
Approximations of the NARMA model of Non-affine Plants

O. Adetona, S. Sathananthan, and L.H. Keel

Abstract— When the NARMA model is used in adaptive
control using neural networks, it often requires heavy compu-
tation due to its nonlinear dependence on the control input.
To overcome this, two classes of approximate models to the
NARMA model which are linear in the control input were
introduced. They are known as NARMA-L1 and NARMA-L2.
Though these approximations are useful in practical imple-
mentation of the controllers, their use is restricted to systems
with small input magnitude. In this paper, we introduce two
new classes of approximated models, referred as NARMA-
L1B and NARMA-L2B, that relax the small input magnitude
restriction. The proposed models are also linear in the control
input and therefore suitable for control design. A simulation
example is provided for illustration.

I. INTRODUCTION

Concise recursive input-output maps for nonlinear sys-
tems have been presented (see [1], [2] and reference
therein). Necessary and sufficient conditions for the ex-
istence of global recursive input-output maps have been
reported [3]. It was shown that the future output of an
nth order plant is a nonlinear function of the last 2n
inputs and last 2n outputs if the functions in the state
equations are smooth, the system is state invertible, and
an upper bound on the system order is known. Neural
networks were subsequently proposed for identifying the
input-output map from input-output data for the case where
the structure of the state equations is unknown, and the
states are inaccessible.

The NARMA model is an exact description of the input-
output behavior of a finite dimensional nonlinear discrete-
time plant in a neighborhood of an equilibrium point. It
often leads to mathematically intractable nonlinear control
equations and is therefore approximated by ARMA models
for tractability. Though adequate for most applications,
the ARMA model is only accurate for non-affine plants
with small input magnitudes. To relax this restriction,
NARMA-L1 and NARMA-L2 were recently introduced as
approximations of NARMA models with inputs larger than
permitted with ARMA models [4]. They are nonlinear with
respect to past outputs but linear with respect to the current
input and therefore suitable for control design. However,
they are still restricted to small input magnitudes. In this
paper, we further relax the input magnitude restriction and
develop two new models (NARMA-L1B and NARMA-
L2B). Like the NARMA-L1 and NARMA-L2, the proposed
models are linear with respect to the control input and
therefore suitable for control design. The proposed models
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eliminate the small input magnitude requirement and require
small input changes rather than small input magnitudes.

II. PRELIMINARIES

We consider an observable nth order, non-affine, discrete-
time, time-invariant system Σ with state equations

Σ : x(k + 1) = f [x(k), u(k)]

y(k) = h [x(k)] (1)

where {x(k)}, {u(k)}, {y(k)} are discrete sequences at
time instants k, subject to x(·) ∈ X ⊆ <n, u(·) ∈ U ⊆
<, y(·) ∈ Y ⊆ <, f : <n × < → <n, h : <n → <,
and f(·, ·), h(·) ∈ C∞. As is typically done, we assume
0 = f [0, 0], i.e. the origin is an equilibrium point of Σ. In
eq. (1), f(·, ·) and h(·) are unknown functions, f(·, ·) is a
nonlinear function of x(·), u(·), and only u(·) and y(·) are
accessible.

In a neighborhood x(·) ∈ Ω of an equilibrium state, the
implicit function theorem can be used to derive a NARMA
model [3], [4]

y(k + 1) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k), u(k − 1), · · · , u(k − n + 1)] (2)

for system Σ, where F : <n×<n → < and F (·, ·) ∈ C∞. In
general, this input-output model is nonlinear in the control
input and therefore not well suited to control system design.

Using eq. (2) for control design leads to mathematically
intractable nonlinear difference equations. Unfortunately,
techniques for solving such equations are limited to a few
restricted families. A typical way of avoiding this problem is
to approximate the NARMA model so that it becomes linear
in the control input and then use the approximate model
for control design. The resulting control design problem
is linear for which a wide variety of general solution
techniques are available.

We start our analysis by reviewing ARMA, NARMA,
NARMA-L1 and NARMA-L2 models.

A. ARMA Models

The well known linear state space approximation of Σ is

ΣL : x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) (3)

with A ∈ <n×n, b ∈ <n, and c ∈ <n defined as:

A :=
∂f [x, u]

∂x

∣
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∣

∣

x=0,u=0

, b :=
∂f [x, u]

∂u

∣

∣

∣

∣

x=0,u=0

,

c :=
∂h[x]

∂x

∣

∣

∣

∣

x=0

.



From eq. (3),

y(k) = cx(k)

y(k + 1) = cAx(k) + cbu(k)

...

y(k + n − 1) = cAn−1
x(k) +

n−2
∑

i=0

cAi−1
bu(k + i).

Since Σ is observable, then ΣL is observable and the matrix
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is nonsingular. This implies the state x(k) is a linear
function of y(k), y(k−1), · · ·, y(k−n+1), u(k), u(k−1),
· · ·, u(k−n+1). From eq. (3), x(k+n) is a linear function
of x(k), u(k), u(k + 1), · · ·, u(k + n − 1). From the facts
above, the well known ARMA model of ΣL is :

ΣL : y(k + 1) =
n−1
∑

i=0

αi · y(k− i) +
n−1
∑

j=0

βj ·u(k− i) (4)

where αi and βj and i, j = 0, 1, · · · , n − 1, are functions
of A, b and c.

Note that the linear approximation ΣL is only applicable
in a sufficiently small neighborhood of the origin. This is a
consequence of the fact that the linearization is performed
around x = 0 and u = 0. Accordingly, the accuracy of the
linear model (and the performance of controllers designed
using it) will degrade as the operating region gets larger.

B. NARMA Model

The NARMA model is used when f and h are unknown
and only the input u and output y are accessible. It is an
exact input-output representation of the plant and can be
derived from eq. (1) as follows. If ∂Yn(k)

∂x(k) is nonsingular at
x = 0, Un−1 = 0, the implicit function theorem can be
used to show that ([3], pg. 33; [4], pg. 476),

x(k) = g [Yn(k), Un−1(k)] (5)

in a neighborhood of the equilibrium state x = 0, Un−1 =
0, where Yn(k) denotes the output sequence y(k), y(k +
1), · · · , y(k + n − 1), while Un−1(k) denotes the input
sequence u(k), u(k + 1), · · · , u(k + n − 2), and g : <n ×
<n−1 → <n is a smooth function.

From ([4], pg. 476), eq. (5)

x(k + n) = g [Yn(k), Un(k)]

= g [y(k), y(k + 1), · · · , y(k + n − 1),

u(k), u(k + 1), · · · , u(k + n − 1)]

where g : <2n → <n is a smooth function and Un(k)
denotes the input sequence [u(k), u(k+1), · · · , u(k+n−1)].

From the expression above and noting that y(k + n) =
h[x(k + n)], a NARMA model

y(k + 1) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k), u(k − 1), · · · , u(k − n + 1)]

can be derived for a neighborhood x(k) ∈ Ω of the equilib-
rium state. As shown below, the concept of relative degree
can also be used to derive an alternative representation of
the NARMA model. Here we define the term relative degree
as in ([4], pg. 477):

Definition 1 If

∂
(

h ◦ fk
e ◦ f(x, u)

)

∂u

{

= 0 when 0 ≤ k ≤ d − 2
6= 0 when k = d − 1

in a neighborhood Ω of the equilibrium state, where fe

denotes the dynamics f(·, ·) and fk
e is the k-times iterated

composition of f , the dynamical system is said to have
a relative degree d. Qualitatively, it implies that an input
at instant k with the initial condition x(k) ∈ Ω (i.e in a
neighborhood of the equilibrium state) affects the output
only d units of time later. Consequently, the input-output
representation of the system Σ with a relative degree d can
be written as

y(k + d) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k), u(k − 1), · · · , u(k − n + 1)] . (6)

The control design problem for a general function F is
mathematically intractable because of the nonlinear rela-
tionship between y(k + d) and u(k). To make the problem
tractable, several well known control design techniques
have been developed assuming F is restricted to one of
a few small classes (e.g linear or affine functions). This
approach still leaves the control design problem for a
general class of F unsolved. An alternative approach is
to make approximations in the solution of the control
design equations of eq. (6) and/or approximate F with
an input-output map that is linear with respect to u(k).
As with system ΣL, approximating F with a linearized
model greatly simplifies the control design problem. For
situations where the constraint on the input imposed by
ΣL is too severe, the NARMA-L1 and NARMA-L2 models
were proposed in [4] as alternative models that can handle
larger input values.

C. NARMA-L1 Model

This model was derived from the Taylor series expansion
of F in eq. (6) (the NARMA model) in a compact domain
(Y,U) ∈ KY ×KU where KY ×KU is a compact subset of
<n ×<n. The expansion is performed around [y(k), y(k −
1), · · · , y(k − n + 1), u(k) = 0, u(k − 1) = 0, u(k − 2) =
0, · · · , u(k−n+1) = 0]. Accordingly, if ‖ Un(k−n+1) ‖
is sufficiently small, then ([4], pg. 477)

y(k + d) = f0 [y(k), y(k − 1), · · · , y(k − n + 1)]



+

n−1
∑

i=0

gi [y(k), y(k − 1), · · · , y(k − n + 1)] u(k − i) (7)

where
f0 [y(k), y(k − 1), · · · , y(k − n + 1)]

:= F [y(k), y(k − 1), · · · , y(k − n + 1), 0, 0, · · · , 0] ,

gi :=
∂ F

∂ u(k − i)

∣

∣

∣

∣

(y(k),···,y(k−n+1),u(k)=0,···,u(k−n+1)=0)

.

If the identification error is to be less than ε, |u(k)| must
be chosen less than δ for all k where δ ≤

√

2ε
M1n

, and
M1(Y,U) is the maximum matrix norm of the Hessian
matrix ∂

∂U

(

∂
∂U

)T
when evaluated over the compact domain

KY ×KU ([4], pg. 478).

D. NARMA-L2 Model

This model was obtained from a Taylor series expansion
of F around [(y(k), y(k − 1), · · · , y(k − n + 1), u(k) =
0, u(k − 1), u(k − 2), · · · , u(k − n + 1)]. Accordingly, if
|u(k)| is sufficiently small then ([4], pg. 477)

y(k + d) = f0 [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 2), · · · , u(k − n + 1)]

+ g0 [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 2), · · · , u(k − n + 1)] u(k),

where

f0[y(k), · · · , y(k − n + 1), u(k − 1), · · · , u(k − n + 1)]

:= F [(y(k), y(k − 1), · · · , y(k − n + 1),

0, u(k − 1), u(k − 2), · · · , u(k − n + 1)] ,

gi :=
∂F

∂u(k)

∣

∣

∣

∣

(y(k),···,y(k−n+1),u(k)=0,u(k−1),···,u(k−n+1))

.

Though the NARMA-L2 is theoretically different from the
NARMA-L1 model, the region of validity of the two models
may be the same in practical applications ([4], pg. 478).
This situation occurs because the restriction of |u(k)| to
sufficiently small values imposed for NARMA-L2 implies
|u(k − 1)|, |u(k − 2)|, · · ·, |u(k − n + 1)| must also be
sufficiently small for k = n, n + 1, n + 2, · · ·. In effect,
restrictions imposed for the NARMA-L2 model and its
corresponding operating region may be equivalent to those
of the NARMA-L1 model in practical applications.

III. MAIN RESULTS

Motivated by the NARMA-L1 and NARMA-L2 mod-
els, we propose NARMA-L1B and NARMA-L2B models.
These models are not designed for sufficiently small input
magnitudes like the NARMA-L1 and NARMA-L2 models.
Instead, they require sufficiently small changes in the in-
put. The NARMA-L1B and NARMA-L2B provide control
system designers with a new pair of models in addition to
the NARMA-L1 and NARMA-L2 model.

A. NARMA-L1B

This approximation of the NARMA model is ob-
tained from the Taylors series expansion of F (·, ·) around
[y(k), y(k−1), · · · , y(k−n+1), u(k) = u(k−1), u(k−1) =
u(k − 2), · · · , u(k − n + 1) = u(k − n)]. The assumption
of |u(k)|, |u(k − 1)|, · · · , |u(k − n + 1)| sufficiently small
(for all k) made for the NARMA-L1 model is replaced by
the assumption that |u(k) − u(k − 1)|, |u(k − 1) − u(k −
2)|, · · · , |u(k − n + 1) − u(k − n)| is sufficiently small
for the NARMA-L1B model. As demonstrated shortly, the
NARMA-L1B (eq. (8)) can be used for operating regions
that may be significantly larger than that of both the
NARMA-L1 and NARMA-L2 models.

Theorem 1 If δ is sufficiently small, the first two partial
derivatives of F (Yn(k − n + 1) ,Un(k − n + 1)) with re-
spect to u(k − i), i = 0, 1, 2, · · · , n − 1, exist and are
continuous, then

y(k + d) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 2), · · · , u(k − n)]

+

n−1
∑

i=0

pi [y(k), y(k − 1), · · · , y(k − n + 1), (8)

u(k − 1), u(k − 2), · · · , u(k − n)][u(k − i) − u(k − i − 1)]

where

δ := max {|u(k) − u(k − 1)|, |u(k − 1) − u(k − 2)|,

· · · , |u(k − n + 1) − u(k − n)|} ,

and

pi :=
∂F

∂u(k − i)

∣

∣

∣

∣

u(k)=u(k−1),···,u(k−n+1)=u(k−n)

.

Proof: For clarity, the notation
F (Yn(k − n + 1), Un(k − n + 1)) will denote
a scalar function F : <2n → <, where
Yn(k − n + 1) := [y(k), y(k − 1), · · · , y(k − n + 1)], and
Un(k − n + 1) := [u(k), u(k − 1), · · · , u(k − n + 1)].
Accordingly, the Taylor series expansion of F (from eq.
(6)), around u(k) = u(k − 1), u(k − 1) = u(k − 2), · · ·,
u(k − n + 1) = u(k − n), is

y(k + d) = F [Yn(k − n + 1), Un(k − n)]

+

n−1
∑

i=0

pi [Yn(k − n + 1), Un(k − n)] ∆u(k − i)

+ R1 [Yn(k − n + 1), Un(k − n + 1)] (9)

where ∆ is the difference operator,

Un(k − n) := [u(k − 1), u(k − 2), · · · , u(k − n)]



and the remainder term is

R1 [Yn(k − n + 1), Un(k − n + 1)]

:= F [Yn(k − n + 1), Un(k − n + 1)]

−F [Yn(k − n + 1), Un(k − n)]

−

n−1
∑

i=0

pi [Yn(k − n + 1), Un(k − n)] ∆u(k − i).

Using arguments similar to those in the Appendix of [4],

|R1 [Yn(k − n + 1), Un(k − n + 1)]| ≤ N1 (Ky,Ku)
nδ2

2

where

δ := max{|u(k) − u(k − 1)|}, |u(k − 1) − u(k − 2)|, · · ·

· · · , |u(k − n + 1) − u(k − n)|}

and N1 (Ky,Ku) is the maximum matrix norm of the

Hessian matrix ∂
∂U

(

∂F [Yn(k−n+1),Un(k−n)]
∂U

)T

evaluated
over the compact domain KY ×KU ⊂ <n ×<n.

If δ is sufficiently small, the term R1(·, ·) can be dropped
from eq. (9) to get

y(k + d) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 2), · · · , u(k − n)] (10)

+

n−1
∑

i=0

pi [y(k), y(k − 1), · · · , y(k − n + 1), u(k − 1),

u(k − 2), · · · , u(k − n)] [u(k − i) − u(k − i − 1)].

The term δ will be sufficiently small if δ ≤
√

2ε
n·N1

, where ε

is an upper bound on the approximation error R1(·, ·). Note
that a control system designer is free to select any value for
ε and therefore compute δ in advance. The NARMA-L1B
model can then be used to design (or constrain) controllers
to generate u(k) subject to |u(k) − u(k − 1)| ≤ δ, for all
k ≥ 0.

B. NARMA-L2B

This approximation of the NARMA model is obtained
from the Taylors series expansion of F (·, ·) around u(k) =
u(k − 1). The assumption of |u(k)| sufficiently small (for
all k) made for the NARMA-L2 model is replaced by
the assumption that |u(k) − u(k − 1)| is sufficiently small
for the NARMA-L2B model. As demonstrated shortly, the
NARMA-L2B (eq. (11)) can be used for operating regions
that may be significantly larger than that of both the
NARMA-L1 and NARMA-L2 models.

Theorem 2 If |u(k) − u(k − 1)| is sufficiently
small, and the first two partial derivatives of
F (Yn(k − n + 1), Un(k − n + 1)) with respect to u(k)

exist and are continuous, then

y(k + d) = F [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 1), u(k − 2), · · · , u(k − n + 1)]

+p0 [y(k), y(k − 1), · · · , y(k − n + 1),

u(k − 1), u(k − 1), u(k − 2), · · · , u(k − n + 1)]

·[u(k) − u(k − 1)] (11)

where

p0 :=
∂F

∂u(k)

∣

∣

∣

∣

u(k)=u(k−1)

. (12)

Proof: For clarity, the notation

F (Yn(k − n + 1), u(k − 1), Un−1(k − n + 1))

will denote a scalar function F : <2n → <, where

Yn(k − n + 1) := [y(k), y(k − 1), · · · , y(k − n + 1)],

Un−1(k − n + 1) := [u(k − 1), u(k − 2), · · · , u(k − n + 1)].

Accordingly, the Taylor series expansion of F (from eq.
(6)) around u(k) = u(k − 1) is

y(k + d) = F [Yn(k − n + 1), u(k − 1), Un−1(k − n + 1)]

+p0 [Yn(k − n + 1), Un(k − n + 1)] [u(k) − u(k − 1)]

+R1 [Yn(k − n + 1), Un(k − n + 1)] (13)

where the remainder term is

R1 [Yn(k − n + 1), Un(k − n + 1)]

:= F [Yn(k − n + 1), Un(k − n + 1)]

−F [Yn(k − n + 1), u(k − 1), Un−1(k − n + 1)]

−p0 [Yn(k − n + 1), Un(k − n + 1)] [u(k) − u(k − 1)].

Using arguments similar to those in the Appendix of [4],
∣

∣R1 [Yn(k − n + 1), Un(k − n + 1)]
∣

∣

≤ N1

(

Ky,Ku

) |∆u(k)|2

2
(14)

where the term N1

(

Ky,Ku

)

is the maximum value of
∂2F (·,·)
∂ u(k)2 in the compact domain Ky × Ku ⊂ <n ×<n.

For sufficiently small |∆u(k)|, the term
R1 [Yn(k − n + 1), Un(k − n + 1)] can be dropped
from eq. (13) to get

y(k + d) = F [y(k), y(k − 1), · · · , y(k − n + 1), (15)
u(k − 1), u(k − 1), u(k − 2), · · · , u(k − n + 1)]

+p0 [Yn(k − n + 1), Un(k − n + 1)] [u(k) − u(k − 1)].

From eq. (14), the term |∆u(k)| will be sufficiently small
if |∆(k)| ≤

√

2ε

N1

for all k ≥ 0, where ε is a desired upper

bound on the estimation error R1(·, ·).



IV. AN EXAMPLE

The following simulation example is used to compare
the approximation capabilities of the ARMA, NARMA-L1,
NARMA-L2, NARMA-L1B and NARMA-L2B. All five
approximation models will approximate the bounded-input-
bounded-output non-affine discrete-time plant

y(k + 1) = F [y(k), y(k − 1), u(k), u(k − 1)]

= 0.2 cos[0.8y(k) + 0.8y(k − 1)] + 0.9 + 0.1y(k)

+0.4 sin[0.8y(k) + 0.8y(k − 1) + 2u(k) + u(k − 1)]

+0.1y(k − 1) + 2

[

u(k) + [u(k)]3 + u(k − 1)

2 + cos[y(k)]

]

, (16)

with the following initial conditions:

y(−1) = y(0) = 1.38, u(−1) = u(0) = 0

and sampling time t(k + 1) − t(k) = 0.01(Secs) for k =
1, 2, · · · , 400. The approximate models (computed below)
will be used as series-parallel ([3], pg. 35) models for the
plant when the plant is subjected to input

u(k) = θ

[

sin

(

πk

50

)

+ sin

(

πk

100

)

+ sin

(

πk

150

)]

,

for θ ∈ {0.01 0.25 0.5}. (17)

The ARMA model of the plant is:

ŷ(k + 1) =

1
∑

i=0

αiy(k − i) +

1
∑

j=0

βju(k − j),

where

α0 =

[

∂F [·, ·, ·, ·]

∂y(k)

]

y(k)=y(k−1)=u(k)=u(k−1)=0

= 0.42,

α1 =

[

∂F [·, ·, ·, ·]

∂y(k − 1)

]

y(k)=y(k−1)=u(k)=u(k−1)=0

= 0.42,

β0 =

[

∂F [·, ·, ·, ·]

∂u(k)

]

y(k)=y(k−1)=u(k)=u(k−1)=0

= 1.8,

β1 =

[

∂F [·, ·, ·, ·]

∂u(k − 1)

]

y(k)=y(k−1)=u(k)=u(k−1)=0

= 1.4.

The NARMA-L1 model of the plant in the simulation
example is

ŷ(k + 1) = f0[y(k), y(k − 1)]

+
1

∑

i=0

gi[y(k), y(k − 1)]u(k − i),

where

f0[·, ·] = 0.2 cos[0.8y(k) + 0.8y(k − 1)] + 0.9 + 0.1y(k)

+0.4 sin[0.8y(k) + 0.8y(k − 1)] + 0.1y(k − 1),

g0[·, ·] = 0.8 cos[0.8y(k) + 0.8y(k − 1)] +
2

2 + cos y(k)
,

g1[·, ·] = 0.4 cos[0.8y(k) + 0.8y(k − 1)] +
2

2 + cos y(k)
.

Similarly the NARMA-L2 Model is

ŷ(k + 1) = f0[y(k), y(k − 1), u(k − 1)]

+g0[y(k), y(k − 1), u(k − 1)]u(k),

where

f0[·, ·, ·] = 0.2 cos[0.8y(k) + 0.8y(k − 1)] + 0.9 + 0.1y(k)

+0.4 sin[0.8y(k) + 0.8y(k − 1) + u(k − 1)]

+0.1y(k − 1) +
2u(k − 1)

2 + cos y(k)
,

g0[·, ·, ·] = 0.8 cos[0.8y(k) + 0.8y(k − 1) + u(k − 1)]

+
2

2 + cos y(k)
.

The NARMA-L1B Model is

ŷ(k + 1) = F [y(k), y(k − 1), u(k − 1), u(k − 2)]

+

1
∑

i=0

pi[y(k), y(k − 1), u(k − 1), u(k − 2)]

·[u(k − i) − u(k − i − 1)],

where

F [·, ·, ·, ·] = 0.2 cos[0.8y(k) + 0.8y(k − 1)] + 0.9 + 0.1y(k)

+0.4 sin[0.8y(k) + 0.8y(k − 1) + 2u(k − 1) + u(k − 2)]

+0.1y(k − 1) + 2

[

u(k − 1) + [u(k − 1)]
3

+ u(k − 2)

2 + cos y(k)

]

,

p0(·, ·, ·, ·) = 0.8 cos[0.8y(k) + 0.8y(k − 1) + 2u(k − 1)

+u(k − 2)] + 2

[

1 + 3[u(k − 1)]2

2 + cos y(k)

]

,

p1(·, ·, ·, ·) = 0.4 cos[0.8y(k) + 0.8y(k − 1) + 2u(k − 1)

+u(k − 2)] +
2

2 + cos y(k)
.

The NARMA-L2B Model is

ŷ(k + 1) = F [y(k), y(k − 1), u(k − 1), u(k − 1)]

+p0[y(k), y(k − 1), u(k − 1)][u(k) − u(k − 1)]

where

F [·, ·, ·, ·] = 0.2 cos[0.8y(k) + 0.8y(k − 1)] + 0.9 + 0.1y(k)

+0.4 sin[0.8y(k) + 0.8y(k − 1) + 2u(k − 1) + u(k − 1)]

+0.1y(k − 1) + 2

[

u(k − 1) + [u(k − 1)]3 + u(k − 1)

2 + cos y(k)

]

,

p0(·, ·, ·) = 0.8 cos[0.8y(k) + 0.8y(k − 1) + 2u(k − 1)

+u(k − 1)] + 2

[

1 + 3[u(k − 1)]2

2 + cos y(k)

]

.

This simulation study was performed for time instants
k = 1, 2, · · · , 400 in a highly nonlinear region (|u| ≤ 1.19,
|y| ≤ 7.12) of the plants input/output space. A plot of
the input/output signals for the first four seconds (i.e. for
k = 1, 2, · · · , 400) of the plant (NARMA model) is shown
in Figure 1. The highly nonlinear nature of the plant is
evident from its response to the periodic input. In particular,
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Fig. 1. Input (for θ = 0.5) and Output Signals for NARMA Model.

TABLE I
INPUT AND OUTPUT DATA FROM THE NARMA MODEL

Model θ max |∆u(k)| max |u(k)| max |y(k)|

NARMA 0.01 0.001 0.02 1.40
NARMA 0.25 0.03 0.59 4.35
NARMA 0.50 0.06 1.19 7.12

the plant displays transient high frequency behavior in its
response from 0.1 to 0.8 seconds and from 1.5 to 2 seconds.

Table I provides some general information on the input
and output signal of the plant (NARMA model). From Table
1, the maximum change in the control signal max|u(k) −
u(k − 1)| and output magnitude max|y| increased with
the input magnitude max|u|. The table also shows that
max|∆u(k)| := max|u(k) − u(k − 1)| was always much
less than max|u(k)|.

Table II is a comparison of the estimation errors (with
respect to the NARMA model) of each approximate model
evaluated over k = 1, 2, · · · , 400. The term “Error” in Table

TABLE II
ESTIMATION ERRORS OF APPROXIMATE MODELS

MODEL max |u(k)| Error % RMS Error

ARMA 0.02 2.07 ×101% 2.18×10−1

NARMA-L1 0.02 5.53 ×10−2 % 2.82×10−4

NARMA-L2 0.02 2.42 ×10−2 % 1.25×10−4

NARMA-L1B 0.02 1.36 ×10−4 % 5.29×10−7

NARMA-L2B 0.02 6.09 ×10−5 % 2.37×10−7

ARMA 0.59 39.952 % 0.7500
NARMA-L1 0.59 18.936% 0.1081
NARMA-L2 0.59 12.328% 0.0636

NARMA-L1B 0.59 0.024% 0.0003
NARMA-L2B 0.59 0.018% 0.0002

ARMA 1.19 79.07 % 1.574
NARMA-L1 1.19 53.74 % 0.699
NARMA-L2 1.19 40.57 % 0.726

NARMA-L1B 1.19 0.15 % 1.996×10−3

NARMA-L2B 1.19 0.12 % 1.708×10−3

II is defined as

Error :=
max|y(k) − ŷ(k)|

max|y|
× 100%.

The following observations are apparent from Table II.
At low input levels (i.e |u(k)| ≤ 0.02) all estimation
models are accurate enough for some control applications.
The errors (in percentage and RMS terms) of NARMA-
L1B and NARMA-L2B were orders of magnitude less than
those of NARMA-L1, NARMA-L2, and ARMA model for
max|u| ≤ 1.19. As expected, the errors of all approximate
models increased as the control signal magnitude increased.
However, the errors of ARMA, NARMA-L1 and NARMA-
L2 model increased at a much faster rate than those of
NARMA-L1B and NARMA-L2B models. This occurred
because we deliberately chose a control signal that kept
max|∆u(k)| small at the values of |u(k)| investigated. For
such a case, the NARMA-L1B and NARMA-L2B worked
better than others.

V. CONCLUDING REMARKS

Motivated by the NARMA-L1 and NARMA-L2 models
of [4], we proposed NARMA-L1B and NARMA-L2B as
alternatives suitable for control of non-affine nonlinear
plants with larger input magnitudes. For input magnitudes
that exceed those permitted by the ARMA, NARMA-L1
and NARMA-L2 models, the estimation error e(k) =
|y(k)−ŷ(k)| of the proposed models can be made arbitrarily
small if max|∆u(k)| is sufficiently small. However, the
“best” approximation model (linear in the control input)
is application dependent because existing approximation
models may provide better results if max|∆u(k)| takes on
large values. Therefore, the proposed models complement
existing models and do not replace them.

The NARMA-L1B and NARMA-L2B were developed
assuming the NARMA model and input-output data are
available. These models can be easily extended to the case
where the NARMA model is not available but input-output
data is available. For this case, the nonlinear functions of
the NARMA-L1B and NARMA-L2B can be identified by
neural networks using procedures similar to those described
in [4].

REFERENCES

[1] I.J. Leontaris, and S.A. Billings, “Input-output parametric models
for nonlinear systems part I: deterministic non-linear systems”,
International Journal of Controls, Vol. 41, No. 2, pp. 303-328, 1985.

[2] H. Wang, A.P Wang, M. Brown, and C.J. Harris, “One-to-one
mapping and its application to neural networks based control system
design”, International Journal of Systems Science, Vol. 27, No. 2,
pp. 161-170, 1996.

[3] A.U. Levin, and K.S. Narendra, “Control of nonlinear dynamical
systems using neural networks - Part II: observability, identification,
and control,” IEEE Transactions on Neural Networks, Vol. 7, No. 1,
pp. 30-42, 1996.

[4] K.S. Narendra and S.M. Mukhopadhyay, “Adaptive Control Using
Neural Networks and Approximate Models”, Proceedings IEEE
Transactions on Neural Networks, Vol. 8, No. 3, pp. 475-485, May,
1997.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP10.4
	Page0: 5502
	Page1: 5503
	Page2: 5504
	Page3: 5505
	Page4: 5506
	Page5: 5507


