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Abstract— The duality between time and frequency domain
methods for linear systems is well known. It plays a crucial role
for example in control systems design, and the domains are
thought of complementing rather than competing. Quite re-
cently, the full interplay and duality between the two domains
have been clear also in system identification applications. In
this contribution, this duality will be discussed. The emphasis
is on how it can be used to create a software environment for
linear system identification that is as transparent as possible
with respect to the data domains.

I. INTRODUCTION

The latest version of MATLAB’S SYSTEM IDENTIFICA-
TION TOOLBOX (SITB), [3] supports time and frequency
domain data and methods in a symmetric fashion. This
contribution will describe how this is done, as well as the
underlying theories and techniques. A related paper at this
conference, [4], contains more details.

For linear system identification, that is, methods to esti-
mate linear models from measured input-output data, the
links between time- and frequency domain methods are
important. However, the tools have traditionally not been
quite integrated. Of course, methods to directly estimate
frequency responses from time domain data, through vari-
ous spectral analysis techniques are classical. They belong
to the standard kit of tools since the 1960’s. At the same
time one can distinguish one “community” (mostly control
people) that basically works with data in the time domain
and primarily estimates parametric time domain models
(state-space and denominator/numerator transfer function
models) and occasionally complements that with spectral
analysis. Another community (mostly “instrumentation and
measurement” people) uses frequency domain data, periodic
inputs and well controlled experiments to build models of
similar kind (transfer functions) as well as refined frequency
function estimates. Frequency analyzers are often used to
collect and compress data. Vibration and modal analysis are
common applications of this type.

Over a period of time, there was not so much contact
between these communities. For example, the fact that
the input not necessarily is periodic was perceived as an
obstacle to use frequency domain techniques.

Recently, the true duality between time- and frequency
domain methods have become clear. Estimating “initial
conditions” in the frequency domain can fully compensate
for non-periodic data, and so called subspace methods orig-
inally developed for time domain data can also be applied to
frequency domain data. The importance and implications of
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various intersample properties (like zero order hold or band-
limited) of the input has also been clarified. The relative
merits of periodic and non-periodic data have been studied
carefully. See for example [2] and [7] for comprehensive
treatments.

II. THE BASIC TIME-DOMAIN APPROACH

The basic setup for system identification can be described
briefly in the following familiar way:

The starting point for parametric methods is a parame-
terized set of transfer functions G(q, θ), where θ is a finite-
dimensional parameter vector, and q is the shift operator. In
the notation here, we thus work with discrete time models.
The transfer function from input u to output y can possibly
be complemented with an assumption of the spectrum of
an additive disturbance v:

y(t) = G(q, θ)u(t) + v(t)

v has spectrum Φv(ω)
(1)

It is often useful to think of v as generated from a white
noise source e:

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

Φv(ω) = λ|H(eiω), θ)|2
(2)

From this model, the natural one-step ahead prediction can
be computed:

ŷ(t|θ) = (1 − H−1(q, θ))y(t) + H−1(q, θ)G(q, θ)u(t)
(3)

which gives the following prediction errors (or residuals);

ε(t, θ) = y(t) − ŷ(t|θ) = H−1(q, θ)(y(t) − G(q, θ)u(t))
(4)

A basic method for estimating the parameter vector θ is to
minimize the size of the prediction errors:

θ̂N = arg min
θ

VN (ZN , θ) (5a)

VN (ZN , θ) =

N
∑

t=1

ε2(t, θ) (5b)

Here ZN denotes the available data record:

ZN = {y(1), u(1), . . . , y(N), u(N)} (6)



III. A COMMON DENOMINATOR: CURVE FITTING OF THE
EMPIRICAL TRANSFER FUNCTION ESTIMATE

Estimation of a linear system can be interpreted as finding
the curve that is the frequency response function of the
system:

G(eiωT ) Discrete time, Sampling interval T (7a)
G(iω) Continuous time (7b)

This is a complex-valued function of a real variable ω. This
function is the Fourier transform of the impulse response
of the system. If y(t) = G(q)u(t), there is the well-known
and simple relationship between the frequency function and
the (Discrete) Fourier transforms of the inputs and outputs:

YN (eiωT ) =
1√
N

N
∑

k=1

y(kT )e−iωkT (8a)

UN (eiωT ) =
1√
N

N
∑

k=1

u(kT )e−iωkT (8b)

YN (eiωT ) = G(eiωT )UN (eiωT ) + RN (eiωT ) (8c)

Here RN (eiωT ) is a transient, that adjusts for the circular
convolution that is inherent in the discrete Fourier transform
(DFT). Note that if u is periodic with period N

RN (e2πik/N ) = 0, k = 0, . . . , N − 1. (9)

The corresponding frequencies are

ωk = 2πk/NT, k = 0, . . . , N − 1 (10)

These frequencies will be referred to as The DFT grid. The
character of RN in the general case is further discussed in
Section V.

The relationship (8c) motivates the use of the Empirical
Transfer Function Estimate (ETFE):

ˆ̂
GN (eiωT ) =

YN (eiωT )

UN (eiωT )
(11)

In case the observations y and u have been obtained from
a noise-corrupted linear system with frequency function
G0(e

iω) it can be shown that the ETFE has the following
statistical properties: (Lemma 6.1 in [2].)

E
ˆ̂
GN (eiωT ) = G0(e

iωT ) +
ρ1√

NUN (eiωT )
(12a)

E| ˆ̂GN (eiωT ) − G0(e
iωT )|2 =

Φv(ω)

|UN (eiωT )|2 +
ρ2

N |UN (eiωT )|2 (12b)

Here Φv(ω) is the spectrum of the additive noise (at the
output of the system) and ρi are constant bounds that
depend on the impulse response of the system, the bound
on the input, and the covariance function of the noise.
Moreover, it can be shown that the values of the ETFE
are asymptotically uncorrelated at frequencies on the DFT
grid.

All this means that we can think of the ETFE as a “noisy
measurement” of the frequency function:

ˆ̂
GN (eiωkT ) = G0(e

iωkT ) + vk (13)

with vk being a zero mean random variable with variance
Φv(ωk)/|UN (eiωkT )|2. We have then ignored the terms
with ρ in the expressions above.

If we indeed treat (13) as measurement from an unknown
curve that we want to estimate, two approaches suggest
themselves: (Set T = 1 in the sequel for simplicity)

• Adjust the parameterized function family G(eiω, θ)
to these measurement. Use a weighted least squares
criterion, with weights µk that reflect the reliability of
the measurements:

θ̂N = arg min
θ

VN (14a)

VN =

N
∑

k=1

µk| ˆ̂G(eiωk) − G(eiωk , θ)|2 (14b)

µk = |UN (eiωk)|2/Φv(ωk) (14c)

• Smooth the observations locally around a target fre-
quency ω, again paying attention to the reliability of
the measurements:

Ĝ(eiω) =

N
∑

k=1

c̃(ω − ωk, ω)µk
ˆ̂
G(eiωk) (15a)

µk as in (14c) (15b)
c̃(ξ, ω) = 0 if |ξ| > B(ω) (15c)

Here B(ω) is the “bandwidth” or frequency resolution
around frequency ω

Let us for a moment return to (14). Inserting the weighting
µk, the criterion will be

VN =

N
∑

k=1

(YN (eiωk) − G(eiωk , θ)UN (eiωk))/Φv(ωk)

(16)

This shows that fitting the ETFE to a parametric model is
the same as fitting the model to Frequency Domain Input-
output data. The conceptual relationship in the frequency
domain is

YN (eiω) = G0(e
iω), UN (eiω) + VN (eiω)

E|VN (eiω)|2 = Φv(ω)

Moreover, if we apply Parseval’s relationship to the time
domain criterion (5), we note that the Fourier transform of
ε(t, θ) is

EN (eiωT , θ) =H−1(eiωT , θ)(YN (eiωT ) −
G(eiωT , θ)UN (eiωT ))

Applying Parseval’s relationship to (5) and ignoring tran-
sient effects (or assuming periodic data) now gives exactly
the criterion (14) for the model assumptions (2)



IV. MODEL PARAMETERIZATIONS

The actual parameterization can be chosen in many dif-
ferent ways. The underlying description could be a discrete
time ARMAX model

A(q)y(t) = B(q)u(t) + C(q)e(t)

with the coefficients of the polynomials (in q−1) A,B and
C comprising θ. This gives

G(eiω, θ) =
B(eiω)

A(eiω)

H(eiω, θ) =
C(eiω)

A(eiω)

Note that this corresponds to rational function approxima-
tions in the variable x = eiω .

A physically parameterized, continuous time state space
model

ẋ(t) = A(θ)x(t) + B(θ)u(t) + w(t);

Ew(t)wT (s) = Q(θ)δ(t − s)

y(t) = C(θ)x(t) + D(θ)u(t) + e(t);

Ee(t)eT (s) = R(θ)δ(t − s)

corresponds to

G(iω, θ) = C(θ)(iωI − A(θ))−1B(θ) + D(θ)

H(iω, θ) = C(θ)(iωI − A(θ))−1K(θ) + I

where K(θ) is computed from A,C,Q and R as the steady
state Kalman filter gain.

Simple process models are obtained by parameterizations
of the kind

G(iω, θ) =
K

1 + sT1

eiωτ , θ = {K,T1, τ} (17)

with static gain, dominating time constant and time delay
as the parameters.

Many other types of parameterizations are of course
possible.

V. TRANSIENTS AND INITIAL STATES

It is well known that Fourier transformation of finite
data records assume “circular convolution”. This means that
unless the data is periodic, there will be an error as in (8c)
(the term RN ). This was long thought as an obstacle to
using frequency domain methods in identification, since any
deviation from periodicity in the input would lead to bias
errors in the models.

In fact, the deviation from periodicity in frequency do-
main data is no different from the lack of knowledge of
past data in time domain methods. We shall show that fact
in the present section.

Let us go back to the basic relationship (1). The ar-
guments below are applicable to multi-input-multi-output
system, even though the notation suggests a SISO system.

Let us consider the noise-free part of the response

yu(t) = G(q)u(t) (18)

Generally speaking we assume only a finite number of
samples of inputs and outputs (6) be known:

y(1), y(2), . . . , y(N)

u(1), u(2), . . . , u(N)

The inputs prior to t = 1 are thus not known. Lets us
denote by y̌u(t) that would be the output corresponding to a
particular assumption about u(t), t = −∞, . . . ,−2,−1, 0.
Two typical cases would be

y̌u(t) = y0

u(t) outputs of (18) if u(t) = 0, t ≤ 0

y̌u(t) = yp
u(t) outputs of (18) if u(t) is periodic

with period N from t = −∞ to t = N

Let now (18) be realized in state space form:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

Whatever assumption about prior values of u(t) would have
left us in a certain state x(0) = x̌ at time t. (For example, all
prior u:s being zero would give x(0) = 0.) Let the actual,
typically unknown, initial state be x(0) = x∗. Then

yu(t) = y̌u(t) + ỹu(t)

ỹu(t) = C(qI − A)−1(x∗ − x̌)δ(t)

δ(t) =

{

0 if t 6= 0

1 if t = 0

The term ỹu(t) is thus the response from the initial condi-
tions. Alternatively it can be seen as the impulse response
from an additional input, which is an impulse:

x(t + 1) = Ax(t) + Bu(t) + Rδ(t)

x(0) = x̌ (the assumed input behavior prior to t = 0)
y(t) = Cx(t)

R = x∗ − x̌

The consequence is that any (possibly erroneous) guess of
input behavior prior to time t = 0 can always be made
up for by adding an extra input which is an impulse at
time 0. The dynamics from this input has the same poles as
the system but unknown zeros. Note that one extra input is
sufficient, even if there are several regular inputs.

The typical two cases for assumed prior behavior of the
inputs are

1) In the time domain: Assume that all prior values of
u(t) are zero. This will give the simple predictor (3)
with all values of u and y prior to t = 1 being zero.

2) In the frequency domain: Assume that all prior values
of u are obtained by periodic continuation of u back-
wards in time. This will make the Fourier transformed
relation in (8c) exact for the u-influence at the DFT-
grid-points (10).



Now, for general data sets, these two assumptions are not
correct, but the point is that an extra input signal which is
an impulse will make them correct, if this input is passed
through a system with the same poles as the model, and the
zeros are adjusted to data (to match the assumption.) This
extra input can be neglected, only if we know that the input
is periodic in the frequency domain case, or past values are
zero in the time domain. For long data records, it may be of
less importance, since the effects of this impulse response
may decay quickly compared to the data length.

How to compensate for non-periodic frequency domain
data was described in [8]. See also [9] for an instructive
discussion.

VI. SOFTWARE ASPECTS

A. Desired Features

A software package on linear system identification should
offer

• Full support of using both time- and frequency domain
input-output data. The handling of the frequency grids
for frequency domain data should be automatic.

• It should also accept frequency response data (like e.g.,
the ETFE (11)) as a data type for both parametric and
non-parametric estimation.

• Data that relate both to continuous time and discrete
time descriptions should be taken care of.

• It should allow both simulation, estimation and valida-
tion using any type of data.

• The syntax and, if present, the graphical user interfaces
(GUI) should be fully transparent w.r.t. to the data
domain.

In this section we shall describe how the latest version of
the SYSTEM IDENTIFICATION TOOLBOX (SITB) for MAT-
LAB [3]) deals with these issues. The goal of the syntax is
to handle time domain data, frequency domain input-output
data, and frequency response data in entirely analogous
fashions both for estimating and validating models.

B. Input-Output Data

Time domain: The basic situation is that vectors of
input and output data are given in the time-domain:

{u(T ), . . . , u(NT )}
{y(T ), . . . , y(NT )}

where T is the sampling interval. The corresponding data
object is the iddata format, which contains the data as in

dat = iddata(Y,U,Ts)

where Ts is the sampling interval. Further properties, like
channel names and units, arbitrary sampling instants etc can
be contained in this object. Of special interest is to store
information about the inter-sample behavior of the input
between the sampling instants (like piecewise constant,
piecewise linear or band-limited.) Moreover one iddata
object can store the data from several different experiments.

Frequency domain: Fourier transforms for input and
output data can be computed as in (8) and stored for selected
frequencies ωk, k = 1, . . . ,M

Remark: : A common choice is ωk = 2πk/NT, k =
0, . . . , N/2, which corresponds to the DFT-grid. This takes
into account that for real data, frequencies above the
Nyquist frequency π/T give complex conjugate values of
UN .

One should also bear in mind that the data can be
collected in equipment that directly produce Fourier trans-
forms.

In some cases it may be reasonable to assume that the
data are given as Fourier transforms of continuous-time
data:

U(ω) =

∫

u(τ)e−iτωdτ (19)

This may be the case for fast sampled data or for band-
limited signals.

The iddata object can also hold input/output data in
the frequency domain over arbitrary frequencies as in

dat = iddata(Y,U,’Frequencies’,W,...
’Domain’,’Freq’,’Ts’,0);

Note that the sampling interval, T , (’Ts’) is still relevant,
since it has information of how the signal Fourier transforms
Y and U have been computed from time domain data.
Discrete time Fourier Transforms conceptually have the
frequency argument eiωT . See (8). Note however, that
frequency domain data, unlike time domain data allow
continuous time signals (T = 0), that is Fourier transforms
that (at least conceptually) have been formed by (19).

With frequency domain data objects, several MATLAB
commands are naturally overloaded:

DF = fft(dat)
dat = ifft(DF)
da = abs(dat)
df = phase(dat)

etc.

C. Frequency Response Data

The frequency response function of a linear system is
the Fourier transform of its impulse response. See (7). In
several cases the frequency response can be seen as the
primary measured information about the system:

• It is computed from input-output measurements as the
ETFE (11) or by spectral analysis (see Section VI-E).

• It is delivered from special hardware equipment, fre-
quency analyzers, which use either Fourier Analysis
or determine phase and amplitude shift of applied
sinusoidal inputs (“swept sinusoid”).

• It is computed from a detailed, high order model, for
which simpler approximations are sought.



In either case we would have a finite collection of
measurements

ZN = {Gm(iω1), . . . , Gm(iωN )} (20a)

or in discrete time

ZN = {Gm(eiω1T ), . . . , Gm(eiωN T )} (20b)

Possibly, these data could be complemented with some
uncertainty estimate W of the measurements:

ZN
U = {W (iω1), . . . ,W (iωN )} (20c)

For example, for an ETFE estimate of the frequency re-
sponse, the uncertainty measure could be the variance (12b).

Frequency response data can be stored in the idfrd
object in the SITB. It corresponds to the frequency response
data object frd in the CONTROL SYSTEM TOOLBOX.

dat = idfrd(G,fre,Ts,’cov’,W)

Comparing with (20), G contains the response data Gm,
and fre the frequencies ωk. Ts is the sampling interval T
(Ts = 0 denotes continuous time) and W is the uncertainty
measure (20c), which can be omitted if not known.

Measurements of frequency response functions are typ-
ically rather rough estimates of a function that is known
to be quite smooth. It may therefore be a good idea
to compress the data by smoothing the original response
measurement (e.g. like (15)) and then store the response at
fewer frequency values. The frequency resolution B(ω) in
(15c) is often chosen to be logarithmic, so the frequency
values become logarithmically spaced. This gives apparent
constant resolution in a Bode plot. See the command
spafdr below in Section VI-E.

D. Estimation and Validation

The point now is that whatever the format of dat,
estimation and validation of models follow the same syntax:

m1 = oe(dat,[2 2 1])
m2 = n4sid(dat,3)
m3 = pem(dat)
compare(dat,m1,m2,m3)
resid(dat,m1)

etc. The prediction error approaches (oe, pem etc) imple-
ment the minimization of VN in (5), (14) and (16) while
the subspace estimation command n4sid is described in
[6] for frequency domain data. (See also [5].)

Arbitrary weighings ck in the frequency domain fits,
replacing 1/Φv(ωk) in (16) and µk in (14b), can be obtained
by

m = oe(dat,[2 2 1],’focus’,[c_1,..,c_N])

By default, initial states are always estimated, as described
in Section V). This estimation can be inhibited by

m = oe(dat,[2 2 1],’InitialState’,’zero’)

If the frequency domain data is denoted as continuous
time, a continuous time model is estimated directly (without
d2c transformations). Compare also [1].

E. Direct Frequency Function Estimation by Local Smooth-
ing

The local smoothing technique, described in (15), which
is an extension of traditional spectral analysis methods,
is implemented in a new function that estimates idfrd
objects (frequency functions and disturbance spectra) from
time or frequency iddata objects:

g = spafdr(data)

This allows Frequency Dependent Resolution, with a loga-
rithmic frequency grid as default along with a resolution
that as adopted to the grid. This could be an efficient
way of compressing measured data. It is often the case
that a courser resolution (in rad/s) can be used at higher
frequencies, and that a constant relative resolution is to be
preferred. Figure 1 illustrates the effect of the frequency
dependent resolution.
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Fig. 1. Estimate of the frequency function for the data set IDDATA1, using
SPA (above) and SPAFDR (below) with default arguments for frequency
vector and resolution. Thin line: the true frequency response.

F. Some Further Features

Frequency domain data offer useful potentials also for
other problems:

• A focus filter can be implemented as specific frequen-
cies for which the fit should be made. For example,
m = oe(dat,[2 2 1],’focus’,[0.2 1])

will concentrate the fit to the pass band from 0.2 to 1
rad/s. The desired frequency bands may not necessarily
be known a priori, but could be selected from a pre-
liminary model, like using frequencies that correspond
to the Nyquist curve being in the third quadrant, or
being close to the critical point −1. Example:
m = n4sid(data,5);
f = idfrd(m);
ph = phase(squeeze(resp));



fs = fselect(f,find(ph>-pi & ph<-
pi/2));
mp = pem(fs,’p1d’);

• If the inter-sample input behavior is band-limited,
moving to the frequency domain will be the easiest
way to handle the sampling. The FFT (discrete Fourier
transform) of the input will then be equal to the Fourier
transform of the underlying continuous time input
signal. The FFT of the output will similarly correctly
describe the continuous time Fourier transform of that
part of the output that originates from the input, and
we can directly fit a continuous time model:
z = iddata(y,u,0.5);
zf = fft(z);
zf.Ts = 0;
mp = oe(zf,[1 2])

This would estimate a model of the kind
b

s2 + f1s + f2

• How are frequency response function dealt with in
estimation and validation?
The difficulty is really to deal with multiple inputs.
While the frequency response is an Ny|Nu|Nf object
(Ny outputs,Nu inputs and Nf frequencies), the input
output data is an (Ny + Nu)|Nf object. This alone
shows that the problem requires som thought. The
solution is to create a multi-experiment data object,
with one experiment for each input.

G. GUI support

The graphical user interface (GUI) has been extended
to be transparent wrt the data domain. Frequency domain
iddata and frequency response data as frd or idfrd ob-
jects can be imported into the GUI in the same way as time
domain data. See Figure 2. The icons for the different types
of data sets are marked by different background colors. The
data preprocessing menus allow the transformation
between the various representations. Also the use of data
objects of different types for estimation and validation
is entirely transparent. For example, if an idfrd object
is chosen as validation data, the Model output view
shows the frequency responses of the models, together with
the data.

VII. SUMMARY

For identification of linear systems there are both time
and frequency domain techniques available to find good
models. It is desirable to use both these “worlds” in an
effective manner to come up with a good identification
result. In this presentation we have pointed to methods and
criteria for estimation and validation in both domains. In
particular we have stressed the close kinship between the
domains, also from an identification perspective. In effect,
all methods can be seen as various ways to smooth the
empirical transfer function estimate.

Fig. 2. The GUI

It is also important that the software support handles
this duality between the time and frequency domains in
a transparent manner. We have discussed how this can be
done, by describing some new features in the SYSTEM
IDENTIFICATION TOOLBOX.
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