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Abstract— In this paper, we present a general family of
iterative methods to solve linear equations, which includes the
well-known Jacobi and Gauss-Seidel iterations as its special
cases. We give the necessary and sufficient conditions for
convergence of the iterative solutions. Furthermore, the methods
are extended to solve coupled Sylvester matrix equations. In
our approach, we regard the unknown matrices to be solved
as the system parameters to be identified, and propose a
least squares iterative algorithm by applying a hierarchical
identification principle. We prove that the iterative solution
consistently converges to the exact solution for any initial value.
The algorithms proposed require less storage capacity than the
existing numerical ones. Finally, the algorithms are tested on
computer and the results verify the theoretical findings.

Keywords: Sylvester matrix equation, Lyapunov matrix equa-
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Gauss-Seidel iteration, Hadamard product, star product, hier-
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I. I NTRODUCTION

Lyapunov and Sylvester matrix equations play important
roles in system theory [1], [2], [3], [4], [5]. Although exact
solutions, which can be computed by using the Kronecker
product, are important, the computational efforts rapidly
increase with the dimensions of the matrices to be solved. For
some applications such as stability analysis, it is often not
necessary to compute exact solutions; approximate solutions
or bounds of solutions are sufficient. Also, if the parameters
in system matrices are uncertain, it is not possible to obtain
exact solutions for robust stability results [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].

Alternative ways exist which transform the matrix equa-
tions into forms for which solutions may be readily
computed, for example, the Jordan canonical form [21],
companion-type form [22], [23], Hessenberg-Schur form
[24], [25]. In this area, Chu gave a numerical algorithm
for solving the coupled Sylvester equations [26]; and Borno
presented a parallel algorithm for solving the coupled Lya-
punov equations [27]. But, these algorithms require com-
puting some additional matrix transformation/decomposition;
moreover, they are not suitable for more general coupled
matrix equations of the form:

p∑

j=1

AijXjBij = Ci, i = 1, 2, · · · , p, (1)

which includes the coupled Lyapunov and Sylvester equa-
tions as its special cases. In (1),Xi ∈ Rm×n are the
unknown matrices to be solved;Aij , Bij , andCij represent
constant (coefficient) matrices of appropriate dimensions. For
such coupled matrix equations, the conventional methods
require dealing with matrices whose dimensions aremnp×
mnp. Such a dimensionality problem leads to computational
difficulty in that excessive computer memory is required
for computation and inversion of large matrices of size
mnp × mnp. For instance, ifm = n = p = 100, then
mnp×mnp = 106 × 106.

In the field of matrix algebra and system identification,
iterative algorithms have received much attention [28], [29],
[30], [6], [7]. For example, Starke presented an iterative
method for solutions of the Sylvester equations by using
the SOR technique [31]; Jonsson and Kägstr̈om proposed
recursive block algorithms for solving the coupled Sylvester
matrix equations [32], [33]; K̈agstr̈om derived an approx-
imate solution of the coupled Sylvester equation [34]. To
our best knowledge, numerical algorithms for general matrix
equations have not been fully investigated, especially the
iterative solutions of the coupled Sylvester matrix equations,
as well as the general coupled matrix equations in (1), and
the convergence of the iterative solutions involved, which are
the focus of this work.

In this paper, the problem will be tackled in a new way
– we regard the unknown matricesXj to be solved as
the parameters (parameter matrices) of the system to be
identified, and apply the so-calledhierarchical identification
principle to decompose the system into some subsystems,
and derive iterative algorithms of the matrix equations in-
volved. Our methods will generate solutions to the matrix
equations which are arbitrarily close to the exact solutions.

The paper is organized as follows. In Section II, we
extend the well-known Jacobi and Gauss-Seidel iterations
and present a large family of iterative methods. In Sections III
and IV, we define the block-matrix inner product (the star
product for short) and derive iterative algorithms for the
coupled Sylvester matrix equations and general coupled
matrix equations, respectively, and study the convergence
properties of the algorithms. In Section V we give an example
for illustrating the effectiveness of the algorithms proposed
in the paper. Finally, we offer some concluding remarks in
Section VI.



II. EXTENSION OF THEJACOBI AND GUASS-SEIDEL

ITERATIONS

Consider the following linear equation:

Ax = b. (2)

Here,A = [aij ] ∈ Rn×n is a given full-rank square matrix
with non-zero diagonal elements,b ∈ Rn is a constant vector,
andx ∈ Rn an unknown vector to be solved. LetD be the
diagonal part ofA, L andU be the strictly lower and upper
triangular parts ofA:

D = diag[a11, a22, · · · , ann] ∈ Rn×n,

L =




0 0 · · · · · · 0

a21 0
. . .

...

a31 a32 0
.. .

...
...

. . .
.. . 0

an1 an2 · · · an,n−1 0



∈ Rn×n,

U =




0 a12 a13 · · · a1n

0 0 a23 a2n

...
. ..

. . .
.. .

...
...

. . .
.. . an−1,n

0 · · · · · · 0 0



∈ Rn×n,

which satisfyL + D + U = A. Then both the Jacobi and
Gauss-Seidel iterations can be expressed as [28], [29]

Mx(k) = Nx(k − 1) + b, k = 1, 2, 3, · · · ,
where x(k) is the iterative solution ofx. For the Jacobi
method,M = D andN = −(L + U); for the Gauss-Seidel
method,M = L + D andN = −U .

Unfortunately, the Jacobi and Gauss-Seidel iterations can-
not guarantee thatx(k) converges to the exact solution
x = A−1b, and are not suitable for solving the non-square
system:Hx = g with H ∈ Rm×n. This motivates us to study
new iterative methods.

Let G ∈ Rn×n be a full-rank matrix to be determined and
µ > 0 be the step-size or convergence factor. We present a
large family of iterative methods as follows:

x(k) = x(k−1)+µG [b−Ax(k−1)], k = 1, 2, 3, · · · , (3)

which includes the Jacobi and Gauss-Seidel iterations as
special cases. For example, whenG = D−1 and µ = 1,
we get the Jacobi method; whenG = (L+D)−1 andµ = 1,
we obtain the Gauss-Seidel method.

Theorem 1:For the iterative algorithm in (3), assume
the system in (2) has a unique solution. Then the iterative
solutionx(k) given by the algorithm in (3) converges to the
exact solutionx (i.e., lim

k→∞
x(k) = x = A−1b) for any finite

initial valuesx(0) if and only if

µ(GA)T(GA) < (GA)T + (GA). (4)

In fact, if (GA)T + (GA) is positive-definite, we can take

0 < µ <
λmin[(GA)T + (GA)]
λmax[(GA)T(GA)]

.

whereλmax (λmin) denotes the maximum (minimum) eigen-
value.

¤
The proof of Theorem 1 is straightforward and hence

omitted here. We may draw the following corollaries from
Theorem 1.

Corollary 1: For the Jacobi iteration, ifATD−1 + D−1A
is a positive-definite matrix, and

0 < µ <
λmin[ATD−1 + D−1A]

λmax[ATD−2A]
,

then lim
k→∞

x(k) = x = A−1b.

¤
Corollary 2: For the Gauss-Seidel iteration, ifAT(L +

D)−T + (L + D)−1A > 0, and

0 < µ <
λmin[AT(L + D)−T + (L + D)−1A]

λmax[AT(L + D)−T(L + D)A]
,

then lim
k→∞

x(k) = x.

¤
Corollary 3: If AT + A > 0, take G = I (an identity

matrix) to get a simple iteration,
{

x(k) = x(k − 1) + µ[b−Ax(k − 1)],
0 < µ < λmin[AT+A]

λmax[ATA] .
(5)

Or, if AT + A < 0, taking G = −I, we have
{

x(k) = x(k − 1)− µ[b−Ax(k − 1)],
0 < µ < λmin[−AT−A]

λmax[ATA] .
(6)

Both cases yieldlim
k→∞

x(k) = x.

¤
Corollary 4: If we take G = AT, then the iterative

algorithm,
{

x(k) = x(k − 1) + µAT[b−Ax(k − 1)],
0 < µ < 2

λmax[ATA] , or 0 < µ < 2
‖A‖2 ,

(7)

yields lim
k→∞

x(k) = x. Here,‖X‖2 = tr[XXT].
¤

Corollary 5: If we take G = A−1, then the following
iterative algorithm converges tox:

{
x(k) = x(k − 1) + µA−1[b−Ax(k − 1)],
0 < µ < 2.

(8)

If A is a non-squarem×n full column-rank matrix, then we
have lim

k→∞
x(k) = x in the following:

{
x(k) = x(k − 1) + µ(ATA)−1AT[b−Ax(k − 1)],
0 < µ < 2.

(9)



¤
When µ = 1, x(1) = (ATA)−1ATb is the least squares

solution, so (9) is also called the least squares iterative
algorithm or the iterative least squares algorithm.

From Corollaries 1 to 3, we can see that the Jacobi
iteration, Gauss-Seidel iteration and the iterative algorithm
in (5) or (6) all require doing matrix eigenvalue analysis
and additional computation because it is more complicated to
compute eigenvalues than the trace of a matrix; the iterative
algorithms in (7) and (9) are also suitable for solving non-
square systems and are very useful for finding the iterative
solutions of general matrix equations to be studied later; the
convergence factorsµ in (8) and (9) do not rely on the matrix
A and is easy to choose, although the algorithms in (8) and
(9) require computing matrix inversion.

III. C OUPLED SYLVESTER MATRIX EQUATIONS

In this section, we study iterative algorithms to solve the
coupled Sylvester matrix equation:

{
AX + Y B = C,
DX + Y E = F.

(10)

Here, A, D ∈ Rm×m, B, E ∈ Rn×n and C, F ∈ Rm×n

are given constant matrices,X, Y ∈ Rm×n are the unknown
matrices to be solved.

First, let us introduce some notation. The notationIn is
the identity matrix ofn × n. For two matricesM and N ,
M ⊗N is their Kronecker product. For twom× n matrices
X andY with

X =
[

x1, x2, · · · , xn

] ∈ Rm×n,

col[X] is an mn-dimensional vector formed by columns of
X:

col[X] =




x1

x2

...
xn


 ∈ R

(mn)

and

col[X, Y ] =
[

col[X]
col[Y ]

]
∈ R(2mn).

The following result is well-known.
Lemma 1:Equation (10) has a unique solution if and only

if the matrix

S2 :=
[

In ⊗A BT ⊗ Im

In ⊗D ET ⊗ Im

]
∈ R(2mn)×(2mn)

is nonsingular; in this case, the unique solution is given by

col[X, Y ] = S−1
2 col[C, F ], (11)

and the corresponding homogeneous matrix equationAX +
Y B = 0, DX+Y E = 0 has a unique solution:X = Y = 0.

¤

In order to derive the iterative solution to (10), we need
to introduce the intermediate matricesb1 andb2 as follows:

b1 :=
[

C − Y B
F − Y E

]
, (12)

b2 := [C −AX, F −DX]. (13)

Then from (10), we obtain two fictitious subsystems

S1 : G1X = b1,

S2 : Y H1 = b2.

Here,G1 :=
[

A
D

]
andH1 := [B, E].

Let X(k) andY (k) be the iterative solutions ofX andY .
Referring to Corollary 5, it is not difficult to get the iterative
solutions toS1 andS2 as follows:

X(k) = X(k − 1) + µ(GT
1 G1)−1

[
A
D

]T {
b1 −

[
A
D

]
X(k − 1)

}
, (14)

Y (k) = Y (k − 1) + µ{b2 − Y (k − 1)[B, E]}
[B, E]T(H1H

T
1 )−1. (15)

Substituting (12) into (14) and (13) into (15) gives

X(k) = X(k − 1) + µ(GT
1 G1)−1

[
A
D

]T {[
C − Y B
F − Y E

]
−

[
A
D

]
X(k − 1)

}

= X(k − 1) + µ(GT
1 G1)−1

[
A
D

]T [
C − Y B −AX(k − 1)
F − Y E −DX(k − 1)

]
, (16)

Y (k) = Y (k − 1) + µ{[C −AX, F −DX]
−Y (k − 1)[B, E]}[B, E]T(H1H

T
1 )−1

= Y (k − 1) + µ[C −AX − Y (k − 1)B, F

−DX − Y (k − 1)E][B, E]T(H1H
T
1 )−1. (17)

Here, a difficulty arises in that the expressions on the right-
hand sides of (16) and (17) contain the unknown parameter
matrix Y andX, respectively, so it is impossible to realize
the algorithm in (16) and (17). Our solution is based on the
hierarchical identification principle: The unknown variables
Y in (16) and X in (17) are replaced by their estimates
Y (k−1) andX(k−1). Thus, we obtain the iterative solutions
X(k) andY (k) of the coupled Sylvester equation in (10):

X(k) = X(k − 1) + µ(GT
1 G1)−1

[
A
D

]T [
C −AX(k − 1)− Y (k − 1)B
F −DX(k − 1)− Y (k − 1)E

]
,

(18)

Y (k) = Y (k − 1) + µ[C −AX(k − 1)
−Y (k − 1)B, F −DX(k − 1)− Y (k − 1)E]
[B, E]T(H1H

T
1 )−1,

(19)



µ =
1

m + n
, (20)

or

µ =
1

λmax[G1(GT
1 G1)−1GT

1 ] + λmax[HT
1 (H1HT

1 )−1H1]
,

To initialize the algorithm, we takeX(0) = Y (0) = 0 or
some small real matrix, e.g.,X(0) = Y (0) = 10−61m×n

with 1m×n being anm× n matrix whose elements are 1.
Theorem 2:If the coupled Sylvester equation in (10) has

a unique solutionX andY , then the iterative solutionX(k)
and Y (k) given by the algorithm in (18)-(20) converges to
X andY for any finite initial valuesX(0) andY (0), i.e.,

lim
k→∞

X(k) = X, and lim
k→∞

Y (k) = Y.

¤
Due to the limit of pages, the proofs of this theorem and

following theorem are omitted, but can be obtained from the
authors.

The convergence factor in (20) may not be the best and
may be conservative. In fact, there exists a bestµ such that
the fast convergence rate ofX(k) to X andY (k) to Y can
be obtained - see the example to be studied later.

IV. GENERAL COUPLED MATRIX EQUATIONS

In this section, we will extend the iterative method to solve
more general coupled matrix equations of the form:




A11X1B11 + A12X2B12 + · · ·+ A1pXpB1p = C1,
A21X1B21 + A22X2B22 + · · ·+ A2pXpB2p = C2,

· · ·
Ap1X1Bp1 + Ap2X2Bp2 + · · ·+ AppXpBpp = Cp.

(21)
Here,Aij ∈ Rm×m, Bij ∈ Rn×n andCi ∈ Rm×n are given
constant matrices,Xj ∈ Rm×n are the unknown matrix to
be solved.

In order to more succinctly express the iterative algorithm
to be presented later, we introduce the block-matrix inner
product - the star (?) product for short, denoted by notation
?, which differs from Hadamard (inner) product [35], [36],
[37], [38] and general matrix multiplication. Let

X =




X1

X2

...
Xp


 ∈ R

(mp)×n, Y =




Y1

Y2

...
Yp


 ∈ R

(np)×m,

(22)

Then the block-matrix star product is defined as

X ? Y =




X1

X2

...
Xp


 ?




Y1

Y2

...
Yp


 =




X1Y1

X2Y2

...
XpYp


 .

In the above definition, we assume that the dimensions of
multiplier matrix and multiplicand matrix are compatible.

Taking into account the dimension compatibility, the star
product is superior to matrix multiplication. Note thatAB ?
C = A(B ? C) 6= (AB) ? C.

For the Hadamard (◦) product, we haveX◦Y = Y ◦X. For
the star product, since the multiplier matrix and multiplicand
matrix are not necessarily of the same size, in general,A ?
B 6= B ? A, A ? B ? C = (A ? B) ? C 6= A ? (B ? C).

Lemma 2:Equation (21) has a unique solution if and
only if the matrix Sp = [BT

ij ⊗ Aij ] ∈ R(mnp)×(mnp) is
nonsingular; in this case, the solution is

col[X1, X2, · · · , Xp] = S−1
p col[C1, C2, · · · , Cp];

and if Ci = 0 (i = 1, 2, · · · , p), then the matrix equation
in (21) has unique solutionsXi = 0 (i = 1, 2, · · · , p).

In order to derive the iterative algorithm for solving the
general coupled matrix equation in (21), we first consider the
coupled Sylvester equation in (10) to a more general form:

{
AXIB + IAY B = C,
DXIE + IDY E = F,

whose iterative solution can be expressed as

X(k) = X(k − 1) + µ(GT
1 G1)−1

[
A
D

]T

{[
C −AX(k − 1)IB − IAY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]
? [IB , IE ]T

}
,

(23)

Y (k) = Y (k − 1) + µ

[
IA

ID

]T

[
C −AX(k − 1)IE − IDY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]

?

[
BT

ET

]
(H1H

T
1 )−1. (24)

If IA, IB , ID and IE are identity matrices of appropriate
dimensions, then the algorithm in (23) and (24) is equivalent
to the one in (18) and (19).

Let Xi(k) be the estimates or iterative solutions ofXi,
and

Ai =




A1i

A2i

...
Api


 ∈ R

(mp)×m,

Bi = [B1i, B2i, · · · , Bpi] ∈ Rn×(np).

We present the least squares iterative algorithm of computing
the solutionsXi(k) (i = 1, 2, · · · , p) of the matrix
equations in (21) as follows:

Xi(k) = Xi(k − 1) + µ(AT
i Ai)−1AT

i






C1 −
p∑

j=1

A1jXj(k − 1)B1j

C2 −
p∑

j=1

A2jXj(k − 1)B2j

...

Cp −
p∑

j=1

ApjXj(k − 1)Bpj




?




BT
1i

BT
2i
...

BT
pi


 (BiB

T
i )−1,

(25)

µ =
1

p∑
i=1

λmax[Ai(AT
i Ai)−1AT

i ]λmax[BT
i (BiBT

i )−1Bi]
,

or

µ =
1

mnp
. (26)

Since (25) and (26) are established based on the least squares
iterative idea of Corollary 5, the algorithm in (25) and (26)
is known as the least squares iterative algorithm. In this
algorithm, we only require computing the inversion of the
m×m andn×n matrices instead of themnp×mnp matrix,
e.g., in Lemma 2.

Theorem 3:If the coupled matrix equation in (21) has
unique solutionsXi, i = 1, 2, · · · , p, then the iterative
solutionsXi(k) given by the algorithm in (25)-(26) converge
to the solutionsXi for any finite initial valuesXi(0), i.e.,

lim
k→∞

Xi(k) = Xi, i = 1, 2, · · · , p.

¤
V. EXAMPLE

In this Section, we give an example to illustrate the
performance of the proposed algorithms.

Suppose that the coupled matrix equations areAX +
Y B = C, DX + Y E = F with

A =
[

2.00 1.00
−1.00 2.00

]
, B =

[
1.00 −0.20
0.20 1.00

]
,

C =
[

13.20 10.60
0.60 8.40

]
, D =

[ −2.00 −0.50
0.50 2.00

]
,

E =
[ −1.00 −3.00

2.00 −4.00

]
, F =

[ −9.50 −18.00
16.00 3.50

]
.

Then the solutions ofX andY from (11) are

X =
[

x11 x12

x21 x22

]
=

[
4.00 3.00
3.00 4.00

]
,

Y =
[

y11 y12

y21 y22

]
=

[
2.00 1.00

−2.00 3.00

]
.

Taking X(0) = Y (0) = 10−612×2, we apply the algorithm
in (18) and (19) to computeX(k) and Y (k). The iterative
solutionsX(k) andY (k) is shown in Table I, where

δ =

√
‖X(k)−X‖2 + ‖Y (k)− Y ‖2

‖X‖2 + ‖Y ‖2

is the relative error. The errorsδ with different convergence
factors are shown in Fig. 1. From Table I and Fig. 1, it is clear
that δ are becoming smaller and smaller and goes to zero as
k increases. This indicates that the proposed algorithm is
effective.

TABLE I

THE ITERATIVE SOLUTIONS (µ = 1/1.10)

k x11 x12 x21 x22

5 3.61430 2.99005 2.94096 3.69706
10 3.58609 3.05453 2.90272 3.87639
15 3.82227 3.06025 2.95326 3.97523
20 3.89469 3.05144 2.97031 3.99632
25 3.94038 3.03387 2.98259 4.00113
30 3.96448 3.02170 2.98944 4.00170
35 3.97879 3.01341 2.99364 4.00132
40 3.98723 3.00821 2.99615 4.00089
45 3.99229 3.00500 2.99767 4.00056
50 3.99534 3.00303 2.99859 4.00035
55 3.99718 3.00184 2.99915 4.00021
60 3.99829 3.00111 2.99948 4.00013

Solution 4.00000 3.00000 3.00000 4.00000

TABLE II

THE ITERATIVE SOLUTIONS (µ = 1/1.10)

k y11 y12 y21 y22 δ (%)
5 3.32282 0.38948 -2.97539 3.2708622.33259974
10 2.34456 0.78180 -2.21107 3.09466 7.84857813
15 2.21169 0.83128 -2.10876 3.07171 4.34305171
20 2.10743 0.90351 -2.04993 3.04066 2.41409661
25 2.06247 0.93997 -2.02722 3.02519 1.42914360
30 2.03639 0.96383 -2.01531 3.01515 0.85256301
35 2.02173 0.97803 -2.00897 3.00919 0.51331998
40 2.01304 0.98670 -2.00533 3.00556 0.30979089
45 2.00787 0.99195 -2.00320 3.00337 0.18728213
50 2.00475 0.99512 -2.00193 3.00204 0.11329119
55 2.00287 0.99705 -2.00117 3.00123 0.06855766
60 2.00174 0.99821 -2.00071 3.00075 0.04149393

Solution 2.00000 1.00000 -2.00000 3.00000

The effect of changing the convergence factorµ is illus-
trated in Fig. 1. We see that the larger the convergence factor
µ is, the faster the convergence the algorithm (or, the smaller
the estimation error). However, ifµ is too large, the algorithm
may diverge. How to choose a best convergence factor is still
a project to be studied.

VI. CONCLUSIONS

A family of iterative methods for linear systems is pre-
sented and a least squares iterative solution to coupled matrix
equations are studied by using the hierarchical identification
principle. The analysis indicates that the algorithms proposed
can achieve a good convergence property for any initial
values. Although the algorithms are presented for linear
coupled matrix equations, the idea adopted can be easily
extended to study iterative solutions of more complex matrix
equations and nonlinear matrix equations, e.g., the Riccati
equation.



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

         k

   
 δ

µ = 1/10.0
µ = 1/4.00
µ = 1/2.00
µ = 1/1.10
µ = 1/0.99

Fig. 1. The relative errorδ of Example 1 versusk (dots)

µ = 1
m+n = 1

4 ,

µ = 1
λmax[G1(GT

1 G1)−1GT
1 ]+λmax[HT

1 (H1HT
1 )−1H1]

= 1
2 .

VII. ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada and the National
Natural Science Foundation of China (No. 60074029).

VIII. REFERENCES

[1] T. Chen, B.A. Francis, Optimal Sampled-data Control Systems, Lon-
don, Springer, 1995.

[2] T. Chen, L. Qiu,H∞ design of general multirate sampled-data control
systems, Automatica 30 (1994) 139-1152.

[3] L. Qiu, T. Chen, Contractive completion of block matrices and its
application toH∞ control of periodic systems, in: I. Gohberg, P.
Lancaster, P.N. Shivakumar (Eds.), Recent Developments in Operator
Theory and Its Applications, Birkhauser Verlag, Basel, Switzerland,
1996, pp. 263-281.

[4] L. Qiu, T. Chen, Multirate sampled-data systems: allH∞ suboptimal
controllers and the minimum entropy controller, IEEE Trans. Automat.
Control 44 (1999) 537-550.

[5] L. Qiu, T. Chen, Unitary dilation approach to contractive matrix
completion, Linear Algebra and its Applications, In Press, Corrected
Proof, Available online 17 July 2003.

[6] Y. Fang, K.A. Loparo, X. Feng, New estimates for solutions of
Lyapunov equations, IEEE Trans. Automat. Control 42 (1997) 408-
411.

[7] H. Mukaidani, H. Xu, K. Mizukami, New iterative algorithm for
algebraic Riccati equation related toH∞ control problem of singularly
perturbed systems, IEEE Trans. Automat. Control 46 (2001) 1659-
1666.

[8] T. Mori, A. Derese, A brief summary of the bounds on the solution
of the algebraic matrix equations in control theory, Int. J. Control 39
(1984) 247-256.

[9] J. Garloff, Bounds for the eigenvalues of the solution of the discrete
Riccati and Lyapunov equation and the continuous Lyapunov equation,
Int. J. Control 43 (1986) 423-431.

[10] N. Komaroff, Simultaneous eigenvalue lower bounds for the Lyapunov
matrix equation, IEEE Trans. Automat. Control 33 (1988) 126-128.

[11] A. Hmamed, Discrete Lyapunov equation: Simultaneous eigenvalue
bounds, Int. J. Control 22 (1991) 1121-1126.

[12] M. Mrabti, A. Hmamed, Bounds for the solution of the Lyapunov
matrix equation - A unified approach, Systems Control Lett. 18 (1992)
73-81.

[13] N. Komaroff, Lower bounds for the solution of the discrete algebraic
Lyapunov equation, IEEE Trans. Automat. Control 37 (1992) 1017-
1019.

[14] N. Komaroff, Upper summation and product bounds for solution
eigenvalues of the Lyapunov matrix equation, IEEE Trans. Automat.
Control 37 (1992) 1040-1042.

[15] M. Mrabti, and M. Benseddik, Unified type non-stationary Lyapunov
matrix equation - Simultaneous eigenvalue bounds. Systems Control
Lett. 24 (1995) 53-59.

[16] W.H. Kwon, Y.S. Moon, S.C. Ahn, Bounds in algebraic Riccati and
Lyapunov equations: A survey and some new results, Int. J. Control
64 (1996) 377-389.

[17] C. H. Lee, Upper and lower matrix bounds of the solution for the
discrete Lyapunov equation, IEEE Trans. Automat. Control 41 (1996)
1338-1341.

[18] C. H. Lee, On the matrix bounds for the solution matrix of the discrete
algebraic Riccati equation, IEEE Trans. Circuits Syst. I, 43 (1996) 402-
407.

[19] M. K. Tippert, D. Marchesin, Upper bounds for the solution of the
discrete algebraic Lyapunov equation, Automatica 35 (1999) 1485-
1489.

[20] T. Mori and H. Kokame, On Solution bounds for three types of Lya-
punov matrix equations: Continuous, discrete and unified Equations,
IEEE Trans. Automat. Control 47 (2002) 1767-1770.

[21] J. Heinen, A technique for solving the extended discrete Lyapunov
matrix equation, IEEE Trans. Automat. Control 17 (1972) 156-157.

[22] R. Bitmead, H. Weiss, On the solution of the discrete-time Lyapunov
matrix equation in controllable canonical form, IEEE Trans. Automat.
Control 24 (1979) 481-482.

[23] R. Bitmead, Explicit solutions of the discrete-time Lyapunov matrix
equation and Kalman-Yakubovich equations, IEEE Trans. Automat.
Control 26 (1981) 1291-1294.

[24] A. Barraud, A numerical algorithm to solveATXA−X = Q, IEEE
Trans. Automat. Control 22 (1977) 883-885.

[25] G.H. Golub, S. Nash, C.F. Van Loan, A Hessenberg-Schur method for
the matrix problemAX + XB = C, IEEE Trans. Automat. Control
24 (1979) 909-913.

[26] K.E. Chu, The solution of the matrix equationsAXB −CXD = E
and (Y A − DZ, Y C − BZ) = (E, F ), Linear Algebra Appl. 93
(1987) 93-105.

[27] I. Borno. Parallel computation of the solutions of coupled algebraic
Lyapunov equations, Automatica 31 (1995) 1345-1347.

[28] G. H. Golub, C.F. Van Loan, Matrix computations (Third Edition).
Johns Hopkins University Press, Baltimore, MD, 1996.

[29] J.J. Climent, C. Perea, Convergence and comparison theorems for
a generalized alternating iterative method, Applied Mathematics and
Computation 143 (2003) 1-14.

[30] L. Ljung, System Identification: Theory for the User (2nded), Engle-
wood Cliffs, NJ: Prentice-hall, 1999.

[31] G. Starke, W. Niethammer, SOR forAX−XB = C, Linear Algebra
Appl. 154 (1991) 355-375.

[32] I. Jonsson, B. K̈agstr̈om, Recursive blocked algorithms for solving
triangular systems–Part I: One-sided and coupled Sylvester-type matrix
equations, ACM Transactions on Mathematical Software 28 (2002)
392-415.

[33] I. Jonsson, B. K̈agstr̈om, Recursive blocked algorithms for solving
triangular systems–Part II: Two-sided and generalized Sylvester and
Lyapunov matrix equations, ACM Transactions on Mathematical Soft-
ware 28 (2002) 416-435.
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