially moving materials such as magnetic tapes, belts,
drive chains, and band saws, tend to vibrate in the presence
of external disturbances, degrading their performances. Re-
searchers have studied modeling and vibration control of
such axially moving systems in the last decades. These
systems have been modeled as traveling tensioned rods
or cables. Linear vibrations of axially moving materials
have been studied extensively [1]. While the linear theory
provides the natural frequencies, mode shapes and critical
speeds, it presents several limitations. As the transporter
speed increases, the tension variation causes oscillations
which adversely affects the response. The linear theory
becomes inapplicable near the critical speed [2].

The nonlinear vibrations of axially moving materials have
received attention over the years. Kirchhoff was one of the
first to derive a nonlinear model for the transverse vibration
of a vibrating string [3]. He proposed a passive controller
which was proportional to the velocity at the boundary to
stabilize the string. Extensions of the model were obtained
by other researchers as well ([4], [5], [6]).

Passive control usually does not provide the desired
performance. Recently, active boundary control is studied
by many researchers. Rahn derived a nonlinear model for
a string system, and proposed a nonlinear, model-based
asymptotic controller [7]. The proposed controller needed
to measure the string’s slope and its time derivative, its
velocity at the actuated boundary, and the tension in the
string. Baicu et al. proposed a three-dimensional model for a
string system and presented both passive and active control
laws [8]. Hagedorn studied the non-linear free vibration of
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an elastic cable under the action of gravity [9]. The above
studies assume that the string length is a constant during
the process of modeling and controller design. The energy
and stability of a class of strings with varying lengths was
studied in ([10], [11]).

The current research efforts have focused on transverse
vibration or longitudinal vibration individually. The study
of coupled vibrations of cable systems is a relatively less
studied problem in literature. Tabarrok studied coupled
vibrations of an axially moving beam, and proposed closed-
form and semi-analytic solution for given axial speed [12].
Riedel studied coupled forced response of an axially moving
strip, where the axial speed was assumed to be a constant
[13]. Most previous studies only modeled the cable itself,
while ignoring other discrete components, such as mass and
inertias of motors or pulleys in the system.

In this paper, we study coupled vibrations of a cable
transporter system with arbitrary varying axial velocity. The
transverse and longitudinal vibrations are studied simul-
taneously. The mass, damping, and inertias of the actu-
ator and pulleys are included in the model. The derived
governing equations are shown to be coupled nonlinear
PDEs. Galerkin’s method is applied to obtain the numerical
solution of the governing equations. Simulation results in-
dicate that increase in the damping reduces the longitudinal
vibration dramatically, but has little effect on the transverse
vibration. The results also show that the magnitude of the
transverse vibration is significantly larger than that of the
longitudinal vibration. The organization of this paper is as
follows: Section 2 derives the model of the cable transporter
system. Section 3 describes the procedure for the numerical
solution of the governing equations. Simulation results are
presented in Section 4, followed by conclusions of the work.

II. M ODELING OF THESYSTEM

In order to get a good understanding of the response
of the cable transporter system subject to control inputs
and external disturbances, an accurate mathematical model
is needed. Model-based feedback controllers design also
require a dynamic model of the system.

A. Hamilton’s Principle

Hamilton’s principle states that the motion of a dynamic
system between two given states at the timest1 and t2,



TABLE I

THE VARIABLES USED IN THE DERIVATION

Variables Description
T1(t) Torque applied by the right motor.
T2(t) Torque applied by the left motor.
r1 Radius of the right pulley.
r2 Radius of the left pulley.
I1 Inertia of the right pulley.
I2 Inertia of the left pulley.
C1 Damping coefficient of the right pulley.
C2 Damping coefficient of the left pulley.
E Young’s modulus.
A Cross sectional area of the cables.
M Mass of the slider.
ρ Mass per unit length of the cable.

ξ(t) Actuator and sensor location.
lm(t) Cable length external to the left pulley.
v(t) Axial velocity of the system,v(t) = l̇m(t).
L Length between centers of the two pulleys.

lp(t) Cable length external to the right pulley.
P (x, t) Tension in the cable.

C Damping coefficient of the slider.
u(t) A point wise control force in transverse direction.
θ1(t) Angular displacement of the right pulley.
θ2(t) Angular displacement of the left pulley.
y(x, t) Transverse vibration of the cable.
w(x, t) Longitudinal vibration of the cable.

minimizes the integral

t2∫

t1

(T − U + W )dt, (1)

whereT is the total kinetic energy,U is the total potential
energy, andW is the total work done by external forces.
Calculus of variations is then used to derive the model
of a mechanical system. The variables used in the model
development are shown in Table I. The schematic of the
system is shown in Fig. 1. The origin is at the contact
point of the left pulley,u(t) is the control input in the
transverse direction located atx = ξ(t), for suppression
of the transverse vibration. The slider position is defined
by lm(t) andv(t) = l̇m(t) is the axial velocity.

The velocity of a particle on the cable is composed
of two parts due to the coupled vibrations. The velocity
in the x direction is v(t) + wt + v(t)wx and in the y
direction is yt + vyx. Hence, the velocity of the slider at
x = lm, is v(t) + wt(lm, t) + vwx(lm, t). The subscript ’t’
denotes partial derivative with respect to time, and subscript
’x’ denotes partial derivative with respect to space. In the
following derivation, we omit the arguments such as time
t and spacex of the variables for the purpose of brevity,
i.e., we expressy(x, t) simply asy, wt(x, t) aswt, etc. We
make the following assumptions in the derivation:

• The density of the cableρ, the Young’s modulusE,
the cross sectional area of the cableA are constants.

• The damping coefficientsC, C1, C2, and the inertias
I1, I2 are constants.

• There is no bending and rotation in the cables.
• There are no vibrations in cables wound in pulleys.

Fig. 1. A schematic of the cable transporter system.

• The motion is restricted toxz plane.
• The cable weight is neglected, i.e., no sag in cables.
• The shear strain is neglected.

The kinematic constraints of the system are as follows:

lm(t) + lp(t) = L, (2)

r1θ1 + lp(t) = k1, (3)

r2θ2 + lm(t) = k2, (4)

r1θ1 + r2θ2 = 0, (5)

wherek1 and k2 are constants. On time differentiation of
Eqs. (2)-(4), we get

l̇m(t) = −l̇p(t), (6)

θ̇1 = − 1
r1

l̇p(t) =
1
r1

l̇m(t), (7)

θ̇2 = − 1
r2

l̇m(t). (8)

The total kinetic energyT (t) of the system is composed of
three parts: energy from the two pulleys, energy from the
slider, and the energy from the cable vibrations.

T (t) =
1
2
(I1 + ms1r

2
1)θ̇

2
1 +

1
2
(I2 + ms2r

2
2)θ̇

2
2

+
1
2
M (v + wt|lm + vwx|lm )2

+
1
2
ρ

ξ−∫

0

[(yt + vyx)2 + (v + wt + vwx)2]dx

+
1
2
ρ

lm∫

ξ+

[(yt + vyx)2 + (v + wt + vwx)2]dx

+
1
2
ρ

L∫

lm

[(yt + vyx)2 + (v + wt + vwx)2]dx, (9)

wherems1 = ρr1θ1 and ms2 = ρr2θ2 are masses of the
newly-wound cables on the pulley,wt|lm = wt(lm, t), and
wx|lm = wx(lm, t). The normal strain in thex direction,
according to the reference [14], is

ε = wx +
1
2
w2

x +
1
2
y2

x. (10)

The total potential energyU (t) of the system due to the



normal strain is

U (t) =
1
2

ξ−∫

0

EAε2dx +
1
2

lm∫

ξ+

EAε2dx +
1
2

L∫

lm

EAε2dx. (11)

The virtual work done by external forces including work
done by actuator inputu(t), work done by torquesT1(t)
and T2(t), and work done by friction forces at the slider
and pulleys is

δW = u(t)δy|ξ + T1δθ1 + T2δθ2 − C1θ̇1δθ1 − C2θ̇2δθ2

−C(v + wt|lm + vwx|lm )(δlm + δw|lm + wx|lmδlm), (12)

where w|lm = w(lm, t). On substitution of Eqs. (9),
(11), and (12) in the extended Hamilton’s principle, using
part integration and calculus of variations, we obtain the
following governing equations,

ρ
∂

∂t
(v + wt + vwx) + ρv

∂

∂x
(v + wt + vwx)

= EA
∂

∂x
[(wx +

1
2
w2

x +
1
2
y2

x)(1 + wx)], (13)

ρ
∂

∂t
(yt + vyx) + ρv

∂

∂x
(yt + vyx)

= EA
∂

∂x
[(wx +

1
2
w2

x +
1
2
y2

x)yx], (14)

(
T1

r1
− T2

r2
) − (

I1

r2
1

+
I2

r2
2

)l̈m − (
C1

r2
1

+
C2

r2
2

)l̇m

= M
∂

∂t
[v + wt|lm + vwx|lm)(1 + wx|lm )]

+ C(v + wt|lm + vwx|lm )(1 + wx|lm )

+

ξ−∫

0

∂

∂t
ρ[(v + wt + vwx)(1 + wx)]dx

+

lm∫

ξ+

∂

∂t
ρ[(v + wt + vwx)(1 + wx)]dx

+

L∫

lm

∂

∂t
ρ[(v + wt + vwx)(1 + wx)]dx

+

ξ−∫

0

∂

∂t
ρ[yx(yt + vyx)]dx +

lm∫

ξ+

∂

∂t
ρ[yx(yt + vyx)]dx

+

L∫

lm

∂

∂t
ρ[yx(yt + vyx)]dx. (15)

The resulting internal condition is,

u(t)|ξ = ξ̇ρ(yt + vyx)|ξ− − ρv(yt + vyx)|ξ−
− ξ̇ρ(yt + vyx)|ξ+ + ρv(yt + vyx)|ξ+

− EA(wx +
1
2
w2

x +
1
2
y2

x)yx|ξ−

+ EA(wx +
1
2
w2

x +
1
2
y2

x)yx|ξ+ , (16)

where we have used continuity conditionsδy|ξ = δy|ξ+ =
δy|ξ− , δlm|ξ = δlm|ξ+ = δlm|ξ− , and δw|ξ = δw|ξ+ =
δw|ξ− . The boundary conditions are

w(0, t) = w(L, t) = 0, (17)

y(0, t) = y(lm , t) = y(L, t) = 0. (18)

The transverse vibration in Eq. (14) can be expanded as
follows:

ρ(ytt + 2vyxt + v2yxx + v̇yx) = EA(yxwxx

+
3
2
y2

xyxx +
1
2
yxxw2

x + yxwxwxx + yxxwx), (19)

whereytt = ∂2y
∂t2 , yxt = ∂2y

∂x∂t, yxx = ∂2y
∂x2 , andwxx = ∂2w

∂x2 .
The result in Eq. (19) is compatible with the result in [11].
If the velocity v in Eq. (19) is assumed to be constant,
Eq. (19) is also in agreement with the result in [13] with
the exclusion of the external force terms.

After expressing the time and space derivatives in
Eq. (13), the motion equation governing the longitudinal
vibration is

ρ(wtt + 2vwxt + v2wxx + v̇wx + v̇) = EA(wxx

+3wxwxx +
3
2
w2

xwxx +
1
2
wxxy2

x + wxyxyxx + yxyxx), (20)

where wtt = ∂2w
∂t2 and wxt = ∂2w

∂x∂t. If the axial velocity
v(t) in Eq. (20) is constant, it reduces to the result in [13].

III. D ISCRETIZATION - GALERKIN ’ S METHOD

The derived motion equations are coupled nonlinear
PDEs and it is impossible to obtain an exact analytical so-
lution. Galerkin’s method is applied to truncate the infinite-
dimensional PDEs into a set of nonlinear finite-dimensional
ordinary differential equations (ODEs) with time dependent
coefficients. We normalize thex coordinate as follows:

η =
x

L
, 0≤η≤1. (21)

The space derivative of y(x,t) can be expressed as

∂y

∂x
=

∂y

∂η

∂η

∂x
=

1
L

yη, (22)

∂2y

∂x2
=

1
L2

yηη , (23)

where yη and yηη are the short notations of the space
derivatives of ∂y

∂η and ∂2y
∂η2 , respectively. The transverse

vibration y(x, t) is discretized in the following form in
terms of mode functionsΨj(η):

y(x, t) =
n∑

j=1

qj(t)Ψj(η), (24)

whereqj(t) is the unknown general coordinate to be deter-
mined andn is the number of mode functions. Similarly
for the longitudinal vibration, we have

w(x, t) =
n∑

i=1

pi(t)Ψi(η), (25)



Fig. 2. States trajectories of the system.

wherepi(t) is the unknowns to be determined. On substi-
tution of Eqs. (22)-(25) in Eqs. (15), (19), and (20), we end
up with a set of finite-dimensional discretized ODEs with
q(t) = [q1(t), q2(t), ...qn(t), p1(t), p2(t), ...pn(t), lm(t)]T

as unknown.

IV. SIMULATION RESULTS AND ANALYSIS

The orthogonal normal mode functions are chosen to
satisfy the boundary conditions

Ψi(η) = sin(iπη), 0≤η≤1, i = 1, 2, ...n (26)

where n is the number of the mode functions.
Given the initial conditions on q(t) and q̇(t) =
[q̇1(t), q̇2(t), ...q̇n(t), ṗ1(t), ṗ2(t), ...ṗn(t), v(t)]T , a numer-
ical solution is easily obtained using MATLAB.

Fig. 2 shows the state trajectoriesq versus time. We see
that the amplitudes of statesq1 andq2, which correspond to
the transverse vibration, are much bigger than those of states
p1 andp2, which correspond to the longitudinal vibration.
The transverse and longitudinal vibrations at one endx =
L, which corresponds toη = 1 are shown in Figs. 3 and
4, respectively. We observe that both vibrations at the end
are zero, which is reasonable since we made no vibration
assumption at the end.

Figs. 5 and 6 show the transverse and longitudinal vibra-
tion at η = 0.5. It can be seen that the transverse vibration
is much bigger than the longitudinal vibration. This result is
in agreement with the observations from experiment. This
explains why longitudinal vibration is usually ignored in
literature.

Fig. 3. Transverse vibration at one end.

Fig. 4. Longitudinal vibration at one end.

In order to see the effects of damping on the vibrations,
we increase the damping coefficients by one hundred times,
the results of transverse and longitudinal vibrations are
shown in Figs. 7 and 8, respectively. Comparing with the
results shown in Figs. 5 and 6, we see that the increase in the
damping reduces the longitudinal vibration dramatically, but
has little effect on the transverse vibration. This justifies the
addition of the control inputu(t) to suppress the transverse
vibration.

The arbitrary axial velocity affects both the transverse
vibration and longitudinal vibration. Figs. 9 and 10 show the
transverse and longitudinal vibration when the magnitude of



Fig. 5. Transverse vibration atη = 0.5.

Fig. 6. Longitudinal vibration atη = 0.5.

the initial axial velocity is increased one hundred times. In
general, increase in the axial velocity will lead to increases
of both vibrations. When the axial velocity reaches above
a critical velocity, divergence will happen, or even chaotic
motions.

V. CONCLUSIONS

In this paper, we derive the governing equations for cou-
pled vibrations of a varying length flexible cable transporter
system with arbitrary axial velocity using Hamilton’s princi-
ple. The inertias of the pulleys and motor, and dampings of
the system are included in the model. The derived equations
provide guidelines for future study on cable systems.

Fig. 7. Transverse vibration atη = 0.5 with large damping.

Fig. 8. Longitudinal vibration atη = 0.5 with large damping.

It is impossible to find an exact analytical solution for the
derived nonlinear governing equations. Galerkin’s method
is applied to truncate the infinite-dimensional PDEs into
finite-dimensional nonlinear ODEs with time dependent
coefficients. The numerical results demonstrate that increase
in the damping can reduce the longitudinal vibration dra-
matically, but has little effect on the transverse vibration.
The results also show that the magnitude of the transverse
vibration is significantly larger than that of the longitudinal
vibration, which explains why the longitudinal vibration
is often ignored in literature. Future work will include:
derivation of controllersT1(t), T2(t), and u(t), stability



Fig. 9. Transverse vibration atη = 0.5 with large initial velocity.

Fig. 10. Longitudinal vibration atη = 0.5 with large initial velocity.

analysis, and experiment implementation.
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