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Abstract— We use an Eulerian network model of the airspace to simulate air

traffic in congested areas of airspace. The model relies on a set of coupled first

order hyperbolic partial differential equations (PDEs), obtained from the original

Lighthill-Whitham-Richards (LWR) traffic model. The Jameson-Schmidt-Turkel

(JST) is selected among other numerical schemes to perform simulations, and

evidence of numerical convergence is assessed against known analytical solutions.

Linear numerical schemes are discarded because of their poor performance, thus

prohibiting the use of linear optimization for controlling the network. Instead,

the adjoint problem of the linearized network control problem is computed. The

constraints of the problem are enforced using a logarithmic barrier method.

Simulations are run with real air traffic data to demonstrate the applicability of

the method for traffic management. Scenarios involving several airports between

Chicago and the East Coast are investigated.

I. I NTRODUCTION

In a companion paper [3], we have described how to model
the National Airspace System (NAS) using an Eulerian
framework, inspired by the work of Menon et al. [15]. The
result of this article was a model of airspace as a network
of interconnected links, on which the aircraft density is
governed by a set of first order hyperbolicpartial differential
equations(PDEs), coupled through boundary conditions. We
validated this model and showed that it predicts accurate
aircraft counts. In this paper, we first show how to apply
standard numerical analysis tools to this system of PDEs,
in order to perform numerical simulations when we do not
have explicit analytical solutions available to us (which is
the case in general). The major difficulty which we will
show is that the solutions we construct are by essence
discontinuous and have kinks, a very undesirable property
for numerical solutions of PDEs. We also show that the use
of linear numerical schemes to approximate the solution of
the PDE perform very poorly, which unfortunately precludes
the use of standard linear optimization programs to control
the system.
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Instead, we show thatwe may use flow control techniques [5],
which are directly applicable to PDE-driven systems. We use
an adjoint-based method, which enables us to compute the
gradient of a cost function algebraically using the adjoint
problem. We have to adapt the adjoint method to the case
in which the system is described by a set of PDEs coupled
through the boundary conditions, in presence of constraints.
Unfortunately, this is a nonlinear control problem which does
not provide proofs of convergence to aglobal optimal. How-
ever, this method, as well as other flow control approaches
[11], [2], [1], [7], [13], have been shown to work extremely
well in practice in fluid mechanics. In addition, though we
consider networks of PDEs, the dimension of each PDE
is one, enabling online implementations, as solving a set
of one dimensional PDEs may be done extremely quickly.
Controlling transportation networks in general is extremely
challenging and numerically difficult [8], [16]. In the present
case, the control consists in speed assignments and routing
policies (i.e. determining optimal routes for the aircraft). As
shown in [3], we use anEulerianframework for this problem,
despite the known difficulties inherent to PDE control [5],
[1]. However, there are a few benefits of the above outlined
approach overLagrangian methods, which incorporate all
trajectories of all aircraft:

1) Most of the Lagrangian methods will end up posing a
control problem as an integer optimization program which
is intractable in real time because it is NP-complete. In
addition, the solution provided by these methods often takes
advantage of actuating single aircraft individually, which
precludes the derivation of global policies, which we are
interested in for this paper. Finally, this framework scales
very well with the number of aircraft (the higher the number
of aircraft is the better the more accurate the model becomes,
without further computational complexity).
2) The method presented below is very general and can be
very easily adapted to specific classes of controllers, which
are “Air Traffic Controller friendly”, i.e. it is possible to use
this method to derive a control law in a required format,
which is compatible with aircraft capabilities.
3) This method can be applied to highway traffic with minor
modifications [4], and we believe can be extended to other
problems such as networks of irrigation channels [14].

This article is organized as follows. In Section II, we show
the relative benefits of several numerical schemes, and run



tests against an analytical solution derived in [3]. We select
theJameson-Schmidt-Turkel(JST) scheme for the rest of this
study. In Section III, we derive the adjoint system to our
problem, and show how to use it to determine the mean
velocity profiles along the links as well as the routing policy
to apply. Finally, in Section IV, we show how to apply this
to a very busy portion of airspace: the area enclosed by
Chicago, New-York, Boston and the east coast of Canada.

N number of links
S set of source links
M set of links into which other links merge
D set of links ending in a fork
U(i) set of links merging into linki (if i ∈ M)
F set of links merging into the airport (sink)
il, ir indices of the two links of a fork if linki ∈ D
Li length of link i
xi arclength on linki: xi ∈ [0, Li]
ρi(xi, t) aircraft density on linki
ρ◦i (xi) initial aircraft density on linki
vi(xi) nominal velocity profile on linki: vi(·) : [0, Li] → R+

qin
i (t) inflow at xi = 0 for link i (if applicable)

βi(t) portion of ρi which flows into link il (if applicable)

II. N UMERICAL SOLUTIONS AND VALIDATION

The Eulerian PDE model which we presented in the com-
panion paper [3] is summarized as follows.

Ni(ρi) := ∂ρi(xi,t)
∂t + ∂

∂xi
(ρi(xi, t)vi(xi, t)) = 0

∀i∈ {1, · · · , N}
ρi(x, 0) = ρ◦i (x) ∀i∈ {1, · · · , N}
ρi(0, t)vi(0, t) =

∑
j∈U(i)

ρj(Lj , t)vj(Lj , t) ∀i ∈M{
ρil

(0, t)vil
(0, t) = βi ρi(Li, t)vi(Li, t)

ρir
(0, t)vir

(0, t) = (1− βi)ρi(Li, t)vi(Li, t)
∀i ∈ D

ρi(0, t)vi(0, t) = qin
i (t) ∀i ∈ S

(1)
where notations are summarized in the table above. Please
refer to [3] for more precision about the different variables
used. In (1),Ni(·) represents the LWR operator. Even for
a single link i, it is in general not possible to solve the
system (1) analytically. In [3], we show an analytical solution
based on the method of characteristics, which works in the
case in whichvi(xi, t) = vi(xi), i.e. the nominal velocity
does not depend on time. When the velocity depends on
time, numerical integration is needed. The solutions of the
LWR PDE in the system (1) have very undesirable prop-
erties for numerical integrations: they are by construction
discontinuous (see the construction ofρi in [3]); they can
develop kinks if the velocity profiles are discontinuous. Ad
hoc numerical schemes of the original LWR PDE have been
the focus of recent research [9] in order to address similar
difficulties encountered in the original LWR PDE; they have
proved extremely efficient in the case of highway traffic. We
have chosen to use three different schemes to compare their
respective benefits.

1) The well knownLax-Friedrichs scheme[10]. This scheme
is linear; we chose it motivated by the recent work [15],
which make explicit use of the linearity of their discretization
scheme in the control synthesis for their problem.

2) A left-centered scheme, inspired by the Daganzo
scheme [9] in light traffic:

ρn+1
k =

(
ρn

k (1 − c(xk)∆T
∆x

) + ρn
k−1(

c(xk)∆T
∆x

)
)
×(

1 − c(xk)∆T
∆x

+
c(xk−1)∆T

∆x

)
3) The Jameson-Schmidt-Turkel(JST)scheme. This scheme
is nonlinear, and has very desirable properties for this work:
it captures shocks (which are present in the solutions we
compute, as will be seen), and when the PDE has an entropy
solution, which is the case for highway traffic in the original
LWR setting, it converges to the entropy solution of the
problem. Details of this scheme are available in [12].

Even if a numerical scheme is theoretically proved to con-
verge to the analytical solution of a PDE, one usually does
not know a priori the required gridsize to guarantee that the
numerical solution is close to the analytical solution. Even if
this type of validation is standard in numerical analysis [10],
it seems to be absent from literature using these schemes
for highway or air traffic problems [15], [9]. We use the
method developed in [3] to compute the analytical solution
of three benchmark problems involving solutions with shocks
and kinks. For each of the numerical schemes used, we
compute theL2 error due to the discretization method, as
a function of the number of grid points. The result is shown
in Figure 1. This study leads to several conclusions. The
Lax-Friedrichs scheme is very diffusive. Its behavior is very
representative of linear schemes to approximate a hyperbolic
PDE. Consequently, we do not think that it is a good idea to
use linear numerical schemes to approximate the solution of
the PDE, even if it would have the advantage of making the
constraints linear in the resulting optimization program. The
left centered scheme is less diffusive, but fails to capture the
kinks of the solution. However, it still provides goodL2

convergence. The JST scheme captures shocks accurately
because of its anti diffusive term, and thus gives the best
results overall. It will be used for the rest of this study.1

Note that capturing shocks is crucial: shocks represent the
location of fronts of traffic jams, which we want to track.

III. N ETWORK CONTROL VIA ADJOINT METHODS

Consider solving the following problem: maximize the
throughput (i.e. flux of landing aircraft) at a destination
airport, while maintaining the density of aircraft everywhere
lower than a given threshold. Let us callρmax,i the maximal
allowed density on linki, vmax,i(·) and vmin,i(·) the max-
imal and minimal achievable speeds on linki (which can

1This validation is to the best of our knowledge the first which was
actually implemented to assess the accuracy of the approximation as a
function of the discretization size. Note also that confusion often arises
between scale cell size (defined previously by Daganzo [8], i.e. line element)
and discretization size (whose mathematical definition is available in [10]).
These quantities are completely unrelated, as cell size is a physical length
which pertains to the application (for example a portion of highway or
jetway), whereas the discretization length is an arbitrary small length
chosen between gridpoints such that the discretization will approximate the
continuous problem accurately. Typically, a cell should contain at least a
dozen grid points (in fact at least a hundred in the present simulations).



Fig. 1. L2 error due to the discretization method, as a function of the
number of grid points for both schemes. The analytical solution presented
in [3] is used for this comparison. Lax-Friedrichs scheme (solid), Jameson-
Schmidt-Turkel scheme (−·), left-centered scheme (- -).

depend on location). Using the notations of Section II, the
optimization problem thus reads:

min: −
∑

i:i∈F
∫ T

0
ρi(Li, t)vi(Li, t) dt

s.t.: (1)
ρi(xi, t) ≤ ρmax,i

∀i∈ {1, · · · , N},∀xi ∈ [0, Li],∀t ∈ [0, T ]
vmin,i(xi) ≤ vi(xi) ≤ vmax,i(xi)
∀i∈ {1, · · · , N},∀xi ∈ [0, Li],∀t ∈ [0, T ]
0 ≤ βi(t) ≤ 1 ∀i ∈ D,∀t ∈ [0, T ]

(2)

The difficulty posed by the constraints can be avoided in
practice by using a classical optimization technique called
barrier [6], in which the cost is augmented by a logarithmic
term, which prohibits violation of the constraints.

min: J := −
∑

i:i∈F
∫ T

0
ρi(Li, t)vi(Li, t) dt

− 1
M

∑N
i=1

∫ T

0

∫ Li

0
log((ρmax − ρi(xi, t))·

(vmax − vi(xi, t))(vi(xi, t)− vmin,i)) dxi dt

− 1
M

∑
i:i∈D

∫ T

0
log(βi(t)(1− βi(t))) dt

s.t.: (1)
(3)

We call H(v, β, ρ) the augmented cost function. Whenρ, β
andv are used without indices, it means that they are vectors,
i.e. v = [v1, · · · , vN ]. Note that the two last constraints in
the optimization program (2) have disappeared into the cost
function. This constrained optimization problem is easier
to solve in practice. It is asymptotically equivalent to the
problem of interest whenM → +∞. We use an adjoint
method to algebraically compute the gradient of the cost
function. This method was extensively [5] in flow control.
We now adapt the adjoint method to the case in which we
have a set of PDEs coupled through the boundary conditions,
and subject to constraints. The adjoint method computes
the gradient of the cost functionH(v, β, ρ) when ρ is an
implicit function of v and β via the dynamics (1). Let

us denoteJ the cost function of the two variablev and
β: J : (v, β) → J (v, β) = H(v, β, ρ) where ρ is the
solution of the PDE system (1). We compute the linearized
(1), which we will use to compute the gradient of the cost
function in the optimization program (3). We denote by′ the
linearized quantities around a nominal value denoted by¯ :
ρi = ρ̄i + ρ′i. We callN ′

i (·) the linearized LWR operator,
and qi = ρivi. In order to abbreviate the notation, we will
write q′i = ρ′iv̄i + ρ̄iv

′
i and q̄i = ρ̄iv̄i. We omit the time and

space dependence when they are obvious. We are NOT using
Einstein’s notations. The linearized (1) reads:

N ′
i (ρ

′
i) := N ′

i ρ
′
i = ∂ρ′i

∂t + ∂ρ′iv̄i

∂x = −∂ρ̄iv
′
i

∂x
∀i ∈ {1, · · · , N}

ρ′i(x, 0) = 0 ∀i ∈ {1, · · · , N}
q′i(0, t) =

∑
j∈U(i) q′j(Lj , t) ∀i ∈M

q′il
(0, t) = β′i(t) q̄i(Li, t) + β̄i(t) q′i(Li, t)

∀i ∈ D
q′ir

(0, t) = −β′i(t) q̄i(Li, t) + (1− β̄i(t))q′i(Li, t)
∀i ∈ D

ρ′i(0, t)v̄i(0) + ρ̄i(0, t)v′i(0, t) = 0 ∀i ∈ S

(4)

The first variation ofJ is obtained from (3):

J ′ = −
∑

i:i∈F

∫ T

0
ρ′i(Li, t)v̄i(Li, t) + ρ̄i(Li, t)v′i(Li, t)

+ 1
M

∑N
i=1

∫ T

0

∫ Li

0

(
ρ′i(xi,t)

ρmax,i−ρ̄i(xi,t)
+ v′i(xi,t)

vmax,i−v̄i(xi,t)

− v′i(xi,t)
v̄i(xi,t)−vmin,i

)
dxi dt

+ 1
M

∑
i:i∈D

∫ T

0

(
β′i(t)

1−β̄i(t)
− β′i(t)

β̄i(t)

)
dt

(5)
An integration by parts leads to the following identity for
any two functionsρ′i andρ∗i .∫ T

0

∫ Li

0
ρ∗iN ′

i ρ
′
i dxidt

=
∫ T

0
[ρ∗i ρ

′
iv̄i]Li

0 dt−
∫ T

0

∫ Li

0
ρ′iv̄i

∂ρ∗i
∂xi

dt dxi

which can be rewritten using the standard inner product
denoted〈·, ·〉i for the domain[0, Li]× [0, T ]:

〈ρ∗i |N ′
i ρ
′
i〉i = 〈N ∗

i ρ∗i |ρ′i〉i + bi (6)

where

{
Ni

∗ = −∂(.)
∂t − v̄i

∂(.)
∂xi

bi =
∫ Li

0
[ρ∗i ρ

′
i]

T
0 dxi +

∫ T

0
[ρ∗i ρ

′
iv̄i]Li

0 dt
(7)

We will denote by〈·, ·〉[0,T ] the standard inner product in
[0, T ]. N ∗

i is called the adjoint operator ofN ′
i . In order to

express the first variation ofJ as a function of thev′i andβ′i
only, we choose an adjoint density fieldρ∗i that cancels all
the terms containingρ′i in the cost function. First, in order
to eliminate the term1

M

∑N
i=1

∫ T

0

∫ Li

0
ρ′i(xi,t)

ρmax,i−ρ̄i(xi,t)
dxidt,

we chooseρ∗i such that

Ni
∗ρ∗i =

1
M(ρmax,i − ρ̄i)

(8)

This is a first order linear hyperbolic PDE, which is well-
posed ifρ̄i is known and both the boundary conditions at one
location and the initial conditions at one time are specified.



Fig. 2. Network model shown in [3]. We now add a divergence link in
order to be able to show that we are able to control the density of aircraft
by splitting the flow. For this simulation, we restrict ourselves to the box
including ORD. The new additional link is shown with a dashed line. We
call β1 the portion of flow which stays on link 1 (called 1 bis) and1− β1

the portion which goes into the new link (link 6).

This allows us to enforce two other conditions forρ∗i in order
to cancel all the terms containingρ′i. We can choose:

ρ∗i (xi, T ) = 0 ∀i∈ {1, · · · , N},∀xi ∈ [0, Li]
ρ∗i (Li, t) = −1 ∀i ∈ F , ∀t ∈ [0, T ]
ρ∗i (0, t) = ρ∗j (Lj , t)∀i ∈M, ∀j ∈ U(i), ∀t ∈ [0, T ]
ρ∗i (Li, t) = β̄i(t)ρ∗il

(0) + (1− β̄i(t))ρ∗ir
(0)

∀i ∈ D, ∀t ∈ [0, T ]
(9)

These conditions have been chosen by necessity of the
algebraic derivation, in order to cancel appropriate terms in
the perturbation of the cost function.2 After some algebra,
using (6–9), we are able to express the first variationJ ′ of
J as a function of the first variations control variables only
(v′i andβ′i), as well as nominal and adjoint quantities, which
we can evaluate. The result reads:

J ′ =
N∑

i=1

〈
ρ̄i

∂ρ∗i
∂xi

+ 1
M

(
1

vmax,i−v̄i
− 1

v̄i−vmin,i

)∣∣∣ v′i

〉
i

+
∑

i∈D

〈
ρ̄i(Li)v̄i(Li)(ρ

∗
il

(0) − ρ∗ir
(0)) + 1

M
( 1
1−β̄i

− 1
β̄i

)|β′i
〉

[0,T ]

where again〈·, ·〉i denotes the inner product for the do-
main [0, Li] × [0, T ] and 〈·, ·〉[0,T ] for [0, T ]. The functions
vi(·, ·) and βi(·) generated by this method might be ill-
behaved and thus be inappropriate for practical Air Traffic
Control applications. We can alleviate this difficulty by
projecting the descent direction̄ρi

∂ρ∗i
∂xi

+ 1/M(1/(vmax,i −
v̄i) − 1/(v̄i − vmin,i)) into a vector spaceE of appropriate
functions, for example the set of continuous functions with
bounded derivative, or the set of continuous piecewise affine
functions.

2The algebra which led to the “good choice” (9) is available from the
authors upon request. In addition, a physical interpretation of the boundary
and terminal conditions of the adjoint can be given. The first condition is
terminal and stipulates that the sensitivity of the solution to perturbations
of the system att = T is zero. The second conditions accounts for the
sensitivity of the solution at the sink: by actuating directly there, one
decreases the objective function. The third condition at every merging node
says that the sensitivity is the same for all branches connected to the node, at
that point. The last condition says the same at the diverging nodes, weighted
by the mean̄βi which represents the portion of flow choosing the respective
links outgoing from the node.

IV. A PPLICATION TO CONTROLLER DESIGN

In this section, we demonstrate the effectiveness of the
method by applying it to the air traffic model built in [3].
Please refer to [3] for a description of airspace. Figure 2
shows the area which we will control (enclosed by a box).
The inflows into the box are thus nowqin new

1 and qin new
2

as shown in Figure 2. We want to impose the following
constraint: for all links, the density should be below a
thresholdρmax which we impose. We allow the flow to be
split into a new link (link 6), in order to aid satisfaction of the
maximal density constraints. We callβ1 the corresponding
split factor:β1 is the fraction of the flow which stays on link
1 (called 1 bis);1−β1 is the fraction which is routed through
link 6. This new link might use another arrival into the airport
(it enters the arrival airspace from an other direction).3 We
simulate the following three scenarios:
Scenario 1: normal traffic. (Real data) We take ETMS
data, from which we extract initial conditions and inflows,
as explained in [3]. We impose a restriction on the density
and control the flow.
Scenario 2: heavy traffic.(Modified real data) We take the
same data as for the previous case, and add additional aircraft
in order to overload even more the network.
Scenario 3: congested network.We generate data with very
high densities of aircraft. This situation does not use ETMS
data; it is generated randomly.

Figure 3 shows the decrease in cost for the three scenarios
as a function of the total number of iterations (i.e. iterations
on M and gradient advances). As can be seen in this Figure,
the more congested the situation is, the higher the cost is.
The evolution of the cost with iterations exhibits two distinct
behaviors, as often with barrier methods [6]: large jumps
corresponding to the increases inM , and shallower decreases
corresponding to the gradient advances. Convergence is
clearly observed for the three scenarios. We display some
of the results for the third case. An animation (in form
of an .avi movie file) corresponding to each of the three
scenarios is available at [18]. We now describe in detail
the scenario corresponding to Case 3. We run a one hour
simulation. Figure 3 shows the aircraft density on all links
at various instants, in the absence of control: the velocity
is the mean velocity profile determined for each link in [3],
and no aircraft is allowed into link 6 (i.e.β1 = 1). The
initial density is shown in the top left corner. The inflow
into links 1 and 3 is such that at timet = 27, the density
threshold (represented by the horizontal line on each subplot)
is violated until timet = 45. At time t = 55, it is violated
again, until the end of the experiments. Figure 4 shows the
same experiment when link 6 is now opened to traffic, and
velocity control is enabled. As can be seen, about half of the

3Note that usingβ1 is equivalent to using turning proportions in road
traffic, and might not be the best way to represent network traffic. It could
be better to define an assignment proportion, i.e a coefficient indexed
by destination. This might be implemented in the future (as a part of
the control strategy), using a framework such as the one developed by
Papageorgiou [17].



Fig. 3. Top left: Decrease of the cost as a function of the iterations for the three scenarios. The increases inM are clearly visible (steps), while the
gradient descent is more subtle. Congested traffic (solid); heavy traffic (- -); normal traffic (−·). Top middle: Decrease of the true cost as a function of the
iterations. The true cost is the costJ without the barrier terms. The method does not guarantee the monotonicity of the decrease but only the convergence.
Top right: Evolution of theβ1 parameter as a function of time.Bottom: Evolution of the velocity fields as a function of time for the different links. Each
of the plots corresponds to a link, (see top left corner). The axis of each subplot are:xi (arclength along the link),t (time) andvi(xi, t), the velocity
distribution.

traffic incoming into link 1 is rerouted into link 6, and the
other half into link 1 bis. Figure 3 shows the variation ofβ1

with time. As can be seen, aroundt = 20 min., there is a
peak of about25% of aircraft routed into link 6, which settles
to 50% at t = 30. The routing control enables avoidance of
violation of maximal density shown in Figure 4. The first
violation is avoided by velocity changes.

The velocity profilesvi(xi, t) are shown in Figure 3. Each
of the subplots corresponds to one of the links. For links
5 and 6, one can clearly see the descent velocity profiles.
Also, for link 6 (subfigure below), one can see a ridge. It
corresponds to a set of aircraft which have to fly at high

speed into the airport. One can also see similar ridges on the
other subplots, which have the same interpretation. For any
ridge, the Controller command could be to the corresponding
set of aircraft: “fly direct at 420 kts direct into [the next
waypoint]”. Note that in the absence of control, the first
violation of the aircraft density threshold occurs 33 minutes
after the beginning of the experiment, almost at the end of
the network, which is not intuitive. This shows the efficiency
of the method, which is capable of generating the right
routing and speed assignments to prevent undesirable events
from happening much later. Finally, the simulations are also
depicted on a US map in Figure 5 using the same density



Fig. 4. Top 6 subfigures: Evolution of the aircraft density on the different links in the absence of control. Each of the subplot shows the density
distribution at a given time on the corresponding link as in Figure 3 (the horizontal coordinate represents location, the vertical represents density). The
horizontal line represents the density threshold (all quantities are nondimensionalized byρmax, so that the threshold density is 1). As can be seen, the
density threshold is violated in link 5 att = 27, t = 39 and t = 59. Bottom 6 subfigures: Evolution of the aircraft density with control applied. Note
that link 6 is now open, and used. This prevents the second violation of density threshold observed in Figure 4 (t = 59): some of the flow is directly
routed from link 1 to link 6. The first violation seen in the top 6 subfigures is avoided by speed changes. This figure is also available in form of a.avi
file at [18].

encoding as in [3]. One can see that beforet = 27, all
aircraft choose the direct route through link 5 to Chicago
(it is shorter). Aftert = 27, the excessive amount of flow
incoming into links 1 and 3 forces the flow to be split through
links 1 bis and 6.
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