
 
 

 

  
Abstract—A new hybrid optimization algorithm is proposed 

for the problem of finding the minimum makespan in the 
job-shop scheduling environment. The new algorithm is based 
on the principle of particle swarm optimization (PSO). PSO 
employs a collaborative population-based search, which 
combines local search (by self experience) and global search 
(by neighboring experience), possessing high search efficiency. 
Simulated annealing (SA) employs certain probability to avoid 
becoming trapped in a local optimum. By reasonably 
combining these two different search algorithms, we develop a 
general, fast and easily implemented hybrid optimization 
algorithm, named HPSO. The effectiveness and efficiency of 
the new algorithm are demonstrated by comparing results with 
other algorithms on some benchmark problems. Comparing 
results indicate that PSO-based algorithm is a viable and 
effective approach for the job-shop scheduling problem. 
Keywords:Particle swarm optimization, Simulated annealing, 

Hybrid optimization, Job-shop scheduling. 

0 INTRODUCTION 
Scheduling is concerned with allocating limited resources 

to tasks to optimize certain objective functions. One of the 
most popular models in scheduling area is that of the 
job-shop. The classic job-shop scheduling problem (JSP) 
can be described as follows: Given n jobs, each must be 
processed on m machines. Each job consists of a sequence of 
operations, which must be executed in a specified order. 
Each operation has to be performed on a given machine for a 
given time. A schedule is an allocation of the operations to 
time intervals on all machines. The problem is to find the 
schedule that the makespan (the maximum of job 
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complete-time) is minimal subject to the following 
constraints: (i) the operation precedence is respected for 
every job, (ii) each machine can process at most one 
operation at a time and (iii) an operation can not be 
interrupted if it initiates processing on a given machine.  

It is well-known that JSP is NP-hard and belongs to the 
most intractable problems considered. Historically JSP was 
treated via exact methods or approximation algorithms. 
Exact methods are based chiefly on the Branch and Bound 
(BB) method[1]. Because it is time-consuming and only can 
solve small problems, such algorithm lost its attraction to 
practitioners. On the other hand, approximation algorithms, 
which are a quite good alternative, have been developed 
largely during the past decade, such as the shifting 
bottleneck approach (SB)[2], simulated annealing (SA)[3], 
taboo search (TS)[4], and genetic algorithm (GA)[5]. In recent 
years, Pezzella et al. (2000) described a hybrid optimization 
strategy (TS-SB)[6] for JSP, and Aiex et al. (2003) proposed 
a parallel greedy randomized adaptive search procedure 
(GRASP)[7] to solve JSP.  

In this paper, we introduce a very fast and easily 
implemented hybrid algorithm based on particle swarm 
optimization (PSO) and simulated annealing algorithm. The 
remainder of this paper is organized as follows: Section 1 
describes general PSO algorithm and how to apply it in JSP. 
Section 2 focuses on basic ingredients of SA for the JSP, 
describing some rules of parameters selection in SA. The 
hybrid optimization algorithm is described in section 3. In 
section 4, the new optimization algorithm is used to solve 
some benchmark job-shop scheduling problems, presenting 
results and analyzing difference among different algorithms. 
Some concluding remarks are made in section 5.  

1 PSO ALGORITHM 
PSO is an evolutionary computation technique developed 

by Kennedy and Eberhart in 1995[8]. The particle swarm 
concept was motivated from the simulation of social 
behavior. The original intent was to simulate the graceful but 
unpredictable choreography of bird flock. PSO requires only 
primitive mathematical operators, and is inexpensive in 
terms of both memory requirements and time.  
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1.1  Standard PSO Algorithm 
 PSO is initialized with a population (named swarm in 

PSO) of random solutions. Each individual or potential 
solution, named particle, flies in the D-dimensional problem 
space with a velocity which is dynamically adjusted 
according to the flying experiences of its own and its 
colleagues. During the past years, researchers have explored 
several models about PSO. In this paper, we use the global 
model equations as follows[9]: 

)(*)(*1* idididid XPRandCVWV −+=  
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ididid VXX +=  
Where Vid, called the velocity for particle i, represents the 

distance to be traveled by this particle from its current 
position, Xid represents the particle position, Pid, which is 
also called pbest (local best solution), represents ith 
particle’s best previous position, and Pgd, which is also 
called gbest (global best solution), represents the best 
position among all particles in the swarm. W is inertia weight. 
It regulates the trade-off between the global exploration and 
local exploitation abilities of the swarm. The acceleration 
constants C1 and C2 represent the weight of the stochastic 
acceleration terms that pull each particle toward pbest and 
gbest positions. Rand( ) and rand( ) are two random 
functions with range [0,1]. 

For equation (1a), the first part represents the inertia of 
previous velocity. The second part is the “cognition” part, 
which represents the private thinking by itself. The third part 
is the “social” part, which represents the cooperation among 
the particles[10]. The process for implementing the PSO 
algorithm is as follows: 

1) Initialize a swarm of particles with random positions 
and velocities in the D-dimensional problem space. 

2) For each particle, evaluate the desired optimization 
fitness function. 

3) Compare particle’s fitness value with particle’s pbest. 
If current value is better than pbest, then set pbest value 
equal to the current value, and the pbest position equal to the 
current position in D-dimensional space. 

4) Compare fitness evaluation value with the swarm’s 
overall previous best. If current value is better than gbest, 
then reset gbest to the current particle’s value. 

5) Change the velocity and position of the particle 
according to equations (1a) and (1b) respectively. 

6) Loop to step 2) until termination criterion is met, 
usually a sufficiently good fitness value or a specified 
number of generations. 

In PSO, each particle of the swarm shares mutual 
information globally and benefits from the discoveries and 
previous experiences of all other colleagues during the 
search process. So the PSO should be effective in solving 
practical optimization problems.  

1.2  PSO for JSP 

a) The Encoding Scheme and Initial Swarm 
One of the key issues in applying PSO successfully to JSP 

is how to encode a schedule to a search solution, i.e. finding 
a suitable mapping between problem solution and PSO 
particle. In this paper, we set up a search space of n× m 
dimensions for a problem of n jobs on m machines. Each 
dimension has discrete set of possible values limited to s = 
{Pi: 1 ≤ i ≤ n}. A particle consists of m segments and every 
segment has n different job numbers, representing the 
processing orders of n jobs on m machines. For example, an 
easy problem with 6 jobs and 6 machines (FT06[11]) is 
considered. Fig. 1 shows an instance of a mapping from one 
possible assignment (on machine 1) to a particle position 
coordinates in the PSO domain, the first segment of a 
particle. 

J o b s  a s s ignme nt  o n ma c hi ne  1
( J o b ,  P ro c e s s )

(1, 2), (2, 5), (3, 4), (4, 2),  (5,  5),  (6,  4)

Ma p p i ng

The firs t segment of a PSO particle
D i me ns i o n :   1    2    3    4     5      6
Po s i t i o n :       4    3    1    6     2      5
P ro c e s s :         2    4    2    4     5      5

Fig.  1  Jobs  ass ignment to PSO particle mapping
 

Generally, particles’ positions and velocities in initial 
swarm are generated randomly. For reducing the iterative 
generations of PSO, we introduce a new method to generate 
initial swarm. Notice that most feasible solutions in JSP are 
arranged according to the increment order of the process and 
only a few processes are reversed. Then, we arrange job’s 
order respectively according to the increment order of 
process on the machine. If one job’s process order is the 
same as the other, the two jobs’ orders are arranged 
randomly. For example, consider the jobs and processes on 
machine 1 in Fig. 1, Fig. 2 shows two possible expressions 
of the first segment of initial particle that can be generated 
according to the new way. If jobs on every machine are 
arranged by this way, the probability that initial particle may 
be a feasible solution, i.e. a feasible schedule, increases 
greatly. 

b) Setting Parameters 
In Equation (1a), inertia weight (W) is an important 

parameter to search ability of PSO algorithm. A large inertia 
weight facilitates searching new area while a small inertia 
weight facilitates fine-searching in the current search area. 
Suitable selection of  the inertia  weight provides  a  balance 
between global exploration and local exploitation, and 
results  to  less  iterations on  average  to find  a  sufficiently 

  (1a)

  (1b)



 
 

 

Ini t i a l  p a r t i c l e  1  ( t he  f i r s t  s e gme nt )

Ini t i a l  p a r t i c l e  2  ( t he  f i r s t  s e gme nt )

  D i me ns i o n :   1    2    3    4     5      6
  P o s i t i o n :       4    1    6    3     2      5
  P ro c e s s :         2    2    4    4     5      5

  D i me ns i o n :   1    2    3    4     5      6
  P o s i t i o n :       1    4    6    3     5      2
  P ro c e s s :         2    2    4    4     5      5

Fig.  2  Two poss ible  express ions  on machine 1
 

optimal solution. Therefore, consider by linearly decreasing 
the inertia weight from a relatively large value to a relatively 
small value through the course of PSO run, PSO tends to 
have more global search ability at the beginning of the run 
while having more local search ability near the end of the 
run. For all computational instances in this paper, the inertia 
weight is set to the following equation: 

iter
iter

WW
WW *

max

minmax
max

−
−=  

Where, Wmax: Initial value of weighting coefficient, 
Wmin: Final value of weighting coefficient,  
itermax: Maximum of iteration or generation, 
iter: Current iteration or generation number. 

In following computational instances, the inertia weight is 
set starting with a value 1.2 and linearly decreasing to 0.4 
according to equation (2) through the course of the run. 

The acceleration constants C1 and C2 in equation (1a) 
adjust the amount of “tension” in PSO system. Low values 
allow particles to roam far from target regions before being 
tugged back, while high values result in abrupt movement 
toward, or past, target regions [12]. According to experiences 
of other researchers, let us set the acceleration constants C1 
and C2 each equal to 2.0 for all following instances.  

By computation of equation (1a) and (1b), the absolute 
value of Vid and Xid may be great. So the particle may 
overshoot the problem space. Therefore, Vid and Xid should 
be limited to maximum velocity Vmax and maximum position 
Xmax, which are two parameters specified by the user. Vmax 
serves as a constraint to control the global exploration ability 
of a particle swarm. A larger Vmax facilitates global 
exploration while a smaller Vmax encourages local 
exploitation. In JSP, the maximum velocity Vmax is set to n 
(number of jobs), i.e. Vid is a value in the range [-n, n]. The 
maximum position Xmax is also set to n. Because Xid 
represents job number in JSP, Xid must be a positive integer. 
So Xid is an integer value in the range [1, n]. 

c) Fitness Function 
Fitness is used as the performance evaluation of particles 

in the swarm. Fitness is usually represented with a function f : 
S →R+ (S is the set of candidate schedules, and R+ is the set 
of positive real values). Mapping an original objective 
function value to a fitness value that represents relative 

superiority of particles is a feature of evaluation function. In 
JSP, the objective function is to minimize the maximum of 
complete-time on all machines. Therefore, in our algorithm, 
we use the maximum complete-time among all machines as 
the fitness function of a candidate. Particle with the lowest 
fitness will be superior to other particles and should be 
reserved in the search process. 

d) Modifying Solutions 
In encode scheme, only position vector is used to compute 

in practical computational process. Position vector 
represents jobs’ arrangement on all machines. 
Computational result of a particle’s position coordinate may 
be a real value such as 3.265. It is meaningless for job 
number. Therefore, in the algorithm we usually round off the 
real optimum values to its nearest integer number. By this 
way, we convert a continuous optimization problem to a 
discrete optimization problem. 

The computation results of equation (1b) will generate 
repetitive code (job number) in every segment, i.e. one job is 
processed on the same machine repeatedly. It breaches the 
constraint conditions in JSP. We call the computation results 
that breach constraints illegal solutions. Illegal solutions can 
be converted to legal solutions by modification. The process 
of modifying solutions is as follows: 

1) Check a particle according to machine order and record 
repetitive job numbers on every machine. 

2) Check absent job numbers on every machine of a 
particle. 

3) Sort absent job numbers on every machine (of a particle) 
according to increment order of their processes. 

4) Substitute absent job numbers for repetitive codes on 
every machine of a particle from low dimension to high 
dimension accordingly. 

We get legal solutions by this process, but some solutions 
may be infeasible. By computing start-time and end-time of 
each job, the infeasible solutions can be checked out. For 
each infeasible solution, we give it a large fitness value in 
evaluation process. So infeasible solutions cannot be the 
pbest or gbest in search process. 

2 SIMULATED ANNEALING 
Ever since its introduction, independently by Kirkpatrick, 

Gelatt and Vecchi[13], simulated annealing algorithm has 
been applied to many combinatorial optimization problems. 
On the one hand, the algorithm can be considered as a 
generalization of the well-known iterative improvement 
approach to combinatorial optimization problems, on the 
other hand, it can be viewed as an analogue of an algorithm 
used in statistical physics for computer simulation of the 
annealing of a solid to the state with minimal energy[3]. 

SA approach can be viewed as an enhanced version of 
local search or  iterative  improvement,  in  which  an  initial   
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solution is repeatedly improved by making small local 
alterations until no such alteration yields a better solution. 
SA randomizes this procedure in a way that allows 
occasional alterations that worsen the solution in an attempt 
to increase the probability of leaving a local optimum. The 
application of SA as a local search algorithm assumes a cost 
function (fitness function in this paper) calculated for each 
possible solution, a neighborhood comprising alternative 
solutions to a given solution and a mechanism for generating 
possible solutions. 

2.1  SA Algorithm 
Starting from an initial solution, SA generates a new 

solution S’ in the neighborhood of the original solution S. 
Then, the change of objective function value, ∆ = f(S’) - f(S), 
is calculated. For a minimization problem, if ∆ <0, the 
transition to the new solution is accepted. If ∆ ≥ 0, then the 
transition to the new solution is accepted with probability, 
usually denoted by the function, exp(- ∆ /T), where T is a 
control parameter called the temperature. SA algorithm 
generally starts from a high temperature and then the 
temperature is gradually lowered. At each temperature, a 
search is carried out for a certain number of iterations, called 
the epoch length. When the termination condition is satisfied, 
the algorithm will stop. 

For some reasons, we may be dissatisfied at the solution 
obtained from SA algorithm. The solution can be improved 
by using SA algorithm several times. It is helpful for us to 
find better solution, especially for complex problems. 

2.2  Neighborhood Solutions 
In SA search algorithm, the choice of neighborhood can 

greatly influence algorithm performance. While choosing a 
rich neighborhood containing a large number of candidate 
solutions will increase the likelihood of finding good 
solutions, the computation time required to search from the 
available neighbors will also increase. As a simple method 
for generating neighborhood solutions, the pair-exchange 
method is used on each machine of a particle as follows: 

(1 ↔ 2), (2 ↔ 3), (3 ↔ 4), … (n-1 ↔ n) 
By exchanging jobs in pair on the same machine of a 

particle and evaluating pair-exchange result every time, we 
can get satisfactory search results in a short time.  

2.3  Cooling Schedule 
SA process can be controlled by the cooling schedule. In 

general, the cooling schedule is specified by several 
parameters and/or methods, namely the initial temperature 
T0, the epoch length L, the rule designated how to lower the 
temperature, and the termination condition. 

A proper initial temperature should be high enough so that 
all possible solutions have equal chance of being visited. In 
this paper, the initial temperature is determined by 
experiments and experiences. If problem dimensions 
(n×m) ≤ 50, T0 = 100. If problem dimensions (n×m) >50, 

T0 = 500. For the second and third time of SA, T0 is set to the 
value 10 and 2 respectively. 

The epoch length L denotes the number of moves made at 
the same temperature. According to the method of 
generating neighborhood solutions, L can be set as SN, where 
SN is the number of neighborhood solutions for a given 
solution. SN is set to be the number of (n –1)× m in our 
algorithm. 

In SA algorithm, the temperature should be lowered in 
such a way that the cooling process would not take too long. 
The method, which is often believed to be excellent in the 
current literature, specifies the temperature with Tk=B*Tk-1, 
during the kth epoch (k=1, 2, 3,  …), where B is a parameter, 
called the decreasing rate, with a value less than 1. Higher 
decreasing rate corresponds to slower process, and therefore 
more moves are required before the process is terminated. 
We set B as value 0.97 or 0.98 by experiments. For the 
second and third time of SA, we set the values of B as 0.995 
and 0.997. 

As a criterion to terminate the algorithm, we use a simple 
and general way, in which a termination temperature Tend is 
set. If current temperature Tk < Tend , the algorithm will be 
terminated. Tend, with a value near zero, influences the 
search “granularity” of algorithm directly. Smaller Tend 
implies finer search in problem space when algorithm 
termination is forthcoming. In our algorithm, we set Tend = 
0.1 when SA algorithm is used for the first time and Tend = 
0.01 in the second or third time of SA. 

3 HYBRID PSO ALGORITHM 
PSO algorithm is problem-independent, which means 

little specific knowledge relevant to a given problem is 
required. What we have to know is just the fitness evaluation 
for each solution. This advantage makes PSO more robust 
than many other search algorithms. However, PSO, as a 
stochastic search algorithm, is prone to lack global search 
ability at the end of a run. PSO may fail to find the required 
optima in case when the problem to be solved is too 
complicated and complex. SA employs certain probability to 
avoid becoming trapped in a local optimum, and the search 
process can be controlled by cooling schedule. We can 
control the search process and avoid individuals being 
trapped in local optimum more efficiently by designing the 
neighborhood structure and cooling schedule. Thus, a new 
hybrid algorithm of PSO and SA, named HPSO, is presented 
in Fig. 3. 

 
 
 
 
 
 
 
 



 
 

 

 
Begin 

Step 1.  Initialization 
1) PSO    

  *  Initialize swarm size, each particle’s position and velocity; 
  *  Evaluate each particle’s fitness; 
  *  Initialize gbest position  with the lowest fitness particle in the swarm; 
  *  Initialize pbest position with a copy of particle itself; 
  *  Initialize Wmax, Wmin, C1, C2, maximal generation, and generation = 0. 

2) SA 
*  Determine T0, Tend, B. 
Step 2.  Computation 
1) PSO 

    While (the maximum of generation is not met) 
      Do {  

generation ++; 
Generate next swarm by equation (1a) and (1b); 

                Evaluate swarm {  
Find new gbest and pbest; 

                                            Update gbest of swarm and pbest of  particle;  
} 

             } 
2) SA 

    For gbest particle S of swarm 
    {  

Tk = T0; 
     While ( Tk > Tend ) 
     Do { 

Generate a neighbor solution S’ from S; 
Compute fitness of S’; 
Evaluate S’{  

∆ = f(S’) - f(S); 
if ( min [1, exp(- ∆ /Tk)] > random[0, 1] )  { Accept S’; } 

                                Update the best solution found so far if possible; 
                               } 
            Tk=B*Tk-1; 
           } 
     } 

Step 3.  Output optimization results. 
End 

 
It can be seen that PSO provides initial solution for SA 

during the hybrid search process. Such hybrid algorithm can 
be converted to general PSO by omitting SA unit, and it can 
be converted to traditional SA by setting swarm size to one 
particle. HPSO reserves the generality of PSO and SA, and 
can be implemented easily. Moreover, such HPSO can be 
applied to many combinatorial or functional optimization 
problems by simple modification. 

4 COMPUTATIONAL RESULTS 
To illustrate the performance of proposed algorithm in 

this paper, various kinds of benchmark instances with 
different sizes have been selected to compute. FT06, FT10 
and FT20 are three problem instances cited from [11]. 
LA01~LA40 are forty instances of eight different sizes cited 
from [14] authored by Lawrence. 

The algorithms for JSP mentioned above can be easily 
implemented on computer. We program the algorithms in 
Borland C++ and run it on Intel Celeron 300 with 128M 
RAM. Moreover, swarm size is set to 20 and maximum of 
iterative generations is set to 300 when dimensions are less 

than 100. Swarm size is set to 30 and maximal generation is 
set to 500 for other instances. Each instance is randomly 
performed 20 times for each algorithm. Table 1 shows the 
computational results of different benchmark instances.  

Table 1.  Computational results by PSO/HPSO 
for the problem instances of classes FT and LAa. 

Pro.  n    m BKS (H)PSO RE(%) Tav TSA 

FT06
FT10
FT20
 
LA01
LA02
LA03
LA04
LA05
 
LA06
LA07
LA08
LA09
LA10
 
LA11
LA12
LA13
LA14
LA15
 
LA16
LA17
LA18
LA19
LA20
 
LA21
LA22
LA23
LA24
LA25
 
LA26
LA27
LA28
LA29
LA30
 
LA31
LA32
LA33
LA34
LA35
 
LA36
LA37
LA38
LA39
LA40

 6    6 
 10  10 
 20    5 
 

10   5 
10   5 
10   5 
10   5 
10   5 

 
15   5 
15   5 
15   5 
15   5 
15   5 

 
20   5 
20   5 
20   5 
20   5 
20   5 

 
10  10 
10  10 
10  10 
10  10 
10  10 

 
 15  10 
15  10 
15  10 
15  10 
15  10 

 
 20  10 
20  10 
20  10 
20  10 
20  10 

 
 30  10 
30  10 
30  10 
30  10 
30  10 

 
 15  15 
15  15 
15  15 
15  15 
15  15 

55 
930 
1165
 
666 
655 
597 
590 
593 
 
926 
890 
863 
951 
958 
 
1222
1039
1150
1292
1207
 
945 
784 
848 
842 
902 
 
1046
927 
1032
935 
977 
 
1218
1235
1216
1157
1355
 
1784
1850
1719
1721
1888
 
1268
1397
1196
1233
1222

55 
930 
1178 
 
666 
655 
597 
590 
593 * 
 
926 * 
890 
863 
951 
958 * 
 
1222 * 
1039 * 
1150 * 
1292 * 
1207 
 
945 
784 
848 
842 
907 
 
1047 
927 
1032 
938 
977 
 
1218 
1236 
1216 
1164 
1355 
 
1784 
1850 
1719 
1721 
1888 
 
1269 
1401 
1208 
1240 
1226 

0.000 
1.008 
1.173 
 
0.000 
0.244 
0.381 
0.537 
0.000 
 
0.453 
0.000 
0.000 
0.000 
0.000 
 
0.968 
1.299 
0.941 
0.000 
0.000 
 
1.284 
0.127 
1.005 
0.772 
1.136 
 
0.669 
1.121 
0.000 
1.569 
1.842 
 
0.640 
1.187 
1.225 
1.642 
0.000 
 
0.000 
0.172 
0.000 
0.000 
0.000 
 
1.341 
1.861 
2.872 
1.784 
1.759 

1 
142 
21 
 
2 
3 
5 
3 
2 
 
5 
5 
5 
5 
1 
 
4 
12 
4 
2 
11 
 
127 
127 
127 
127 
127 
 
387 
863 
92 
766 
95 
 
89 
1415
476 
1442
94 
 
56 
56 
62 
73 
100 
 
2473
2512
2586
2492
2534

1 
3 
1 
 

1 
1 
1 
1 
0 
 

0 
1 
1 
1 
0 
 

0 
0 
0 
0 
1 
 

3 
3 
3 
3 
3 
 

3 
1 
1 
1 
2 
 

1 
1 
1 
1 
1 
 

1 
1 
1 
1 
1 
 

3 
3 
3 
3 
3 

a n: Number of jobs. 
m: Number of machines. 
BKS: Best known solution so far. 
(H)PSO: The best objective value of only PSO(*) or HPSO algorithm found 

over 20 runs. 
RE(%): The percentage of average objective value of algorithm over BKS. 
Tav: The average CPU time (second) on Intel Celeron 300 with 128M RAM. 
TSA: The times of simulated annealing. 

Fig. 3  The hybrid optimization algorithm HPSO



 
 

 

Among the 43 instances, PSO/HPSO finds the BKS in 32 
cases (74%). It is within 0.5% of the percentage of average 
objective value over BKS in 22 instances (51%). In 42 cases 
(98%), the PSO/HPSO solution is within 2% of the 
percentage of average objective value over BKS. And for all 
cases the results are within 3% of the percentage of average 
objective value over BKS. Moreover, LA05, LA06 and 
LA10~LA14 instances (*) can be reached BKS only by 
using general PSO, which demonstrates the powerful 
explore ability of the PSO algorithm. What is more 
important, the new algorithm is efficient in running time. 
From LA01 instance to LA15 instance (except LA12 and 
LA15), almost each instance can reach BKS less than 10 
seconds in CPU running time. It is unimaginable for 
researchers in the past. 

Table 2 shows the comparison of HPSO with well-known 
algorithms from the literature. The column labeled SB-GA 
refers to the Dondorf and Pesch algorithm[15], next column 
GA3 is Mattfeld algorithm[16] and the next three columns are 
the algorithms SAGen by Kolonko[17], TS-SB method by 
Pezzella and Merelli[6], and GRASP method by Aiex et al.[7]. 
For the selected problems set GA3, SAGen, TS-SB, HPSO 
are almost equal in their solution quality. But HPSO has its 
own evident advantages: easy understandable model, also 
the simplicity and the ease of implementation, as well as 
robustness to problem changes. 

Table 2.  Comparison with other algorithms 
Pro. BKS HPSO SB-GA GA3 SAGen TS-SB GRASP

  Best Best Best Best Best Best 

FT10 
LA19 
LA21 
LA22 
LA24 
LA25 
LA27 
LA29 
LA38 
LA40 

930 
842 
1046 
927 
935 
977 
1235 
1157 
1196 
1222 

930 
842 
1047 
927 
938 
977 
1236 
1164 
1208 
1226 

938 
848 
1074 
936 
957 
1007 
1269 
1210 
1241 
1252 

930 
842 
1047 
927 
938 
977 
1236 
1180 
1201 
1228 

---- 
842 
1047 
931 
938 
977 
1236 
1167 
1201 
1226 

930 
842 
1046 
927 
938 
979 
1235 
1168 
1201 
1233 

930 
842 
1057 
927 
954 
984 
1269 
1203 
1218 
1244 

5 CONCLUSIONS 
We have discussed a new approach to job-shop 

scheduling problems based on PSO. The performance of 
HPSO algorithm is evaluated in comparison with the results 
obtained from other authors’ algorithms for a number of 
benchmark instances. The new algorithm is very effective 
and efficient. It can find optima for most test instances, and 
running time is less than almost all other algorithms. 
Because of the generality of HPSO, it can be applied to 
many optimization problems. These results indicate that the 
proposed algorithm is an attractive alternative for solving 
the job-shop scheduling problem and other optimization 
problems. Because   PSO algorithm was originally proposed 
for continuous optimization problems, new attempt has been 

made by us recently to extend it to discrete optimization 
problems. Furthermore, applying PSO to other 
combinatorial optimization problems is also possible in 
further research. 
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