
Object Modelling of Interconnected Systems in a Behavioral
Framework

T. Bastogne
Centre de Recherche en Automatique de Nancy (CRAN),
CNRS UMR 7039, Université Henri Poincaré, Nancy 1,

BP 239, F-54506 Vandœuvre-ls-Nancy Cedex, France,
Phone: (33) 3 83 68 44 73 - Fax: (33) 3 83 68 44 62
thierry.bastogne@cran.uhp-nancy.fr

Abstract— The problem addressed in this communication
deals with the object-modelling of interconnected systems.
This communication attempts to provide a bridge between the
object-oriented modelling methods based on languages and
compilers for simulation purpose, and the behavioral mod-
elling approach based on a reliable mathematical formalism.
An object-oriented model structure (multiport diagram) and a
modelling procedure are developed. An application to a simple
example is presented to illustrate the implementation of the
multiport diagram into the modelling language Modelica c©.

I. INTRODUCTION

Modelling and simulation of complex systems are impor-
tant topics which are common to all fields of engineering
and science. The problem addressed in this communication
deals with interconnected systems modelling, i.e. physical
systems composed of interconnected (energy-conserving)
sub-systems. Such systems are widespread in industry,
e.g. batch processes in chemical industries [1], drive-train
processes in iron and steel industries or power plants in
energy industries [2].

The applications of object-modelling techniques in con-
trol and automation mainly concern the development of
’High-fidelity’ dynamic models, i.e. models for simulation,
training, safety certification or reconfigurable control pur-
poses [3]. Since the end of Seventies, efforts have converged
to develop object-oriented languages for physical systems
modelling : Dymola [4], χ [5], or Modelica [6]. Some
formalisms like the Bond graphs can be allied with the class
of object-oriented models [7]. However, it was necessary to
await the end of the Eighties to get efficient platforms of
simulation able to deal with differential algebraic equations
systems with high index [8]. All these advances have
provided languages and compilers for a consistent simu-
lation of complex systems. However, one can wonder about
the interest in having so many languages and compilers.
Moreover, their frequent evolutions can become a serious
drawback for the capitalization of the modelling efforts.
Hence it would be interesting for the modelling procedure
to be initially independent on any programming language.
The behavioral formalism of systems theory proposed by
Willems in 1986 [9] provides a mathematical paradigm for
interconnected systems modelling and could be an answer

Reference Description
D set, space
D object-class
D instance

TABLE I

BASIC NOTATIONS

to this problem.
The first goal of this communication is then to examine

the suitability of the behavioral formalism for the descrip-
tion of the object-oriented paradigm in order to provide
a bridge between them. A second objective is to develop
an object-oriented model structure (multiport diagram) and
a modelling procedure that would initially be independent
from any existing modelling language. The last objective
is to show that the implementation effort of the multiport
diagram into a modelling language like Modelica is small.

II. MAIN CONCEPTS OF OBJECT-MODELLING

TECHNIQUES

In this section, the behavioral formalism [10] is borrowed
to describe the main concepts of object-orientation. Table I
summarizes some basic notations used herein.

A. Concept of object

One main specification of the object-modelling paradigm
is to gather data and data processings in the same au-
tonomous structure called object. In the behavioral frame-
work, this process of encapsulation of data and behavior
can be defined by Eq. (1).

O = (UO, BO, PO) (1)

where O denotes the object, UO: the data universum,BO:
its behavior and PO contains its communication ports or
interfaces by which it communicates with its environment.
A major difference between the objects used at the origin
in programming languages and those used for physical
systems modelling is that contrary to conventional objects,
physical models are associated to a temporal semantics.
Consequently, the data universum can be defined by:

UO = T × Θ × W (2)

where T denotes the time axis, Θ: the parameter space, W:
the variable space and × the cartesian product. The behavior
of an object can then be expressed in the form of behavioral
equations:

BO = (t ∈ T, θ ∈ Θ, w(t) ∈ W|(4)) (3)

f1(t, p, w) = f2(t, p, w) (4)

where t denote the time variable, θ: the vector of parameters
and w(t): that of variables. But the principal utility of
the encapsulation remains the privatization of the access
to the data. Indeed, the concept of object also makes it
possible to legalize and hold the access of a limited number
of variables (known as external). These variables enable
it to communicate with outside via interfaces or ports of
communication. We will model the external variables of
an object by manifest variables and the internal or local
variables by latent variables, by respecting the terminology
suggested by Willems. The complete behavior of the object
is then defined by:

BO = (t ∈ T, θ ∈ Θ, w(t) ∈ W|∃l ∈ L, (6)) (5)

f1(t, θ, w, l) = f2(t, θ, w, l)), (6)

where: w(t) and l(t) correspond to the vectors of manifest
and latent variables respectively. W is the manifest signal
space and L the latent variable space.

B. Concepts of class and instance

Objects are organized in classes. A class is a paradigm
defining the behavior and the variables for a particular type
of object. Any object designed from this paradigm is an
instance of this class. Instances are the physical representa-
tions of objects in the model. The class-instance relationship
is symbolized by ⇒. For example, A ⇒ A1,A2 means that
A1 and A2 are two instances of A. As shown in Eq. (7),
the instances and class are identical by their form and
their behavior, but their variables generally contain different
values.

BA1 = BA2 = BA. (7)

C. Concept of inheritance

The various types of classes result from a stage of
system structuring. They are organized in a specialization-
generalization hierarchy. The latter naturally induces super-
class/subclass associations among classes. The behavior of
superclasses are inherited by their subclasses. Given two
object-classes: A and B, if A is a super-class of B, noted
B/A, then the complete behavior of B/A is defined by :

BB/A = BB ∩ BA. (8)

where BB represents the specific behavior of the free-class
B. The ports of B/A are given by :

PB/A = {PB, PA}. (9)

Identity

Behavior

Ports of communication

Data universum

Color

O

UO

PO

BO

Fig. 1. General description of a module

But the inheritance process also implies that each class of a
hierarchy inherits the data of its superclasses, which implies
that :

UA ⊂ UB/A. (10)

III. A MULTIPORT DIAGRAM FOR INTERCONNECTED

SYSTEMS

Object-oriented models of interconnected systems are
generally based on a graphic structure. The one proposed
herein is entitled multiport diagram. This section aims at
describing the composition of a multiport diagram, noted
∆, in the behavioral framework. As shown in Eq. (11), such
a diagram is composed of two object-classes: modules and
links.

∆ = (O,L) (11)

O = {O1, · · · ,Om} is a set of module instances which
compose the diagram and L = {L1, · · · ,Ln} is a set of link
instances which allow the modules to exchange energy and
information with other modules. Each module instance of O
is associated with a component of the system to model, and
L describes the interconnection architecture of the diagram.
m and n are the number of modules and links in ∆.

A. Module class

As shown in Fig. 1, the general description of a module
object class: O is based on five attributes. Its identity is
composed of its name relative to the function of the com-
ponent and can be completed by an icon which graphically
represents the object. Its behavioral model : BO is defined
by the Eq. (6) where f1(·), f2(·) express the behavioral
equations of the object. Other formalisms such as transfer
functions, block diagrams, bond graphs, Petri nets, etc. can
used to describe the behavior of the object. θ is a vector
of parameters and (w(t), l(t)) are the manifest and latent
variables of the model. Its data universum is defined by
UO = (T × Θ × W × L). Its communication ports or
interfaces by which it communicates with its environment,
PO is a set of port instances, defined by :

PO = {PO.k} (12)

where PO.k is the kth port instance of O. Its colour defined,
by analogy with the system identification terminology,
according to the a priori knowledge about the object, i.e. :
white box if the theoretical laws or physical equations and
the values of parameters are known, grey box if there only
exists a partial knowledge about the object, i.e. values of

O1 O2

O3 O4

O5 O6

O7 O8

BO1 BO2

BO3 BO4

BO5 BO6

BO7 BO8

L1

L2

L3

L4

PO1.1 PO2.1

PO3.1 PO4.1

PO5.1 PO6.1

PO7.1 PO8.1

Fig. 2. Types of links and ports

some parameters or the mathematical structure of physical
equations or black box if no a priori knowledge about the
object is available.

B. Port class

A port is a terminal of communication attached to an
object. Two main classes of ports are considered: the power
ports and the information ports which allow objects to
exchange energy and information flows respectively. The
class of power ports is seperated in two subclasses : the
physical (PP) and the thermodynamical (PT) ports while
the class of information ports is decomposed in signal (PS)
and data (PD) ports.

As shown in Fig. 2, physical ports : PO1.1,PO2.1 ⇐ PP

are symbolized by a black circle. The state of a physical port
is defined by a couple of across/through variables : PP =
(α(t), ϕ(t)). The power P (t) associated with a physical port
is given by : P(t) = α(t) ·ϕ(t). By convention, the positive
flow of through variables is oriented into the module. This
convention is used to establish the power balance equation
in each module.

Thermodynamical ports : PO3.1,PO4.1 ⇐ PT are sym-
bolized by a black square. The state of a thermodynamical
port is defined by a triplet of physical variables : two
across variables : one pressure and one temperature, and
one through variable : the volume flowrate.

Signal ports : PO6.1 ⇐ PS+,PO5.1 ⇐ PS− are causal
interfaces by which objects exchange input and output
signals : PS+ = (u(t)) or PS− = (y(t)) symbolized by a
black and a white arrow respectively.

Data ports : PO7.1,PO8.1 ⇐ PD are non-causal inter-
faces by which objects exchange data. The flow causality is
not pre-established. Those ports are symbolized by a black
and white diamond.

Note that this proposition of interfaces (information and
power ports) is not a limited description and can be ex-
tended by personal port developed by the user. However, as
suggested in [11], modelers are advised not to define the
ports of their models arbitrarily, but to restrain themselves,
and only use proven connection mechanisms.

C. Link class

A link class L is a specific object which describes the
mode of connexion between modules. A link class is defined
by two attributes :

L = (PL, BL) (13)

S

T1 T2

OV 1

Fig. 3. Tank system

where: PL = {POi.k, · · · ,POj.l} is the set of ports
connected by L, POi.k denoting the kth port of the module
class Oi, and BL is the behavioral model of the link which
defines the interconnexion law. This interconnection law
depends on the class of the connected ports. Given the four
classes of ports described in the previous paragraph, four
interconnection laws, noted BLP

, BLT
, BLS

and BLD
, are

defined:

BLP
=

P1.α
...

Pr.α

 ∈ A

r,

P1.ϕ
...

Pr.ϕ

 ∈ F

r

∣∣∣∣∣∣∣
(14)

(
P1.α(t) = · · · = Pr.α(t)
P1.ϕ(t) + · · · + Pr.ϕ(t) = 0

)
(14)

BLT
=

P1.p
...

Pr.p
P1.τ

...
Pr.τ

∈ A
2r,

P1.q
...

Pr.q

 ∈ F

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(15)

 P1.p(t) = · · · = Pr.p(t)

P1.τ(t) = · · · = Pr.τ(t)
P1.q(t) + · · · + Pr.q(t) = 0

 (15)

BLS
= {P1.u ∈ I,P2.y ∈ O| P1.u(t) := P2.y(t)}

BLD
=

{
(P1.w1,P2.w2) ∈ R

2 |(16)
}

P1.w1(t) = P2.w2(t) (16)

BLP
, BLT

, BLS
and BLD

represent the behavioral models
of physical, thermodynamical, signal and data links respec-
tively. P.x(t) corresponds to the variable x(t) attached
to the port P. A, F, I and O denote the domains of
across, through, input and output variables respectively.
r = card(L) is the number of ports interconnected by the
power link L. In order to make the distinction between
the information and energy flows in the multiport diagram,
power (LP ,LT) and information (LS ,LD) links are repre-
sented by dotted and solid lines respectively.

IV. AN EXAMPLE

A. Tank system

As shown in Fig. 3, the system is composed of two
identical tanks T1 and T2 interconnected by an On/Off

Tank System

2

yx
y contains x

yx
y inferits from x

T AOV

BOV BABT

Fig. 4. UML class diagram

T

h(t)

pu(t)

pd(t)
q(t)

(a) Tank

S

OVp1(t) p2(t)

q1(t) q2(t)

(b) On/Off Valve

Fig. 5. Icons of modules

valve: OV1. The modelling procedure is broken down in
four main steps :

1) Hierarchical object-decomposition
2) Definition of the module classes
3) Multiport diagram
4) Implementation into Modelica

B. Hierarchical decomposition

As shown in the UML class diagram in Fig. 4, the
model of the tank system is based on three module-classes:
T (tank), OV (On/Off valve) and A (actuator). This
diagram points out the ’static’ structure of the model by
specifying the dependance links between the constitutive
module classes in terms of composition and inheritance
relationships. The model of the hydraulic system is com-
posed of two instances : T 1, T 2 ⇐ T of the Tank module
and one instance of the On/Off valve module : OV1 ⇐
OV. Moreover, the valve inherits generic properties of the
actuator class A.

C. Definition of the module classes

1) Tank module class: The icon of the tank module
class : T is presented in Fig. 5(a) in which the through
variable: q(t) is, by convention, oriented into the module.
T is defined by :

T = (UT , BT , PT) (17)

Its behavior is defined by :

BT (θ, w, l) = {t ∈ T, θ ∈ ΘT , w ∈ WT , l ∈ LT |(18)}

pd(t) − pu(t) = ρgh(t)
q(t) = Aḣ(t)
pu(t) = 105Pa

(18)

PN PF

Tr

Tf

Fig. 6. Petri net of the actuator class

Its data universum is given by :

UT = (T × ΘT × WT × LT), (19)

with :

t ∈ T = R
+

θ =
(
ρ g A

)
∈ ΘT = R

+3

w(t) =
(
pd(t) q(t)

)
∈ WT = R

+ × R

l(t) =
(
pu(t) h(t)

)
∈ LT = R

+2

where pu(t) and pd(t) are the pressures of the fluid at the
top and at the bottom of the tank respectively. q(t) is the
flow rate and h(t) is the level of water in the tank. ρ is
the water density, g is the gravitation constant and A is the
section area of the tank. Its interface is defined by :

PT = {PT.1}, (20)

where PT.1 ⇐ PP is a physical port given by :

PT.1 = (pd(t), q(t)) (21)

2) Actuator module class: A is defined by :

A = (UA, BA) (22)

Its behavior and its data universum are defined by :

BA(l) = {t ∈ T, l ∈ LA|Fig. 6}
t ∈ T = R

+

l(t) = (PN , PF , Tf , Tr) ∈ LA = B
4

UA = (T × LA) (23)

PN , PF denote the places associated to the normal and
fault states of the actuator, and Tf , Tr the logical conditions
associated with the transitions between PN and PF .

3) On-Off valve module class: The scheme of the valve
module class: OV is presented in Fig. 5(b) in which
the through variables: q1(t) and q2(t) are, by convention,
oriented into the module. OV is defined by :

OV = (UOV , BOV , POV) (24)

Its behavior and its data universum are defined by :

BOV (θ, w, l) = {t ∈ T, θ ∈ ΘOV , w ∈ WOV , l ∈ LOV |(25)}

z(t) = Open if {u(t) > 0}
z(t) = Close if {u(t) ≤ 0}
q(t) − Ko ∗ ∆P (t) = 0 if C1 = true
q(t) = 0 if C2 = true
C1 = (z(t) = Open) and A.PN = true
C2 = (z(t) = Closed) or A.PF = true
q(t) = q1(t)
q(t) = −q2(t)
∆p(t) = p1(t) − p2(t).

(25)

UOV = (T × ΘOV × WOV × LOV) (26)

T .1 T .2

OV.1
BT .1() BT .2()

BOV.1()

Fig. 7. Multiport diagram of the tank system

where:

t ∈ T = R
+

Ko ∈ ΘOV = R

w(t) =
(
p1(t) p2(t) q1(t) q2(t) u(t)

)
∈ WOV = R

5

l(t) =
(
z(t) ∆p(t) Q(t)

)
∈ LOV

LOV = {Open;Close} × R
+ × R

(p1(t), p2(t)) ∈ A, (q1(t), q2(t)) ∈ F, u(t) ∈ I denote
the upstrem/downstream pressures, the flow rates at the
upstrem/downstream ports and the binary control signal re-
spectively. The latent variable l(t) of the valve is composed
of its opening/closure state, the differential pressure and the
internal flow rate. It is assumed that the valve is always
kept in a normal state, i.e : P1 = true at t = 0 with
T1 = T2 = false. Its ports are defined by :

POV = {POV.1,POV.2,POV.3}, (27)

where POV.1,POV.2 ⇐ PP are two physical ports and
POV.3 ⇐ PS+ an input signal port given by :

POV.1 = (p1(t), q1(t)) (28)

POV.2 = (p2(t), q2(t)) (29)

POV.3 = (u(t)). (30)

Parameters and constitutive laws of the components are
supposed to be completely known. Consequently, their
modules are described by white objects in the UML class
diagram, Fig. 4.

D. Multiport diagram

The three modules instances: T 1, T 2 and OV1, used in
the model, are defined by :

BT 1 = BT(ρ, g,A1, pu1(t), pd1(t), q1(t), h1(t))
BT 2 = BT(ρ, g,A2, pu2(t), pd2(t), q2(t), h2(t))

BOV1 = BOV/A(Ko1, p3(t), p4(t), q3(t), q4(t), u1(t))

The latent variables have been removed from those de-
finitions in order to lighten the equations. The multiport
diagram of the tank system, presented in Fig. 7, is finally
made up by connecting together the three modules instances
in the same way as an experimenter would plug together
the real components of the system. The three modules are
connected by two power links, L1 and L2, corresponding to
the exchanges of hydraulic energy between the components.

L1 = LP (PT 1.1,POV1.1) (31)

L2 = LP (PT 2.1,POV1.2) (32)

Multiport diagram Modelica syntax
module class: O model class
link class: L connect instruction
port class : P connector class
time variable : t ∈ T time variable
types of parameters: Θ parameter type
types of data: N, R, B integer, real, boolean
through variables: ∈ F flow type
input variables: ∈ I input type
output variables: ∈ O output type
local variable: ∈ L local type
behavioral equations equation section
input-output equations algorithm section
UO data statement section
PO port statement section
BO model definition section

TABLE II

MULTIPORT DIAGRAM / MODELICA LANGUAGE

The multiport diagram of the system is defined by :

∆ = (O,L) (33)

with : O = {T 1, T 2,OV1} and L = {L1,L2}. Its full
behavior is given by :

B∆ = BT 1 ∩ BT 2 ∩ BOV1 ∩ BL1 ∩ BL2. (34)

The latter equation means that the mathematical expres-
sion of B∆ is obtained by gathering all the behavioral equa-
tions of modules and links, finally leading to a differential
algebraic equation system.

E. Implementation into Modelica

Table II points out some correspondances between the
elements of the multiport diagram and the instructions of
the Modelica language. This table makes the translations
of T,OV and LP into Modelica easier. Algorithms III
and IV present the implementation of OV and T into
Modelica . In both cases, UO, PO and BO correspond to
the sections: data statement, port statement and behavioral
model of their Modelica algorithm. The extends clause
specifies that the partial model of the actuator class is
extended to build the complete (full) model of the valve
and the instruction der(w) means the time derivative of w.
The algorithm V shows the implementation of the physical
ports into Modelica. For each port, a connector class is
defined. Connecting power ports means that across variables
are equal while through variables (marked by the prefix
flow) are sum to zero. The algorithm VI presents the
implementation of the multiport diagram. As indicated in
table II, the power links L1 and L2, defined in Eq. (31)
and Eq. (32) are implemented with the connect instruction.

The graphical user interface of Dymola c© allows to add
icons in the definition of the modules. The implementation
of the multiport diagram into the graphical environment of
Dymola is presented in Fig. 8. The latter emphasizes the
similarity between the implemented model and the process
and instrumentation diagram of the system in Fig. 3. Such
a model can now be used for a simulation purpose.

model ONOFFValve
extends MOODModels.ASTRIDLibrary.ElementActuator;

// DATA STATEMENT
parameter Real Ko=6.26*1e-8; //Valve constant
Real P2; //(Pa) Output pressure
Real P1; //(Pa) Input pressure
Real DP; //(Pa)
Real Q; //(m3/s) Throughput via the valve
Real Q1; //(m3/s) Throughput via the valve
Real Q2; //(m3/s) Throughput via the valve
Real u; // Control signal of the valve
Boolean z; // State of the valve
// PORT STATEMENT
Power Power1;
Power Power2;
SignalIn SignalIn1;
// BEHAVIORAL MODEL

equation
// Affection of manifest variables to ports
Power2.e = P2;
Power1.e = P1;
Power2.f = Q2;
Power1.f = Q1;
SignalIn.signal[1]= u;
// Behavioral equations
z = u>0;
T2.condition := false; // Error condition of the Actuator
T1.condition := false; // Release condition of the Actuator
if P2.state then // Fault state

Q = 0;
elseif l then

Q = Ko*DP;
else

Q = 0;
end if;
DP=P1-P2;
Q=Q1;
Q=-Q2;

end ONOFFValve

TABLE III

MODELICA MODEL OF THE ON/OFF VALVE

Fig. 8. Multiport diagram implemented into Dymola/Modelica

V. CONCLUSIONS

The formalism of the behavioural modelling approach
proposed by Willems in the eighties is shown to be a reliable
and suitable mathematical framework for the description
of the main concepts of the object-oriented paradigm. An
object-oriented model structure, entitled multiport diagram,
lied within this behavioural framework is developed for
interconnected systems modelling. A procedure for working
out this diagram has been pointed out. Finally, an implemen-
tation solution of the multiport diagram into the modelling
language Modelica c© is brought out.

REFERENCES

[1] T. Bastogne, “A multiport object-oriented diagram for batch process
modelling,” in IFAC Conference on Analysis and Design of Hybrid
Systems, Saint-Malo, France, 2003.

[2] T. Bastogne and A. Libaux, “An experimental object-oriented mod-
elling of an hydraulic valley,” in 13th IFAC Symposium on System
Identification, Rotterdam, Netherland, August 2003.

model Tank
// DATA STATEMENT
constant Real g=9.81;
constant Real rho=1000;
parameter Real A=0.04;
Real Pu=1e5;
Real Pd;
Real Q;
Real levelh;
// PORT STATEMENT
Power Power1; // output power
// BEHAVIORAL MODEL

equation
Power1.e = Pd; // Output
Power1.f = -Q;
Pd-Pu = rho*g*level;
der(level) = -Q/A;

end Tank

TABLE IV

MODELICA MODEL OF THE TANK

connector Power
Real a;
flow Real f;

end Power

TABLE V

MODELICA MODEL OF PP

[3] J. M. Maciejowski, “Reconfigurable control using constrained op-
timization,” in Proc. of the 4th European Control Conference,
G. Bastin and M. Gevers, Eds., vol. Plenary Lectures and Mini-
Courses, July 1997, pp. 107–130.

[4] H. Elmqvist, “A structured model language for large continuous
systems,” Ph.D. dissertation, Dept. of Automatic Control, Lund Insti-
tute of Technology, Sweden, 1978, report CODEN: LUTFD2(/TFRT-
1015).

[5] G. Fabian, D. A. van Beek, and J. E. Rooda, “Integration of the
discrete and the continuous behavior in the hybrid Chi simulator,” in
European Simulation Multiconference, Manchester, 1998, pp. 252–
257.

[6] H. Elmqvist, D. Brck, and M. Otter, Dymola - Dynamic Modeling
Laboratory. User’s Manual. Dynasim AB, 1999.

[7] W. Borutzki, “Relations between bond graph based and object-
oriented physical systems modeling,” in International Conference on
Bond Graph Modeling and Simulation, ICBGM’99, San Francisco,
CA, January 17-20 1999, pp. 11–17.

[8] C. Pantelides, “The consistent initialization of differential-algebraic
systems,” SIAM Journal of Scientific and Statistical Computing, no. 9,
pp. 213–231, 1988.

[9] J. C. Willems, “From time series to linear systems,” Automatica,
1986, part I: Vol. 22, No. 5, pp. 561-580, 1986, Part II: Vol. 22, No.
6, pp. 675-694, 1986, Part III: Vol. 23, No. 1, pp. 87-115, 1987.

[10] J. W. Polderman and J. C. Willems, Introduction to Mathematical
Systems Theory - A Behavioral Approach, ser. Texts in Applied
Mathematics, 26. Springer, 1997.

[11] F. E. Cellier, Continuous System Modeling. Springer-Verlag, 1991.

model TankSystem
ONOFFValve Valve1;
Tank Tank1;
Tank Tank2;

equation
connect(Tank1.Power1, Valve1.Power1);
connect(Valve1.Power2, Tank2.Power1);

end TankSystem

TABLE VI

MODELICA MODEL OF THE TANK SYSTEM

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP11.5
	Page0: 5546
	Page1: 5547
	Page2: 5548
	Page3: 5549
	Page4: 5550
	Page5: 5551

