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Abstract— In this article we develop an algorithm for
capturing/intercepting a moving target based on the sliding
mode control method. First, we consider a “kinematic”
model (in a sense) for the capture/intercept problem and
develop a method for that case. Then, we build on the
developed method to include general fully actuated vehicle
dynamics for the pursuer agent. The algorithm is robust
with respect to the system uncertainties and additive
disturbances. Finally, we also provide a numerical simulation
in order to illustrate the procedure.

I. Introduction

In recent years, there has been an increasing attention
and effort by the controls community on importing biolog-
ical principles into the controls literature and developing
biologically inspired systems. These include developing
autonomous agents (either single or multiple) performing
complex tasks. The motivation is that many biological sys-
tems have designs very well adapted to their environments
(tuned by the evolutionary process for millions of years),
hence there might be useful principles that engineers can
learn and use in developing engineering systems. However,
this is best accomplished within the framework of systems
perspective and its well established, rigorous methods
developed through years of experience.
In nature, the survival of many species may critically

depend on their ability to capture a prey (a target) or
escape capture from a predator (a pursuer). In this article
we develop a method for intercepting/capturing (or simply
tracking) a moving target using potential functions and
the sliding mode control technique. The sliding mode
control method is an important technique that has been
used extensively for robot navigation and control (we will
not mention these here). It has a variety of attractive
properties, including its robustness to system uncertainties
and external disturbances and its ability to reduce the
problem of controller design to a lower dimension with
the choice of an appropriate switching surface. See [1],
[2], [3] and references therein for a short introduction to
sliding mode control and [4] for more detailed discussions.
Similarly, the articles in [5], [6] describe how the sliding
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mode control method can be used for developing state
observers.
In [7], [8], [9] the sliding mode control technique was

used for robot navigation and obstacle avoidance in an en-
vironment modeled with harmonic potentials. The strate-
gies there are based on forcing the motion of the robot
along the gradient of an artificial potential field, which
represents the environment. In particular, it was created
by placing positive charges at the obstacle positions and
negative charge at the goal point. Similarly, in [10] it was
shown that this method can be used for implementing
aggregating swarms as well as formation control. In this
case, the potential function included or modeled also the
interactions between the members of the swarm (group).
The results in [10] constitute a possible implementation
method of earlier results developed in [11], [12].
In [13], [14] the authors describe a method for target

intercepting based on harmonic artificial potentials – an
approach which is a generalization of the harmonic po-
tential fields approach used for stationary targets (such
as those in [7], [8], [9]). They employ a time dependent
potential field, which is generated using the linear wave
equation. Despite some of their shortcomings, these arti-
cles constituted a motivation for this work.
This paper is organized as follows. In the next section

we discuss a method for intercepting a maneuvering target
using, in a sense, a “kinematic” model for the pursuer
(much like those considered in [13], [14]). For this model
we develop an algorithm based on the sliding mode control
method. In Section 3, we consider a general fully actuated
dynamic model of the pursuer (much like those considered
in [7], [8], [9] and [10]) and build on the results in
Section 2. The developed method is once more based
on the sliding mode control strategy. A key idea for the
method is to use a low pass filter (much like is done in
sliding mode observers [5], [6]) in order to smooth the
switching term from the previous stage of the controller
design (i.e., the one in Section 2). In Section 4 we provide
illustrative numerical simulation examples, and in Section 5
we conclude with a few remarks.

II. Potential Functions Based “Kinematic”

Model for Target Tracking

In this section we consider the problem of a pursuer
tracking a target in an n-dimensional Euclidean space.
Let the position of the (possibly moving) target (to be
tracked or intercepted) be denoted by xt and the position



of the pursuer be denoted by xp. Moreover, assume that
the pursuer moves based on the equation

ẋp = g(xp, xt), (1)

where g : R
2n → R

n represents its motion dynamics.
Assuming that the position xt of the moving target is
known, the objective is to design g(xp, xt) such that

lim
t→∞

‖xp − xt‖ = 0. (2)

With this objective, we define J(xp, xt) as the potential
of the distance between the target and the pursuer and
choose it such that it has its unique minimum at xp = xt.
Note that potential functions have been used extensively
for robot navigation and control [15], [16]. It might be
possible to use a variety of different potential functions
here. For example, one option could be the use of harmonic
potentials such as considered in [13], [14]. Here, besides
the requirement that J has a unique minimum at xp = xt,
the only other requirement which we impose on J is that

∇xp
J(xp, xt) = −∇xt

J(xp, xt). (3)

Note that the functions which are functions of ‖xp − xt‖
satisfy this assumption. In fact, one possible function which
satisfies these requirements is

J(xp, xt) =
1

2
‖xp − xt‖2. (4)

In the rest of this article we will use this potential although
other potentials are also possible.
In order to be able to guarantee satisfaction of the

objective in Eq. (2), we need the potential J(·, ·) to be
a decreasing function of time. Its time derivative is given
by

J̇ = ∇xp
J>(xp, xt)ẋp +∇xt

J>(xp, xt)ẋt.

Then, since J(xp, xt) satisfies the condition in Eq. (3), its
derivative can be written as

J̇ = ∇xp
J>(xp, xt)(ẋp − ẋt).

If ẋt were known, then one could choose

ẋp = g(xp, xt) = ẋt − α∇xp
J(xp, xt), (5)

for some constant α > 0 leading to the equality

J̇ = −α
∥

∥∇xp
J(xp, xt)

∥

∥

2

.

However, assuming that ẋt is known is a strong (i.e.,
restrictive) assumption since usually it is not possible for
the pursuer to know the current velocity of the target. Note
also that we already assumed that the position xt of the
target is known, which by itself is not a weak assumption.
However, in this article we will stick with this assumption
and relaxing it to the case of handling some position mea-
surement error will be left to a future work. Moreover, we
assume that ‖ẋt‖ ≤ γt for some known γt > 0. Note that
this constitutes a (more) realistic assumption (compared to
the assumption that ẋt is known) since any realistic agent

has a bounded velocity. With this assumption we choose
the pursuer dynamics g(xp, xt) as

ẋp = g(xp, xt) = −α∇xpJ(xp, xt)− βsign
(

∇xpJ(xp, xt)
)

,
(6)

where α > 0 and β > γt are positive constants and
sign(·) is the signum function operated elementwise for a
vector y ∈ R

n, i.e., sign(y) = [sign(y1), . . . , sign(yn)]
>.

Substituting the above choice of g(xp, xt) in the J̇ equa-
tion one obtains

J̇ = −α
∥

∥∇xp
J(xp, xt)

∥

∥

2

−β
∥

∥∇xp
J(xp, xt)

∥

∥−∇xp
J>(xp, xt)ẋt.

Then, the derivative of the potential is bounded by

J̇ ≤ −α
∥

∥∇xp
J(xp, xt)

∥

∥

2

−β
∥

∥∇xp
J(xp, xt)

∥

∥+ γt

∥

∥∇xp
J(xp, xt)

∥

∥ ,

which, on the other hand, implies that

J̇ ≤ −α
∥

∥∇xp
J(xp, xt)

∥

∥

2

,

since we have β > γt by choice, recovering the above
result. This equation implies that as time tends to infinity
we have J̇ → 0 and ∇xp

J(xp, xt) → 0. This, on the
other hand, implies that as t→∞ we have ‖xp − xt‖ →
c = constant, since J̇ → 0. Moreover, the constant c =
0, since the unique extremum of J occurs at xp = xt.
Therefore, the condition in Eq. (2) will be satisfied and
the pursuer will track the moving target.
The above controller requires knowledge of the position

of the target together with a bound on its speed and
with the help of a switching term guarantees asymptotic
tracking of the target. The assumption that the position
xt of the target is known allows for exact calculation of
∇xp

J(xp, xt) (as well as its sign) and makes it possible to
implement the above method. The surface∇xp

J(xp, xt) =
0 serves as a sliding manifold for the system and leads
to convergence with the use of high enough controller
gain. Intuitively, the second term in Eq. (6) allows for
the detection of changes in the direction of motion of the
target and helps redirect the pursuer in that direction. It
might be possible to relax the assumption that xt is known
and still track the target by knowledge of only the direction
of ∇xp

J(xp, xt) and a bound on its size. However, this
requires careful consideration and more research and will
not be considered in this article.
One shortcoming of the above results is that the dy-

namics in Eq. (5) do not represent the dynamics of any
realistic vehicle. Therefore, the model considered in this
section serves essentially as a kinematic model for pursuing
of a moving target. Therefore, the procedure here mostly
serves as a proof of concept for the tracking/intercepting
behavior. In engineering applications with agents with
particular motion dynamics one has to take into account
these dynamics in order to be able to develop control
algorithms to achieve the required behavior. In the next
section we discuss a control algorithm based on sliding



mode control theory which could be applied for agents
with general fully actuated dynamics. Moreover, it can be
extended to agents with different vehicle dynamics.

III. Sliding Mode Control for Agents with

Vehicle Dynamics

In the preceding section we showed that for a system
with a target (with position xt) and a pursuer (with
position xp), the pursuer will eventually catch the target
provided that its velocity vector ẋp is chosen such as to
satisfy Eq. (6). In this section, we will build on these results
by considering a pursuer with realistic vehicle dynamics. In
particular, we consider a pursuer agent the dynamics of
which are described by the equation

M(xp)ẍp + fp(xp, ẋp) = up, (7)

where xp ∈ R
n is the position of the pursuer agent,

M(xp) ∈ R
n×n is the mass or inertia matrix, fp(xp, ẋp) ∈

R
n represents centripetal forces, Coriolis, gravitational
effects and additive disturbances, and up ∈ R

n represents
the control inputs (forces).
For the fp(xp, ẋp) term in the vehicle dynamics equation

we assume that

fp(xp, ẋp) = fk
p (xp, ẋp) + fu

p (xp, ẋp),

where fk
p (·, ·) represents the known part and fu

p (·, ·) repre-
sents the unknown part. Also, we assume that for the range
of operating conditions the unknown part is bounded. In
other words, we assume that

‖fu
p (xp, ẋp)‖ ≤ f̄p,

where f̄p < ∞ is a known constant. Moreover, it is
assumed that the mass/inertia matrix is nonsingular and
lower and upper bounded by known bounds. In other
words, the matrix M(xp) satisfies

M‖y‖2 ≤ y>M(xp)y ≤ M̄‖y‖2,

where M > 0 and M̄ are known and y ∈ R
n is arbitrary.

Note that all these assumptions are standard and realistic.
Now, given the agent dynamics in Eq. (7), we would

like to choose (i.e., design) the control input up such that
as time progresses the pursuer catches the target. In other
words, we would like to choose up such that the condition
in Eq. (2) is satisfied. In order to achieve this objective,
there might be several different approaches, one of which
is to enforce the satisfaction of Eq. (6). In other words,
if the control input is designed to enforce the velocity of
the pursuer agent to satisfy Eq. (6), then in the light of
the discussion in the preceding section it will guarantee the
satisfaction of Eq. (2). In this section we will take exactly
that approach. To this end, once more we will use sliding
mode control method. Sliding mode control technique has
the property of reducing the motion (and the analysis) of
a system’s dynamics to a lower dimensional space, which
makes it very suitable for this application (since we want

to enforce the system dynamics to obey Eq. (6), which
constitutes only a part of the agent’s state). We will follow
a procedure similar to those in in [7], [8], [9], [10] for robot
navigation, obstacle avoidance, and swarm aggregations.
Define the n-dimensional sliding manifold for the pursuer

agent as

s = ẋp + α∇xp
J(xp, xt) + βsign

(

∇xp
J(xp, xt)

)

, (8)

and note that once the agent reaches its sliding manifold
(i.e., once s = 0) we have

ẋp = −α∇xp
J(xp, xt)− βsign

(

∇xp
J(xp, xt)

)

,

which is exactly the motion equation in Eq. (6). Now, the
problem is to design the control input up such as to enforce
the occurrence of sliding mode. A sufficient condition for
sliding mode to occur is given by [2]

s>ṡ < 0, (9)

which also guarantees that the sliding manifold is asymp-
totically reached, (i.e., it guarantees that the reaching
conditions are satisfied). Later we will also show how to
choose a controller which will actually guarantee finite time
reaching of the sliding manifold. Differentiating the sliding
manifold equation we obtain

ṡ = ẍp +
∂

∂t

[

α∇xpJ(xp, xt)
]

+
∂

∂t

[

βsign
(

∇xpJ(xp, xt)
)]

.

One issue to note here is that the third term on the
right hand side of the above equation is unbounded at the
instances at which ∇xp

J(xp, xt) changes sign. However,
for now, let us assume that it is bounded by a known
constant J̄s. In other words, let us temporarily assume that

∥

∥

∥

∥

∂

∂t

[

βsign
(

∇xp
J(xp, xt)

)]

∥

∥

∥

∥

≤ J̄s

for a known 0 < J̄s < ∞. Moreover, we assume that the
second term is also bounded, i.e.,

∥

∥

∥

∥

∂

∂t

[

α∇xp
J(xp, xt)

]

∥

∥

∥

∥

≤ J̄

for some known 0 < J̄ < ∞. Note that this is not a
strong assumption and is satisfied by many potentials. In
fact, for the function in Eq. (4) it can be shown with a
straightforward manipulation that
∥

∥

∥

∥

∂

∂t

[

α∇xpJ(xp, xt)
]

∥

∥

∥

∥

≤ α
2‖xp(0)− xt(0)‖+α(β+ γt) , J̄ .

(10)

From the vehicle dynamics of the agents in Eq. (7) we
have

ẍp = M−1(xp) [up − fp(xp, ẋp)] ,

using which in the ṡ equation and substituting it in Eq. (9),
the condition for occurrence of sliding mode becomes

s>
[

M−1(xp)up −M−1(xp)fp(xp, ẋp)
+ ∂

∂t

[

α∇xp
J(xp, xt)

]

+ ∂
∂t

[

βsign
(

∇xp
J(xp, xt)

)]

< 0.



If the above boundedness assumptions hold, then one can
choose the control input up such that s

>ṡ < 0 is satisfied.
In particular, by choosing

up = −u0sign(s) + fk
p (xp, ẋp), (11)

we obtain

s>ṡ < −‖s‖
[

(1/M̄)u0 − (1/M)f̄p − J̄ − J̄s

]

.

Then, by choosing the gain u0 of control input as

u0 > M̄

(

1

M
f̄p + J̄ + J̄s + ε

)

,

for any ε > 0, one can guarantee that

s>ṡ < −ε‖s‖

is satisfied and that sliding mode occurs. In other words,
once the sliding manifold s = 0 is reached, the system
remains on that manifold for all time. Now, choose the
Lyapunov function as V = 1

2
s>s and note also that the

above inequality implies that V̇ ≤ −ε
√
V . This, on the

other hand, in the light of the comparison principle [17],
guarantees that the sliding manifold is reached in a finite
time bounded by

tmax =
2V (0)

ε
.

Then, under ideal sliding mode the behavior described in
the preceding section for the “kinematic” model is recov-
ered implying that the tracking of the target is achieved.
This is important since it guarantees tracking of a moving
target for pursuers with general vehicle dynamics with sys-
tem uncertainties and additive disturbances. An important
advantage of the controller is that it does not require the
knowledge of the uncertainties (e.g., it does not require
the knowledge of the exact mass/inertia matrix M(xp) of
the pursuer robot) or the disturbances. It needs only the
bounds on them. These properties constitute important
advantages and are due to the robustness properties of
the sliding mode control technique. Note also that in the
above controller, we utilized the known part f k

p (xp, ẋp) of
the vehicle dynamics. If there are not known parts, then
this portion of the controller can be set to zero.
The above results crucially depend on the assump-

tion that the term ∂
∂t

[

βsign
(

∇xp
J(xp, xt)

)]

is bounded.
However, this assumption does not hold since the deriva-
tive of the signum function is unbounded on the switching
instances. To overcome this problem we use an idea similar
to that of the equivalent control method and sliding mode
observers [1], [2], [5], [6]. Recall that the equivalent control
method allows the derivation of an analytical controller
assuming ideal sliding mode. Moreover, it shows that the
high frequency switching controller has an “average” or an
“effective” value during sliding mode. Therefore, by pass-
ing the switching signal through a low pass filter it is pos-
sible to extract that value by cutting off the high frequency
component. Analogously, the βsign

(

∇xp
J(xp, xt)

)

term

must have an equivalent component and a high frequency
component during sliding mode. Denote its equivalent
component as

[

βsign
(

∇xp
J(xp, xt)

)]

eq
and note that as

in the sliding mode observers it can be extracted by passing
βsign

(

∇xp
J(xp, xt)

)

through an appropriate filter. With
this in mind define

µż = −z + βsign
(

∇xp
J(xp, xt)

)

,

where µ is a small positive constant. In this system the
high frequency switching signal βsign

(

∇xp
J(xp, xt)

)

is
the input and z is the filtered output. Then, with proper
choice of the parameter µ we have

z ≈
[

βsign
(

∇xp
J(xp, xt)

)]

eq
.

This equation allows us to replace
[

βsign
(

∇xp
J(xp, xt)

)]

in the sliding manifold equation in Eq. (8) with z. In other
words, we redefine the sliding manifold as

snew = ẋp + α∇xp
J(xp, xt) + z,

and since z is bounded the method derived above could be
implemented for this new sliding manifold. In order to be
consistent with the derivation above, we assume that the
bound on z is the constant J̄s used above. In other words,
we assume that

‖ż‖ =
∥

∥

∥

∥

1

µ

[

−z + βsign
(

∇xp
J(xp, xt)

)]

∥

∥

∥

∥

≤ 2β

µ
, J̄s.

(12)
Then, the controller in Eq. (11) with s replaced with snew,
i.e.,

up = −u0sign(snew) + fk
p (xp, ẋp),

with gain u0 chosen as before, guarantees the occurrence
of sliding mode at the new (redefined) manifold snew in a
finite time.

The idea of utilizing z instead of the switching term
βsign

(

∇xp
J(xp, xt)

)

in the sliding manifold equation is
a key idea of this article, which makes the algorithm
implementable. This completes the development of the
sliding mode controller. Note that the controller consists of
two stages (as is the case of all sliding mode controllers).
The first stage is the definition of an appropriate sliding
manifold. This was performed in the preceding section.
In other words, while discussing the “kinematic” model
for the pursuer we also defined a sliding surface for the
dynamic model of this section. The second stage of the
sliding mode control design is to enforce occurrence of slid-
ing mode on the designed surface and this was discussed
in this section. As a difference from usual sliding surfaces,
the sliding manifold considered here contains a switching
term with unbounded first derivative. This difficulty was
overcome by redefining the manifold and replacing the
switching term with its smooth steady state equivalent.



IV. Simulation Examples

In this section some numerical simulation examples will
be presented in order to illustrate the effectiveness of the
sliding mode controller for intercepting moving targets. For
ease of plotting we use only n = 2; however, qualitatively
the results will be the same for higher dimensions. First,
we will provide a few simulations for the “kinematic”
model and after that we will consider agents (robots) with
point mass dynamics with unknown mass and unknown
but bounded additive disturbances. In all the simulations
below we used α = 0.01 and β = 2.0 as the controller
parameters.
Figure 1 (a) shows a simulation for the case with

the “kinematic” model. Initially the target is located at
the position [1, 1] in the plane, whereas the pursuer is
located at the origin. The target tries to escape following
a sinusoidal type of trajectory, according to the dynamics

ẋt1 = 0.05 + 0.1 sin(2t)

ẋt2 = 1.9 sin(0.5t)

As one can see the pursuer catches up with the target in a
short period of time and follows it after that. Similar results
are obtained for other trajectories of the target such as
trajectory generated with a random velocity. Figure 1 (b)
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Fig. 1. The response of the kinematic model.

shows the distance between the target and the pursuer.
The fact that the distance between the two does not
vanish is due to the chattering effects (which arise from
the numerical errors in Matlab in this case). Note that
the chattering effect can also be seen from Figure 1 (a),
where the pursuer trajectory crosses back and forth the
trajectory of the target. These are consistent with the
theoretical expectation discussed in the preceding sections.
Note that there are ways to reduce or eliminate chattering.
One possible method for that is to use an observer in the
sliding mode controller [18]. Using such a method may also
allow us to relax the assumption that the position of the
target xt is known. However, these are outside the scope
of this article.
Next, consider agents (robots) with point mass dynam-

ics with unknown mass and unknown but bounded additive
disturbances. In other words, we consider the model

Mpẍp + fp(xp, ẋp) = up,

where M ≤ Mp ≤ M̄ is the unknown mass and
fp(xp, ẋp) = sin(0.2t) is the uncertainty in the system.
Without loss of generality we assume unity mass Mp = 1
for the agent. In the simulations below as controller param-
eters we chooseM = 0.5 and M̄ = 1.5, f̄p = 1 and ε = 1.
Moreover, we also replaced the sign(snew) term in the
controller with the term tanh(ηsnew), with η = 10. This
smooths the control action and is often used instead of
the discontinuous signum function in sliding mode control
applications. The parameter η is a smoothness parameter
which determines the slope of the curve around zero.
Figure 2 (a) shows the trajectories for the target and the

pursuer for the case with the above dynamic model with
the same initial positions as the previous case and pursuer
with zero initial velocity. Here, we have J̄ = 0.0401 and
J̄s = 8 (found by evaluating Eqs. (10) and (12) for the
bounds on ‖ ∂

∂t

[

α∇xp
J(xp, xt)

]

‖ and ż, respectively). As
one can easily see from the figure the trajectories for this
case are very similar to those in Figure 1 (a) which were
obtained for the kinematic model. Figure 2 (b) shows the
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Fig. 2. The response of the dynamic model for the case with µ = 0.5.

distance between the target and the pursuer. It is observed
that for this case the error is larger and approaches zero
slower compared to the earlier case. This is due to the
fact that the lowpass filter used was not adequate and is
unable to extract the actual “average” value of its input.
For this case we used a filter with time constant µ = 0.5.
Figure 3 (a) and (b) show the results for the case in which
the filter parameter was decreased to µ = 0.1. Here, we
set J̄s = 40 from Eq. (12). One can easily see that for this
case the error is much smaller compared to the earlier case.
This is because now the filter works properly and therefore
we have snew ≈ s and the result for the kinematic case is
recovered.
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Fig. 3. The response of the dynamic model for the case with µ = 0.1.



Finally, in Figure 4 (a) and (b) we provide a simulation
result for a case not discussed in the preceding sections.
There, we included an obstacle at the position [5, 5] and
modeled it as a gaussian potential centered at that point
with magnitude 50 and spread 2. Moreover, we included
this potential in the potential J for the inter-individual
distance between the target and the pursuer. It was as-
sumed that the target this time is located at the position
[10, 10]. Here, we set µ = 0.1 as before and keep the same
bounds J̄ and J̄s. As one can easily see from the figure, the
pursuer avoids the obstacle and is in the end able to catch
the target (which moves in a manner similar to before).
This time it takes longer for the pursuer to intercept the
target (we run the simulation for 300 seconds, whereas in
the previous cases we only run it for 60 seconds), which
is expected. This shows the potential of the algorithm:
it might be possible to use it for capturing/intercepting
moving targets in a structured environment. However, this
still needs to be carefully considered.
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Fig. 4. The response of the dynamic model for the case with an
obstacle at [5, 5].

V. Concluding Remarks

In this article, we presented a procedure based on
sliding mode control theory which can be used to inter-
cept/capture a moving target. One of the advantages of
the method is that it is robust with respect to disturbances
and system uncertainties. The disadvantage of the algo-
rithm is that it requires the exact knowledge of the position
of the target. It might be possible to relax this requirement;
however, this needs more consideration and research. The
algorithm is also promising from the perspective that it
might be possible to use it for intercept/capture of targets
moving in a structured environment.
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