
A Numerical Integrator for Simulation of Unstructured Implicit Models

Stephen L. Campbell Monica Selva Carmen Arévalo

Abstract— Object oriented modeling naturally leads to im-
plicitly defined dynamical systems or, as they are also called,
differential algebraic equations (DAEs). Most existing DAE in-
tegrators require the equations defining the dynamical system
to have a special structure. Progress on the development of
a new integrator for general unstructured DAEs is presented.
The new integrator is called UCP. Computational tests are
given to show that the new method can successfully integrate
problems that other methods have trouble with.

I. INTRODUCTION

As computer modeling considers increasingly complex
systems there is an increased need to have object oriented
modeling packages where the system is defined by rela-
tions between the variables and submodels rather than a
specified information flow such as in a function. In such
an environment the modeler takes various submodels and
interconnects them into a larger model. The submodels can
come from different disciplines such as chemical, electrical,
and mechanical so that the user may not have expertise
in their individual usage. The resulting models are often
Differential Algebraic Equations or DAEs. That is, they are
a mix of differential and algebraic equations.

A robust software package must be able to do several
things [3]. It must be able to analyze the model and either
perform the simulation or, as often as possible, come back
and give the user information on what the problem is if
integration is not possible or internal diagnostics expect
the answer might be inaccurate. While the latter outcome
is helpful, the wider the class of problems that can be
simulated, the more productive the user will be. This paper
will describe recent significant progress in developing an
integrator for general DAEs which preserves both explicit
and implicit constraints. It is being designed in order to
provide a reliable solution when other methods fail to do
so as well as providing a truth model to check the answer
of more conventional methods on those special classes of
DAEs where conventional methods can be used.

II. DAE BACKGROUND

A DAE is an implicit differential equation of the form

F (x′(t), x(t), u(t), t) = 0 (1)

Steve Campbell is with North Carolina State University, De-
partment of Mathematics, Raleigh, NC. 27695-8205 USA. e-mail:
slc@math.ncsu.edu

Monica Selva is with Humboldt University of Berlin, Institut of Math-
ematics, Berlin, Germany.

Carmen Arévalo is with Lund University, Department of Numerical
Analysis, Lund, Sweden.

where x(t) is a vector valued function, the Jacobian Fx′

is a singular matrix, and u(t) is a vector valued function
of source or control terms. The nature of u is important
in applications and in simulation studies, but in terms of
the integrator, it is just part of the dependence on t of the
differential equation. Accordingly we will omit it in the rest
of this paper.

An integer quantity called the index measures how much
a DAE differs from an explicit ordinary differential equation
(ODE). The frequent occurrence of DAEs in applications
has given rise to a variety of numerical techniques that
simulate and analyze DAEs. However most of these meth-
ods only apply to specific classes of problems with special
structure and low index.

Depending on the application area, DAEs are also called
singular, descriptor systems, constrained, semi-state, differ-
ential equation on a manifold, and implicit. DAEs occur not
only in composite models. There are several reasons to also
sometimes make the underlying submodels DAEs. These
reasons include: models formulated implicitly, reduction to
an ODE may not be practical, reduction reduces sparsity
in equations and Jacobians, in simulation studies can have
one implicit model rather than several explicit ones of
varying dimension, changing numbers of constraints in
contact problems, and extra design flexibility.

The solutions of a higher index DAE can depend on
derivatives of coefficients and forcing functions. Thus the
question is often not whether to differentiate but rather
where to do so. If we differentiate the DAE (1) k times
with respect to t, we obtain the derivative array equations
[4]

F (x′, x, t) = 0 (2a)
...

dk

dtk
F = Fk(x(k+1), x(k), . . . , x, t) = 0 (2b)

The smallest k such that (2) uniquely determines x′ in
terms of consistent (x, t), x′ = Q(x, t) is the index of
the DAE (1). For fully implicit problems, x′ is unique
in a relatively open set containing x′0. An implicit ODE
has index zero. Intuitively, the index is a measure of how
many differentiations would be required to convert the DAE
into an ODE. The actual description of what takes place is
technically much more difficult since constraints may not be
explicit and one need not have constant ranks [6], [8]. Also,
in numerical algorithms one wants to avoid differentiating
computed quantities. DAEs which are not index one or

not semi-explicit always have additional hidden constraints.
Other types of index can be defined such as the perturbation
index [14]. Originally it was thought that the different
indices were closely related. [8] shows they can differ
greatly for unstructured nonlinear DAEs and develops a
unifying theory. See also [2].

A variety of numerical methods have been developed for
DAEs [2], [14], [20], [21], [22]. None of the variants of
standard methods such as BDF, the various Implicit Runge
Kutta, extrapolation, or multistep methods, work on even
general index two problems. All of these methods require
special structure, such as being Hessenberg, and also usually
require the index to be no more than two or three even
though many applications are initially formulated as higher
index DAEs [2], [7]. All more general methods are based
on some variant of the derivative array (2).

A. General DAE Integrators

As noted earlier, standard DAE integrators only work on
special classes of systems of low index. The development of
general DAE integrators requires developing mathematical
results of several types. Nonlinear iterative solvers are used.
These result in equations which are not equivalent to the
original ones. [4], [6], [8] develop fundamental mathemati-
cal results that underlie all the integration techniques being
developed and show that the assumptions made are very
general. [6] develops computational tests for key quantities
such as the index and dimension of the solution manifold.

A BDF based general method, also based in part on the
theory developed in [4], [6], [8], is being developed [16],
[17], [18].

Two different types of numerical methods have pre-
viously been examined by the authors and colleagues.
The explicit integration (EI) approach [10] generates a
completion of the DAE’s vector field. However, during
integration it can experience drift off the constraints. The
implicit coordinate partitioning (ICP) approach [9] requires
some additional computational effort but has the important
property of preserving all constraints, implicit and explicit.
ICP is a generalization of the coordinate partitioning used
in some mechanical simulation codes using subsets of
coordinates to locally parameterize the solution manifold.
Numerical issues such as Jacobian reuse or error control
are different for EI and ICP and often require different
theoretical justifications. In some cases, such as [12], where
some terms of the limiting solution are shown to have
dynamics dependent on the choice of predictor, the theory
is fundamentally different from the usual ODE theory. Sig-
nificant progress on implementation issues has been made
[10]. These approaches require the generation of Jacobians
which involve derivatives with respect to derivatives. These
Jacobians can be cheaply computed, relative to the rest of
the computation, by MAPLE generated FORTRAN code for
small problems and by automatic differentiation codes such

as ADOL-C [13] for larger problems [5], [11].
A better alternative to EI and ICP appears to be to

combine the idea of ICP with some of the ideas on tangent
space parameterization due to Potra and Rheinboldt [20],
[21]. This new approach, called UCP for Unitary Coordinate
Partitioning, appears promising but a number of theoretical
and algorithmic issues remain to be determined. The basic
idea for UCP is described in [1]. This paper provides
the first significant computational experience with this ap-
proach, establishes new advantages, and discusses actual
implementation. UCP is currently in prototype form. When
complete the code will be available at the first author’s web
site: www.math.ncsu.edu/˜slc.

III. HOW UCP WORKS

Assume the DAE (2a) is sufficiently differentiable and
has a well defined solution manifold. Differentiate the
equations in the DAE k times with respect to t to get the
derivative array. As noted, this can be done with symbolic
or automatic differentiation software. This yields routines
for evaluating the derivative array equations

G(x′, w, x, t) = 0

w = [x(2), . . . , x(k+1)]

and the Jacobians

Jk = [Gx′ Gw], Jk = [Gx′ Gw Gx],

If some structure is present, it can be exploited by not
differentiating all equations the same number of times.

It is assumed that for large enough k the following
assumptions hold:

(A1) Sufficient smoothness of G.
(A2) Consistency of G = 0
(A3) J = [Gx′ Gw] 1-full and has constant rank

independent of (t, x, x′, w).
(A4) J = [Gx′ Gw Gx] has full row rank inde-

pendent of (t, x, x′, w)
Assumptions (A1)–(A4) are directly in terms of the orig-
inal equations and their derivatives. They are numerically
verifiable and are almost equivalent to the existence of a
well defined solution manifold [6] so they are not overly
restrictive.

ICP often works well but sometimes has difficulties. In
particular, it has the following problems which it inherits
from the coordinate partitioning strategy:

• Error control is difficult because of error introduced by
changes in the coordinate partition.

• There is no a priori guarantee that one can do better
when considering a coordinate change and one has
to search among a number of possible subsets of
coordinates.

• The partition chosen may not be the best choice of
coordinates even if a robust partition strategy is used.

UCP uses orthogonal transformations other than permu-
tations to pick the local coordinates to parametrize the
solution manifold. In principle, it should not suffer from
the three failings of ICP listed above. This is illustrated
in Figure 1 where an elliptical solution manifold is drawn.
Suppose that the numerical solution is at the point on the
curve. On the left, ICP has to choose either the vertical or
horizontal axis. This may not be the best choice and error
is introduced when the choice is changed. On the right we
see that UCP can pick an optimal coordinate system (the
slanted line) and vary it as the point moves.

A B

Fig. 1. ICP vs UCP: Available Coordinates

UCP picks a new coordinate system in the following way
at a given point on the solution curve.

• Given the Jacobian [Gx′ , Gw|Gx], left orthogonal
transformations are performed to give[

S X
0 D

]
where S, D are full row rank.

• An orthogonal transformation U is computed so that
DU =

[
D5 0

]
where D5 is nonsingular.

• Let U =
[
U1 U2

]
so that our new coordinates are

x = UTx =
[
UT

1 x
UT

2 x

]
=

[
x1

x2

]
• x2 are new local coordinates which parameterize the

solution manifold.
• Then the nonlinear system

G(x′, w, x1, x2) = G(x′, w, Ux) = 0

is solved for x′, w, x1 in terms of x2 using a Gauss-
Newton iteration and the Jacobians

JU
def= [Gx′ , Gw, Gx1

, Gx2
] = [Gx′ , Gw, GxU]

J̃U
def= [Gx′ , Gw, Gx1

] = [Gx′ , Gw, GxU1]

This yields the numerical relationships

x′ = g(x2, t) (3a)

x1 = h(x2, t) (3b)

• (3a) is integrated using a variable step Adams Bash-
forth Moulton in E(PC)E mode.

• x(tn+1) is updated by x = U

[
x1

UT
2 x̂

]
= U1x1 +

U2U
T
2 x̂

This last step means that while we have made an integra-
tion step and preserved the constraints, at the end of each
integration step, we have returned to the original coordinate
system.

IV. IMPLEMENTATION ISSUES

Convergence proofs for the iterative solver require that
z̃[0] be in an appropriate neighborhood of a point z̃0
such that G(z̃0, x2, t) = 0. The simplest way to insure
convergence is to have at least first order estimates of all
derivatives that appear in the derivative array. If a multistep
method has order equal to the highest derivative that appears
in the derivative array, then first order estimates will be
readily available, say from the Nordsieck vector.

In the UCP code being developed we use an Adams-
Bashforth-Moulton method. There are several orders avail-
able within the code, but the one we use most often is
the fourth order one. This provides estimates for up to fifth
derivatives and thus is suitable for general DAEs of index up
to 4. Note that this assumption on order is only to guarantee
the estimate for the w variables. In fact, we have solved a
number of problems of even higher index using this fourth
order integrator with no difficulty.

V. TEST PROBLEMS

We now turn to presenting the results of some new
computational studies. They establish several new facts.

A. Problem 1: Tight orbits

The first problem is

x′1 = −bx2 − x1x3

x′2 = x1 − bx2x3

0 = x2
1 + bx2

2 − L

Here b > 0, L > 0. We take L = 1. This is an index two
DAE. The solution lies on an ellipse

x1 = −L sin(
√
bt)

x2 =
L√
b

cos(
√
bt)

x3 = 0

and is illustrated in Figure 2 for x1(0) = 1, x2(0) = 0.

x

x
1

2

Fig. 2. x1, x2 for b = 10 (solid line) and b = 100 (dashed line).

Note that the solutions have the same speed when they
cross the x2 axis. However, there are sharper and faster
corners at the x1 axis as b increases. These trajectories
with rapid tight corners are similar to gravity assisted space
trajectories where long coast trajectories are mixed with
rapid flybys of planets.

With all the methods tested, x3 is found to very high
accuracy. Accordingly we focus on x1 and x2. UCP and
ICP reuse partitions/coordinates from one step to another
with a strategy for deciding when to update. In this paper
we let UCPP and ICPP be UCP and ICP set to compute
new coordinates at every time step.

Consider first b = 10. All of the graphs for this example
are of the error. It is computed by comparing the numerical
solution to the exact solution.

0 5 10 15 20 25 30 35
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

t

e 1(t
)

icp
ucp

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10

-3

t

e 2(t
)

icp
ucp

Fig. 3. Error in x1 (left) and x2 (right) using UCP, ICP with fixed
h = 0.01, b = 10.

Figure 3 gives the results using a fixed stepsize. We
see that on this easy problem UCP and ICP had the same
error. Since all of the error graphs for the b = 10 case are
qualitatively similar, we will omit them and merely give the
quantitative results.

If the partition is recomputed on every time step, again
with the fixed step of h = 0.01, we see that the error on
[0, 30] is reduced from 0.01 and 0.003 to 0.008 and 0.0025
respectively. This shows that there is some accuracy loss due
to partition reuse even on this easy problem.

Suppose that we use our current variable step implemen-
tation which will be discussed more carefully in a later
section. Suppose that the requested error tolerance is TOL

= 10−6. The error is the same for both UCP and ICP.
If we request the same error tolerance, but use the UCPP
and ICPP versions, the errors are reduced from 0.00424 to
0.0036 and from 0.013 to 0.0128 showing that even with
variable step methods and well conditioned problems there
is some loss due to partition reuse.

Now suppose that we increase b to 100. The graphs of
the error for x1 and x2 are the same except for magnitude
so that we shall give only x1. If the step size is constant
we have that ICP and UCP perform the same as shown
in Figure 4. The results for ICPP and UCPP are shown in
Figure 5. We immediately notice two things. First, with the
same stepsize as in Figure 4, we see that the error in UCPP
is less than in UCP and much less than ICPP. The old form
of coordinate partitioning is no longer able to deliver the

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

e 1(t
)

icp
ucp

Fig. 4. Error in variable one using ICP, UCP with constant h = 0.01,
b = 100.

same accuracy as the new approach. These two figures show
that not only is UCP superior on this problem but that great
care needs to be taken in the reuse of coordinates or one
can undo the advantage of UCPP.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

e 1(t
)

icppicpp
ucppucpp

Fig. 5. Error in variable one using ICPP, UCPP with constant h = 0.01,
b = 100.

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t

e 1(t
)

ucp
ucppucpp

Fig. 6. Error in variable one using UCP, UCPP with variable h, TOL=
10−6, b = 100.

What about using variable step with b = 100? The
results are plotted in Figure 6. Neither ICP nor ICPP could
meet requested tolerances and integration failed. Implicit
coordinate partitioning is not able to deliver the requested
accuracy. Both UCPP and UCP were successful and were
able to integrate the problem. Note, however, that even
though the error estimate and step size variation was the
same for both UCP and UCPP that, in fact, the UCPP
answer was about 25% more accurate.

B. Problem 2: Shuttle Reentry

The second problem was chosen as representative of a
typical highly nonlinear, higher index, moderate sized DAE
with several parameters arising in an engineering situation.
It is the space shuttle reentry problem from [2] except that
we use slightly different initial conditions. This trajectory
prescribed path control problem for the shuttle in relative
coordinates [2] is given by the dynamics equations:

H ′ = VR sin(γ) (4a)

ξ′ =
VR cos(γ) sin(A)

r cos(λ)
(4b)

λ′ =
VR

r
cos(γ) cos(A) (4c)

V ′
R =

−D
m

− g sin(γ) − Ω2
Er cos(λ) ×(

sin(λ) cos(A) cos(γ) − cos(λ) sin(γ)
)

(4d)

γ′ =
L cos(β)
mVR

+
cos(γ)
VR

(
V 2

R

r
− g

)
+2ΩE cos(λ) sin(A)

+
Ω2

Er cos(λ)
VR

(
sin(λ) cos(A) sin(γ)

+ cos(λ) cos(γ)
)

(4e)

A′ =
L sin(β)

mVR cos(γ)
+
VR

r
cos(γ) sin(A) tan(λ)

− 2ΩE

(
cos(λ) cos(A) tan(γ) − sin(λ)

)
+

Ω2
Er cos(λ) sin(λ) sin(A)

VR cos(γ)
(4f)

along with a path constraint

D

m
−

[
C0 + C1(VR − V0) + C2(VR − V0)2

+ C3(VR − V0)3
]

= 0 (4g)

Some of the variables are given in terms of the state
variables as: ρ(H) = .002378 exp(−H/23800), r = H +
ae, CL(α) = .84 − .48(38 − αCrd)/26, g = µ/r2,
D = .5ρCDSV

2
R, L = .5ρCLSV

2
R, and CD(α) =

.78 − .58(38 − αCrd)/26. There are also parameters
and constants, µ = 0.1407653916 × 1017 ft3/s2, ae =
20902900 ft, ΩE = .72921159 × 10−4 rads/sec, m =
5964.4965 slugs, C0 = 3.974960446019, S = 2690 ft2,
C1 = −0.01448947694635, Crd = 360/2π, C2 =
−0.2156171551995 × 10−4, α = 40o, and C3 =
−0.1089609507291 × 10−7.

In shuttle reentry simulations NASA typically holds the
angle of attack α constant at about forty degrees. This leaves
the bank angle β as a control variable. The resulting system
is a semi-explicit nonlinear index three DAE in the seven
state variables {(H, ξ, λ, VR), (γ,A), β}. It is important to
note that given the state vector, there are multiple solutions

for the bank angle control. Most other DAE integrators
would have to perform some sort of analytic reduction
procedure. One exception is RADAU5, which should, in
principle, be able to solve an index three Hessenberg
system. But we have been unable to get RADAUV to
integrate this problem. Both UCP and ICP were able to
solve this problem without any difficulty in its full index
three formulation. Solutions for the control β and the
velocity VR are graphed in Figure 7. Notice the dramatic
difference in scale. In this problem variables range over
six orders of magnitude. This, combined with the high
nonlinearity and existence of nearby incorrect implicitly
defined control histories, makes this a challenging problem.

330 340 350 360 370 380 390 400
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

β(
t)

icp
ucp

330 340 350 360 370 380 390 400
2.39

2.395

2.4

2.405

2.41

2.415

2.42

2.425

2.43

2.435
x 10

4

t

V
R

(t
)

icp
ucp

Fig. 7. Control (left) and velocity VR (right) solutions found using
variable step UCP and ICP.

VI. THE STEPSIZE CONTROLLER

For this problem where the difficulties were due to high
index and nonlinearities and conditioning, but not due to
wildly varying coordinates, the stepsize selections were
comparable, but not identical, for ICP and UCP. Both
successfully integrated this problem.

We use a smooth error control strategy developed in [23],
which entails discarding heuristic schemes for the adaptive
step size selection. Instead, linear digital control theory is
applied rigorously to construct smoother and stabler step
size selection algorithms.

The elementary algorithm widely used for step size
selection is a first order adaptive deadbeat controller,

hn+1 =
(
θ · TOL

rn

)1/(p+1)

hn (5)

where TOL is the local error tolerance, θ < 1 is a safety
factor and rn is the local error estimate. This estimate is
calculated in the usual way as rn = Cn

(
hnx

′
n − hnx

′ [0]
n

)
,

where x′ [0]n and x′n are the Adams-Bashforth and Adams-
Moulton approximations to x′(tn) obtained by solving (3a)
with the predictor-corrector method. The coefficient Cn

depends on the step size sequence and on the order of the
Adams-Bashforth-Moulton method used to solve (3a). For
stability purposes, the step size ratios are bounded by a step-
function type limiter. This controller frequently produces
non-smooth and sometimes oscillatory step size changes.

To overcome these difficulties we chose Söderlind’s
H211b (b=4) controller,

hn+1 =
(
θ · TOL

rn

) 1
4(p+1)

(
θ · TOL

rn−1

) 1
4(p+1)

(
hn−1

hn

) 1
4

hn.

Being a controller with a first-order step size low-pass
filter, it produces smoother step size sequences. To reduce
control errors, and thus prevent unwarranted step rejections,
the safety factor θ must be chosen sufficiently small. It is
important to note that the use of this controller does not
incur higher computational costs.

Figure 8 shows the step size history of solving the shuttle
reentry problem using UCP with two different step size
strategies. The figure on the left is the standard method
(5) while the one on the right uses the H211b strategy with
the step limiter.

330 340 350 360 370 380 390 400
0

1

2

3

4

5

6

7

icp
ucp

330 340 350 360 370 380 390 400
0

1

2

3

4

5

6

7

icp
ucp

Fig. 8. Step size history for UCP using (5) and H211b strategies.

Note that the step in the right graph varies smoothly
until it hits the step limiter. The use of heuristic non-
differentiable limiters causes additional step size jumps and
loss of predictability in the relation TOL/local error. This
may be smoothed out by using a limiter based on the arctan
function. This is currently being implemented.

VII. CONCLUSION

We have surveyed some of the theory for general DAE
integrators. We then presented a promising new DAE in-
tegrator called UCP for Unitary Coordinate Partitioning.
Computational experiments were run that establish that

• UCP can result in a more robust and accurate compu-
tation than the older approach of Implicit Coordinate
Partitioning (ICP) at only slightly more computational
cost (10-20%)

• In trying to create more numerically efficient codes,
extra care must be taken when reusing Jacobians and
coordinates or these advantages can be lost.

• UCP which recomputed the partition at every time step
consistently did better.

• UCP can integrate problems with prescribed tolerances
that ICP cannot

• UCP can integrate problems that other methods such
as DASSL or RADAU cannot.

• UCP can integrate complex problems from engineering
applications.

VIII. ACKNOWLEDGEMENTS

Research supported in part by NSF Grants DMS-
0101802, DMS-020695, and ECS-0114095.

REFERENCES

[1] C. Arevalo, S. L. Campbell, and M. Selva, Unitary Partitioning in
General Constraint Preserving DAE Integrators, Comp. Math. Appl.,
to appear.

[2] K. E. Brenan, S. L. Campbell and L. R. Petzold, The Numerical So-
lution of Initial Value Problems in Differential-Algebraic Equations,
SIAM, Philadelphia, 1996.

[3] S.L. Campbell, Intelligent DAE solvers and user friendly design,
simulation, and analysis packages, Proc. IEEE International Conf.
Systems, Man, and Cybernetics, San Diego, Oct., 1998, 177–3182.

[4] S. L. Campbell, Least squares completions for nonlinear differential
algebraic equations, Numerische Mathematik, 65 (1993), 77–94.

[5] S. L. Campbell, E. Moore, and Y. Zhong, Utilization of automatic
differentiation in control algorithms, IEEE Trans. Automatic Control,
39 (1994), 1047–1052.

[6] S. L. Campbell and E. Griepentrog, Solvability of general differential
algebraic equations, SIAM J. Scientific Computation, 16 (1995),
257–270.

[7] S. L. Campbell, High index differential algebraic equations, J. Mech.
Struct. & Machines, 23 (1995), 199–222.

[8] S. L. Campbell and C. W. Gear, The index of general nonlinear
DAEs, Numerische Mathematik, 72 (1995), 173–196.

[9] S. L. Campbell and E. Moore, Constraint preserving integrators for
general nonlinear higher index daes, Numerische Mathematik, 69
(1995), 383–399.

[10] S. L. Campbell and Y. Zhong, Jacobian reuse in explicit integrators
for higher index DAEs, Applied Numerical Mathematics, 25 (1997),
391–412.

[11] S. L. Campbell and R. Hollenbeck, Automatic differentiation and
implicit differential equations, in Computational Differentiation:
Techniques, Applications, and Tools, Edited by M. Berz, C. Bischof,
G. Corliss, and A. Griewank, SIAM, Philadelphia, 1996, 215–227.

[12] S. L. Campbell and K. Yeomans, Behavior of the Nonunique Terms
in General DAE Integrators, Applied Numerical Mathematics, 28
(1998), 209–226.

[13] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a
package for the automatic differentiation of algorithms written in
C/C++, ACM Trans. Math. Software, 22 (1996), 131–167.

[14] E. Hairer, C. Lubich, and M. Roche, The Numerical Solution of
Differential-algebraic Systems by Runge-Kutta Methods, Springer
Lecture Notes in Mathematics No. 1409, 1989.

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems, Springer-Verlag, 1991.

[16] P. Kunkel and V. Mehrmann, Canonical forms for linear differential-
algebraic equations with variable coefficients, J. Comp. Appl. Math.,
56 (1994), 225–251.

[17] P. Kunkel, V. Mehrmann, and W. Rath, GENDA: A software package
for the solution of general linear differential algebraic equations,
SIAM J. Sci. Comp., 18 (1997), 115–138.

[18] P. Kunkel and V. Mehrmann, Regular solutions of nonlinear
differential-algebraic equations and their numerical determination,
Numerische Math., 79 (1998), 581–600.

[19] F. A. Potra, Implementation of multistep methods for solving con-
strained equations of motion, SIAM J. Numer. Anal., 30 (1993),
774–789.

[20] F. A. Potra and W. C. Rheinboldt, On the numerical solution of
Euler-Lagrange equations, Mech. Struct. & Mach., 19 (1991), 1–18.

[21] F. A. Potra and J. Yen, Implicit numerical integration for Euler-
Lagrange equations via tangent space parameterization, Mech.
Structures & Machines, 19 (1991), 77–98.

[22] W. C. Rheinboldt, Solving algebraically explicit DAEs with the
MANPACK-manifold-algorithms, Comput. Math. Appl., 33 (1997),
31- 43.

[23] Gustaf Söderlind, Digital filters in adaptive time-stepping, ACM
Transactions on Mathematical Software, 29 (2003), 1–26,

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP14.4
	Page0: 5647
	Page1: 5648
	Page2: 5649
	Page3: 5650
	Page4: 5651
	Page5: 5652

