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Abstract— There exist several types of models that describe
the evolution of traffic flow on freeways and urban roads.
In this paper we focus on some structural properties of one
particular traffic flow model: the macroscopic, second-order
gas-kinetic traffic flow model of Helbing. We will show that
the model has two families of characteristics for the shock
wave solutions: one characteristic is slower and the other one
is faster than the average vehicle speed. Corresponding to
the slower characteristic there are 1-shocks and 1-rarefaction
waves, corresponding to the faster characteristic there are 2-
shocks and 2-rarefaction waves. We also derive the formulas
for the solution of the Riemann problem associated with this
model in the equilibrium case, proving that the solution of
this problem with density and flow non-negative in the initial
condition on either side of the discontinuity cannot give rise
to negative flow or density later on.

I. INTRODUCTION

Traffic flow models play an important role in both today’s
traffic research and in many traffic applications such as
traffic flow prediction, incident detection, and traffic control.
Each traffic application requires specific features of the
traffic model. As one of the goals of our research is to apply
model-based traffic control, we are particularly interested
in macroscopic traffic flow models since these models are
best suited for implementation in traffic control systems.
Macroscopic models offer an excellent trade-off between
accuracy on the one hand and simulation speed on the other
hand.

One of the most well-known traffic flow models is the
Lighthill-Whitham-Richards (LWR) model [1], which is a
macroscopic first-order model. Payne [2] came up with a
second-order traffic model. Later on Papageorgiou et al.
introduced an improved version of this model [3]. In this
paper we discuss yet another macroscopic second-order
model, which is based on gas-kinetic equations with a non-
local term as proposed by Helbing [4].

We analyze the structural properties of the shock and
rarefaction wave solutions of Helbing’s model, because
understanding these properties, helps to improve this area
of research: more insight into the structural properties of
the Helbing’s model allows us to select appropriate and
efficient numerical methods for traffic simulation using this
model. Subsequently, this can then be used in model-based
predictive traffic control approaches.

This paper is organized as follows. To make the paper
self-contained, a brief review of the Helbing’s model is
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presented in Section II. The new contributions of this
paper start with Section III, where we discuss the structural
properties of the shock wave solution. In Section IV we
present the structural properties of the rarefaction waves
solution. We show that the Helbing’s model has two families
of characteristics for the shock wave solutions: one charac-
teristic is slower, and the other one is faster than the average
vehicle speed. Corresponding to the slower characteristic
there are 1-shocks and 1-rarefaction waves, the behavior of
which is similar to that of shocks and rarefaction waves in
the LWR model. Corresponding to the faster characteristic
there are 2-shocks and 2-rarefaction waves, which behave
differently from the previous one, in the sense that the
information, in principle, travels faster than average vehicle
speed. Finally, in Section V we discuss the solution of
the Riemann problem associated with the Helbing’s model,
proving that the solution of this problem with density and
flow non-negative in the initial condition on either side of
the discontinuity cannot give rise to negative flow or density
later on.

II. HELBING’S TRAFFIC FLOW MODEL

Because the number of vehicles is conserved, all macro-
scopic traffic flow models are based on the continuity
equation, which expresses the relation between the rates
of change of the density ρ(x, t) with respect to time t and
of the flow Q(x, t) with respect to space x:

∂
∂ t

ρ(x, t)+
∂
∂x

Q(x, t) = 0 .

To describe time-varying and spatially varying average
velocities V (x, t) such as those that occurs in traffic jams
or stop-and-go traffic we need a dynamic velocity equation.
Gas-kinetic equations for the average velocity have been
proposed in a number of previous publications such as [5],
[6], [7]. Because we are interested in macroscopic quantities
we can integrate those equations to derive formulas for the
first moment. For all these models the velocity equation can
be written as1

∂V
∂ t

+V
∂V
∂x

+
1
ρ

∂P
∂x

=
Veq −V

τ
,

where P is the traffic pressure, defined as P(x, t) =
ρ(x,y)θ(x, t), with θ the velocity variance (see also (2)
below), and where Veq is the dynamical equilibrium velocity
toward which the average velocity of vehicles relaxes.

1For the sake of brevity and simplicity of notation we will from now
on omit the arguments x and t in the formulation of the partial differential
equations.



Helbing proposes the following Euler-like equation with
a non-local term for the average vehicle velocity:

∂V
∂ t

+ V
∂V
∂x

︸ ︷︷ ︸

transport

+
1
ρ

∂P
∂x

︸ ︷︷ ︸

pressure

= (1)

V0 −V

τ
︸ ︷︷ ︸

acceleration

−V0(θ +θa)

τA(ρmax)

(
ρaT

1−ρa/ρmax

)2

B(δv)

︸ ︷︷ ︸

braking

.

The braking term is a non-local term that models brak-
ing in response to the traffic situation downstream at the
interaction point xa = x + γ(1/ρmax + TV ) with 1 < γ < 2
a model parameter, ρmax is the maximum density, and T is
the average time headway. In equation (1) we also have a
Boltzmann factor of the form

B(δv,S) = δv
e−z2/2
√

2π
+(1+δ 2

v )
∫ δv

−∞

e−z2/2
√

2π
dz ,

with δv = V−Va√
θ−θa

, which takes into account the velocity and
variance at the actual position x and the interaction point
xa respectively. Based on empirical data, Helbing observed
that the velocity variance θ is a density-dependent fraction
A(ρ) of the squared velocity:

θ(x, t) = A(ρ(x, t))V 2(x, t) , (2)

where A(ρ) is the Fermi function

A(ρ) = A0 +∆A

(

1+ tanh
(ρ −ρc

∆ρ

))

, (3)

where A0 and A0 + 2∆A are about the variance factors for
free and congested traffic, ρc is of the order of the critical
density for the transition from free to congested traffic, and
∆ρ is the width of the transition.

To summarize, the equations of Helbing’s model are:

∂ρ
∂ t

+
∂Q
∂x

= 0 , (4)

∂V
∂ t

+V
∂V
∂x

+
1
ρ

∂P
∂x

=
Veq −V

τ
, (5)

where the equilibrium velocity is written as

Veq = V0

(

1− θ +θa

A(ρmax)

(
ρaT

1−ρa/ρmax

)2

B(δv)

)

. (6)

III. HUGONIOT LOCUS AND SHOCKS

A desirable property of the traffic model equations (4)–
(6) is that they can be formulated in terms of a system
of conservation equations (i.e., a time-dependent system
of nonlinear partial differential equations with a particular
simple structure) but with a source term:

∂u
∂ t

+
∂ f (u)

∂x
= S(u) , (7)

with state variables u = [ρ Q]T , and with flux function f
and source term S given by:

f (u) =

[
Q

Q2

ρ (1+A(ρ))

]

, S(u) =

[

0
ρVeq−Q

τ

]

,

where we used the relation Q = ρV between flow Q, density
ρ , and average velocity V .

The pressure has the form: P = ρA(ρ)V 2 = Q2

ρ A(ρ),
which implies that in matrix representation using the Ja-
cobian

J
def
=

∂ f
∂u

=





0 1

−Q2

ρ2 (1+A(ρ)−ρ
d

dρ
A(ρ)) 2 Q

ρ (1+A(ρ))





we have

∂
∂ t

[

ρ
Q

]

+ J(u) · ∂
∂x

[

ρ
Q

]

=

[

0
ρVeq−Q

τ

]

. (8)

When we compute the eigenvalues of the Jacobian, and
using again the relation V = Q

ρ , we get

λ1,2(u) = V

(

1+A(ρ)±
√

A2(ρ)+A(ρ)+ρ
d

dρ
A(ρ)

)

.

(9)

Note that in our case, the system (8) is strictly hyperbolic
(i.e., for any value of u the eigenvalues of the Jacobian J
are real and distinct).
Corresponding to the two distinct eigenvalues given by (9)
we have two linearly independent eigenvectors

r1,2(u) =

[
1

λ1,2(u)

]

.

Assumption A1: As Helbing recommends in [4] for quali-
tative considerations, A(ρ) can be chosen to be constant. We
adopt this assumption henceforth because it simplifies our
computations. We choose for A(ρ) the value c

def
= A0 +∆A≈

0.028 (which is the value around critical density where we
have large oscillations of the speed).

With Assumption A1 the formulas for pressure P, flux f ,
and eigenvalues λp (p = 1,2) are

P = cρV 2 = c
Q2

ρ
, f (u) =

[

Q
Q2

ρ (1+ c)

]

,

λ1,2(u) = V
(

1+ c±
√

c2 + c
)

= c1,2V ,

where we denote c1
def
= 1 + c−

√
c2 + c ∈ (0, 1) and c2

def
=

1 + c +
√

c2 + c > 1. Note that λ1 < λ2. Now let us study
different kinds of shocks arising from the system and
determine and characterize the conditions under which a
pair of states uleft = [ρleft Qleft]

T , uright = [ρright Qright]
T

can be connected by a shock 2.

2The reason for selecting the subscripts ”left” and ”right” will become
clear in Section V.



First, note that in short time intervals the shocks arising
from (7) are the same as those arising from

∂
∂ t

[
ρ
Q

]

+

[

0 1

−Q2

ρ2 (1+ c) 2 Q
ρ +(1+ c)

]

· ∂
∂x

[
ρ
Q

]

= 0 ,

(10)

i.e., the source term becomes zero (this can be done when
traffic operations are in equilibrium but also because the
relaxation term

ρVeq−Q
τ is finite, so that its effect in short

time intervals can be neglected compared to the effect
caused by the infinite space derivatives of ρ and Q at the
shock). Because we have two characteristics (eigenvalues),
two kinds of shocks arise from (10): we call them 1-shock
and 2-shock respectively.

Let us fix a state uleft, and determine the set of states uright
that can be connected by a discontinuity (called Hugoniot
locus) to the point uleft. For this, the Rankine-Hugoniot
jump condition [8] must hold:

f (uright)− f (uleft) = s · (uright −uleft) ,

where s is the propagation speed of the discontinuity along
the road. This speed is known in traffic flow engineering as
congestion velocity and expresses the fact that the propa-
gation of a shock depends on both flow and density in the
neighboring region of a shock. Filling out the expression
for f , yields the following solutions in terms of ρ̃

Qright1,2 = Qleft

1± (ρright −ρleft)

√

c2+c
ρrightρleft

1− ρright−ρleft
ρright

(1+ c)
, (11)

and the corresponding shock speed

sright1,2 = Qleft

1+c
ρright

±
√

c2+c
ρrightρleft

1− ρright−ρleft
ρright

(1+ c)
, (12)

where the ± signs give two solutions, one for each family
of characteristic fields.

Now, we have to choose in formula (11) the sign for
the 1-shock and for the 2-shock respectively. After some
computations (see [9] for more details), we find that for the
1-shock we must choose the minus sign and for the 2-shock
the plus sign.

Remark: We can see that each of the characteristic fields
is genuinely nonlinear, which means that

∇λp(u) ·rp(u) = cp(cp−1)
Q
ρ2 6= 0 for all u =

[
ρ
Q

]

6= 0 ,

where ∇λp =

[
∂λp

∂ρ
∂λp

∂Q

]

. ♦

In defining the Hugoniot locus above, we have ignored
the question of whether a given discontinuity is physically
relevant. Lax [10] proposed an entropy condition to systems

of equations that are genuinely nonlinear: the jump in the
pth field (from state uleft to uright) is admissible only if

λp(uleft) > s > λp(uright) ,

where s is the shock speed. Now suppose we connect uleft
to uright by a 1-shock, then we get the following relations:

c1
Qleft

ρleft
> s > c1

Qright

ρright
.

We obtain after few steps (see [9] for details)

Qleft < Qright .

So for the 1-shock we have obtained the following: Qleft <
Qright and we should take the minus sign in formulas (11)
and (12). Combining these two conditions we can show that
we must have ρright > ρleft (see also [9]) .

In summary, a 1-shock satisfies:

S1 :







Qright = Qleft

1− (ρright −ρleft)

√

c2+c
ρrightρleft

1− ρright−ρleft
ρright

(1+ c)
,

ρright > ρleft .

Now let us see what is the interpretation of a 1-shock.
Do the drivers on the overage really behave as described
by S1? If we consider the fundamental diagram that relates
speed and density (see [11]), then we see that the condition
ρright > ρleft implies Vright < Vleft i.e., the drivers that enters
that shock reduce their speed abruptly which coincides with
real traffic behavior.

Similarly, one can show that for a 2-shock the following
inequality holds: Qleft > Qright, and we should take the plus
sign in (11) and (12) as we saw before, which implies that
ρright < ρleft So for a 2-shock we have

S2 :







Qright = Qleft

1+(ρright −ρleft)

√

c2+c
ρrightρleft

1− ρright−ρleft
ρright

(1+ c)
,

ρright < ρleft .

Now we can sketch the Hugoniot locus in the phase plane,
retaining only the points ũ that can be connected to û by an
entropy-satisfying shock, discarding the entropy-violating
shocks (see Figure 1). Any right state uright = [ρright Qright]

T

can be connected to a left state uleft = [ρleft Qleft]
T by a 1-

shock if the right state falls on the S1 curve that passes
through [ρleft Qleft]

T and similarly by a 2-shock if the right
state falls on the S2 curve that passes through [ρleft Qleft]

T .
We can see from Figure 1 that the Hugoniot locus terminates
at the origin and there are no states with uright < 0 that
can be connected to uleft by a propagating discontinuity;
therefore, the model does not produce negative density and
flow at the point of discontinuity (as others traffic flow
models that do so, see [12] ).
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Fig. 1. Representation of the states uright that can be connected to uleft
by an entropy-satisfying shock. The dotted and dashed curves represent
entropy-violating points.

IV. RAREFACTION WAVES

For the LWR model it is known that when the left
characteristic is slower than the right characteristic a fan
of rarefaction waves results. This property is also valid in
the Helbing’s model. If the two characteristic fields satisfy

λp(uleft) < λp(uright) for p = 1,2 , (13)

two families of smooth solutions, called 1-rarefaction wa-
ves and 2-rarefaction waves exist. Similar to the analysis
of shock curves we shall derive the phase curves for both
families of rarefaction waves.

If u(x, t) is a solution of the system (10), then we can
show that u(ax,at) is also a solution, where a is a scalar, i.e.,
the solutions are scaling-invariant. Therefore, the solution
depends on (x, t) in the form ξ = x/t. A rarefaction wave
solution to the system of equations (7) takes the form:

u(x, t) =







uleft if x ≤ ξ1t

w(x/t) if ξ1t < x < ξ2t

uright if x ≥ ξ2t ,

(14)

with w(·) smooth and w(ξ1) = uleft and w(ξ2) = uright. We
will now prove that starting at each point uleft there are two
curves consisting of points uright that can be connected to
uleft by a rarefaction wave, namely a subset of the integral
curve3 of rp(uleft). We can determine explicitly the function
w(x/t) using the fact that our model is genuinely nonlinear.
After some steps (see also [9]) we get the following
differential equation:

w′(ξ ) =
rp(w(ξ ))

∇λp(w(ξ )) · rp(w(ξ )
for ξ1 ≤ ξ ≤ ξ2 ,

3The integral curve for rp(u) is a curve that has the property that the
tangent to the curve at any point u lies in the direction rp(u).

with initial conditions

w(ξ1) = uleft, ξ1 = λp(uleft) < ξ2 = λp(uright) .

For a 1-rarefaction wave we have:

d
dξ

ρ(ξ ) =
ρ2(ξ )

Q(ξ )
· 1

c2
1 − c1

,
d

dξ
Q(ξ ) = ρ(ξ )

1
c1 −1

,

with Q(ξ1) = Qleft, ρ(ξ1) = ρleft, ξ1 = λ1(uleft) = c1
Qleft
ρleft

,
which is a system of two ordinary nonlinear differential
equations, with the following solution:

ρ(ξ ) =

(
ρc1

left

c1Qleft
·ξ
) 1

c1−1

, Q(ξ ) =
ξ
c1

(
ρc1

left

c1Qleft
·ξ
) 1

c1−1

.

If we want to obtain an explicit expression for the integral
curves in the phase plane, we eliminate ξ , obtaining:

Q(ρ) = Qleft

(
ρ

ρleft

)c1

We can construct the 2-rarefaction wave in exactly the same
manner obtaining:

Q(ρ) = Qleft

(
ρ

ρleft

)c2

.

Now two states uleft and uright can be connected by a
rarefaction wave provided that they lie on the same integral
curve and λp(uleft) < λp(uright), which for 1-rarefaction
results in

c1 ·
Qleft

ρleft
< c1 ·

Qright

ρright
, c1 ∈ (0, 1) ,

with Qright = Qleft

(ρright
ρleft

)c1
and thus ρc1−1

left
< ρc1−1

right
or

ρright < ρleft since c1 ∈ (0,1).
Therefore, the 1-rarefaction curve is given by

R1 : Qright = Qleft

(ρright

ρleft

)c1

, ρright < ρleft .

Similarly, the 2-rarefaction curve is given by

R2 : Qright = Qleft

(ρright

ρleft

)c2

, ρright > ρleft .

Figure 2 shows the states uright that can be connected to uleft
by a 1-rarefaction wave, namely the states lying on the curve
R1 passing through uleft. Furthermore, the states uright lying
on the curve R2 passing through uleft can be connected to
uleft by a 2-rarefaction wave. Again we see that we do not
connect negative states to uleft and we will use this result
in the next section when we discuss the Riemann problem.
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Fig. 2. Representation of the states uright that can be connected to uleft
by a rarefaction wave. The dotted and dashed curves represent points that
do not satisfy the rarefaction condition (13).

V. GENERAL SOLUTION OF THE RIEMANN
PROBLEM

In this section we discuss the Riemann problem associ-
ated to the Helbing’s model and based on the results of the
two previous sections we will show that the solutions of
the Riemann problem with density and flow non-negative
in the initial conditions on either side of the discontinuity
cannot give rise to negative flows or density in the general
solution. If we combine Figures 1 and 2 we obtain a plot that
shows us all points uright that can be connected to a given
point uleft by an entropy-satisfying wave, either a shock
wave or a rarefaction wave. Therefore, when initial data uleft
and uright both lay on these curves, then this discontinuity

simply propagates with speed s =
Qright−Qleft
ρright−ρleft

along the road.

But what happens if uright does not reside on one of those
curves passing through uleft? To solve this question, we
can attempt to find a way to split this jump as a sum of
two jumps, across each of which the Rankine-Hugoniot
condition holds, i.e., we must find an intermediate state
umiddle such that uleft and umiddle are connected by a disconti-
nuity satisfying the Rankine-Hugoniot condition and so are
umiddle and uright, which intuitively means to superimpose
the appropriate plots and look for the intersections. When
we want to determine analytically the intermediate state
umiddle, we must first determine whether each wave is a
shock or a rarefaction, and then use the expressions relating
ρ and Q determined in Sections III and IV along each
curve to solve for the intersection. When we solve the
equation given by the intersection, we can get more than
one solution for umiddle but only one gives a physically valid
solution to the Riemann problem since the jump from uleft to
umiddle must travel more slowly than the jump from umiddle
to uright (due to the condition λ1 < λ2). Using the same

parametrization as in Section III: ρleft = ρmiddle(1+ξ1) and
ρright = ρmiddle(1 + ξ2), and replacing in (12) we get that
the speeds of shock from uleft to umiddle and from umiddle to
uright are given by:

sleft,middle =
Qmiddle

ρmiddle

1+c
1+ξ1

±
√

c2+c
1+ξ1

1− ξ1(1+c)
1+ξ1

,

smiddle,right =
Qmiddle

ρmiddle

1+c
1+ξ2

±
√

c2+c
1+ξ2

1− ξ2(1+c)
1+ξ2

.

Now depending on what values we choose for uleft and uright
we can determine the sign in the previous formulas such
that sleft,middle < smiddle,right and thus we know what waves
(1-wave or 2-wave) give the intersection. We can distinguish
the following cases:

Case 1: Both curves are shocks.
Graphically this means to draw the Hugoniot
locus for each of the states uleft and uright and
to look for the intersection. To obtain the correct
value for umiddle = [ρmiddle Qmiddle]

T we have to
impose sleft,middle < smiddle,right. Let us consider an
example; e.g., assume that umiddle is connected to
uleft by a 1-shock and to uright by a 2-shock:

Qmiddle = Qleft

1− (ρmiddle −ρleft)
√

c2+c
ρmiddleρleft

1− ρmiddle−ρleft
ρmiddle

(1+ c)
,

(15)

Qmiddle = Qright

1+(ρmiddle −ρright)

√

c2+c
ρmiddleρright

1− ρmiddle−ρright
ρmiddle

(1+ c)
.

(16)

Equating the two right-hand sides gives a single
equation for ρmiddle. After we obtain ρmiddle, we
replace it in (15) or (16) to obtain Qmiddle.
When umiddle is connected to uleft by a 2-shock
and to uright by a 1-shock we proceed similarly.

Case 2: Both curves are rarefactions.
If we assume that the intermediate state is con-
nected to uleft by a 1-rarefaction and to uright by a
2-rarefaction, then umiddle must satisfy

Qmiddle = Qleft

(
ρmiddle

ρleft

)c1

,

Qmiddle = Qright

(

ρmiddle

ρright

)c2

.

Equating again we get an equation in ρmiddle with
solution

ρmiddle =

(

Qleft

Qright

ρc2
right

ρc1
left

) 1
c2−c1
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Fig. 3. Construction of the solution for the Riemann problem. We obtain
two intermediate states umiddle and u∗middle, but only u∗middle is a physically
valid solution.

and then we obtain Qmiddle from the previous
equations.

Case 3: The solution consist of one shock and one
rarefaction wave.
Again if we consider the case when the interme-
diate state umiddle is connected to uleft by a 1-
rarefaction and to uright by a 2-shock, then we must
solve for ρmiddle and Qmiddle from the following
system of equations:

Qmiddle = Qleft

1+(ρmiddle −ρleft)
√

c2+c
ρmiddleρleft

1− ρmiddle−ρleft
ρmiddle

(1+ c)
,

Qmiddle = Qright

(

ρmiddle

ρright

)c1

.

Figure 3 shows a plot for the Riemann problem with
initial conditions uleft = [140 400]T and uright = [5 50]T ,
which corresponds, e.g., to a scenario such as the situation
of traffic in front of a semaphore when it was red and
then becomes green. Lines represent the states that can
be connected to uleft and dotted curves represent the states
that can be connected to uright. The intersection gives two
points but only one is a physically valid solution because
we should have sleft,middle < smiddle,right (due to λ1 < λ2). The
intermediate state umiddle is obtained by the intersection of
R1 with S2, and u∗middle by the intersection of S2 with R1.
In this case u∗middle is the physically valid solution.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have discussed some properties of
Helbing’s gas-kinetic traffic flow model. More specifically,
we have derived formulas for shocks and rarefaction waves

and we have characterized the states that satisfy the Lax
entropy condition. Understanding structural properties of
the model allow us to choose the appropriate numerical
scheme for simulations and further for applications such
as model-based traffic control. Finally, we have considered
the Riemann problem associated with the Helbing’s model
when the traffic conditions are in equilibrium, proving
that the solution of this problem with density and flow
non-negative in the initial condition on either side of the
discontinuity cannot give rise to negative flow or density
later on.

Topics for further research include: investigation of ap-
propriate efficient numerical schemes to simulate Helbing’s
model and development of model-based traffic control tech-
niques for traffic using Helbing’s model.
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