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Abstract�In this work high gain nonlinear observers
are used as residual generators to study the fault
detection problem in a differential algebraic framework.
We analyze the stability of the residual generator when
a fault occurs. We consider two faults types: constant
and constant sign time-varying. It is shown that under
some soft conditions over the aforementioned faults the
residual is different from zero.

I. INTRODUCTION

The high reliability required in industrial processes
has created the necessity of detecting abnormal condi-
tions while processes are operating. These conditions
are called faults and it is important to detect and to
isolate them in the early stages. A fault in a process
is considered as a not allowable deviation which
can be detected by an appropriated signal evaluation.
State observers are suitable structures to evaluate this
change. The difference between the measured outputs
of the process and the observer is the so called residual
value which is used to detect the fault. In this paper
we consider the fault detection problem with a residual
generators approach using high gain nonlinear ob-
servers in a differential algebraic framework. We study
two types of faults: constant faults and time-varying
faults with constant sign. The differential algebraic
approach allows to deÞne the concept of algebraic
observability [3] and supplies state estimation through
observers designed for systems described by differ-
ential algebraic equations [4], [12], [10], [13], [14],
[15], [16], [17]. The paper is organized as follows.
Section 2 presents the some differential algebra basic
deÞnitions. In Section 3, we present the observation
problem, the residual generation problem and the
residual generator stability using the Uniform Ultimate
Boundedness (UUB) theorem [2]. Section 4 presents
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two fault cases. Finally, we close the paper with some
concluding remarks.

II. BASIC DEFINITIONS

We introduce some basic deÞnitions and notations,
further details on the differential algebraic approach
can be found in [3], [6], [11], [12], [10].
DeÞnition 1: A differential Þeld extension L/k is

given by two differential Þelds k and L, such that:
i) k is a subÞeld of L, ii) the derivation of k is the
restriction to k of the derivation of L.
DeÞnition 2: A dynamics is deÞned as a Þnitely

generated differentially algebraic Þeld extension
G/khui (G = khu, ξi, ξ ∈ G). Any element of G sat-
isÞes a differential algebraic equation with coefÞcients
which are rational functions over k in the components
of u and a Þnite number of their time derivatives,
i.e., a system with input u and output y consists of a
differential algebraic extension khu, yi/khui and the
components y1, ..., yn are differentially algebraic on
khui.
DeÞnition 3: Consider the subset {u, y}. An ele-

ment x in G is said to be algebraically observable with
respect to {u, y} if it is algebraic over khu, yi. This
means that x can be expressed as an algebraic function
of the components of {u, y} and a Þnite number of
their time derivatives. A dynamics G/khui with output
y in G is algebraically observable if and only if, any
state has this property.
Here the concept of algebraic observability means

that the differential Þeld extension G/khui is alge-
braic, i.e., the whole differential information is con-
tained in khu, yi.

III. OBSERVATION PROBLEM, THE FUNDAMENTAL
PROBLEM OF RESIDUAL GENERATION AND

STABILITY

A. Observation problem

Consider the following nonlinear system in the
so called GOCF (generalized observability canonical



form) [6], [11], [12].
.
ξi= ξi+1, 1 ≤ i ≤ n− 1
.
ξn= −L0

³
ξ, u, ..., u(ν)

´
y = ξ1

(1)

where L0 is a C1 real−valued function, ξ =
Col (ξ1, ..., ξn) ∈ Rn, u ∈ Rm, y(t) ∈ R, and some
integer ν ≥ 0.
Remark 1: In general, a nonlinear system(

úx(t) = g(x, u)
y(t) = h(x, u)

(2)

where x ∈ Rn, u ∈ Rm, y ∈ R, g(·, ·) and h(·, ·)
are polynomial functions of their arguments, may
be transformed to the GOCF described by (1) as a
consequence of the differential primitive element for
nonlinear systems [3], [6], [11], [12], [18].
System (1) may be written in compact form as( .

ξ= Aξ + ϕ (ξ, ū)
y = Cξ

(3)

with C =
³
1 0 ... 0

´
, ū =

³
u, ..., u(ν)

´
, the

elements of A are given by

Aij = δij =

(
1 if i = j − 1
0 otherwise

and

ϕ (ξ, ū) = Col
³
0 ... 0 −L0(ξ, ū)

´
(4)

is continuously differentiable. Hence, an estimate �ξ of
ξ can be given by an exponential nonlinear observer
(O) of the form

(O) :
.
�ξ= A�ξ + ϕ

³
�ξ, ū

´
− S−1θ CTC

³
�ξ − ξ

´
(5)

where

ϕ
³
�ξ, ū

´
= Col

³
0 ... 0 −L0(�ξ, ū)

´
(6)

and Sθ is the positive deÞnite solution of [7]

Sθ

µ
A+

θ

2
I

¶
+

µ
AT +

θ

2
I

¶
Sθ = C

TC (7)

for some θ > 0. The coefÞcients of (Sθ)ij are given
by

(Sθ)ij =
αij

θi+j−1
(8)

where (αij) are the entries of a symmetric positive-
deÞnite matrix which does not depend on θ, and C =
(1, 0, ..., 0).

Now, from (3) and (5), the estimation error dynamic
² = ξ − �ξ is given by:

ú² = (A− S−1θ CTC)²+Φ(², ū) (9)

where

Φ(², ū) = ϕ
³
�ξ + ², ū

´
− ϕ

³
�ξ, ū

´
(10)

Now, Þrst of all, we introduce the following notations
and deÞnitions. Denote kxkSθ = (xTSθx)

1/2, being
Sθ the solution to equation (7). Then, if Φ(², ū) is
differentiable, we get kΦ(², ū)kSθ ≤ γ k²kSθ , for some
γ > 0. In what follows, we present a result which
shows some characteristics and structural properties
of matrix (A− S−1θ CTC).

Lemma 1: (Aθ − S−1θ CTC) is a Hurwitz matrix.
Furthermore, the characteristic polynomial of Aθ is
P (λ) = (λ+ θ)n.

Proof: (Sketch) Matrix (Aθ)2×2 is given by

Aθ =

"
−2θ 1
−θ2 0

#
(11)

and its eigenvalues are given by: λ1 = λ2 = −θ.
For the case (Aθ)3×3 we have

Aθ =

 −3θ 1 0
−3θ2 0 1
−θ3 0 0

 (12)

with eigenvalues λ1 = λ2 = λ3 = −θ.
Finally, by induction, the matrix Aθ for the case n×n
is given by

Aθ =



−nθ 1 0 · · · 0

−n(n−1)
2! θ2 0 1 · · · 0

−n(n−1)(n−2)
3! θ3 0 0 · · · 0
...

...
...

...
−n(n−1)···(n−(n−(r−1)))!

(n−(r−1))!(r−1)! θr−1 0 0 · · · 0

−n(n−1)···(n−(n−r)!(n−r)!r! θr 0 0 · · · 0

−n(n−1)···(n−(n−(r+1)))!
(n−(r+1))!(r+1)! θr+1 0 0 · · · 0

...
...
...

...
...

−n(n−1)
2! θn−2 0 0 · · · 0

−nθn−1 0 0 · · · 1
−θn 0 0 · · · 0


(13)

which has the following eigenvalues:

λ1 = λ2 = · · · = λr = · · ·λn−1 = λn = −θ,



the above means, Aθ is Hurwitz matrix and characte-
ristic polynomial is given by
P (λ) = det(λI −Aθ) = (λ+ θ)n

B. Fundamental problem of residual generation

The fault detection scheme is composed of a resi-
dual generator and a fault mode rule. The residual
generator is a Þlter whose inputs correspond to the
inputs and outputs of the plant. And its outputs called
residual values are used for fault detection purposes.
Now, we consider a nonlinear system from (2) with

an additional fault(
úx(t) = g(x, u) + v(t)
y(t) = h(x, u)

(14)

where x(t) ∈ Rn is the state vector, u(t) =
(u1(t), ..., um(t))

T ∈ U ⊂ Rm is the input vector,
v(t) ∈ R, is a scalar function representing a system
fault. For the sake of simplicity we consider that
only one fault occurs at a given time, y(t) ∈ R is
the measured output vector. g(x, u), and h(x, u) are
functions of class C∞. u(t) and y(t) are the system
input and output signals, respectively, and we suppose
that they are known. Function v(t) is unknown and
arbitrary and belongs to a compact set.
In this work, we deÞne a good input to a system

input such that the coordinate transformation is not
singular and it can carry out the system (14) into the
GOCF (3). Here, a residual generator can be deÞned
[8], [9] as a nonlinear dynamic system given by(

úz(t) = G(z, y, u)
r(t) = H(y, z)

(15)

where z(t) ∈ Rn̄ is the state vector, r(t) ∈ Rp̄

is the output vector, u and y are the inputs system
and corresponding to input and output vectors of
(14). A residual generator must satisfy the following
conditions
C1) If v(t) = 0 for each initial condition

(x(0), z(0)) of the extended system (14)-(15) and for
all admissible good input u, lṍm

t→∞ r = 0. Then, in
absence of fault, r asymptotically converge to zero.
C2) If v(t) 6= 0 for t ≥ to, then r(t) 6= 0 for t ≥ to.

If the above conditions are satisÞed, we then say
that r is a residual value.

C. Residual generator stability
In this part, we consider the stability analysis of the

residual generator for the system with fault 14 using
the Uniform Ultimate Stability (UUB) Theorem, given
in [2].

Lemma 2: Suppose that there exists a differential
primitive element such that it is possible to transform
system (14) into the GOCF given by

úξ = Aξ + ϕ(ξ, ū) +W (t)
y(t) = Cξ

(16)

where the term W (t) = Col
³
0 ... 0 w(t)

´
is

the fault in the transformed system. Furthermore, the
following system:

(O0) :


.
�ξ= A�ξ + ϕ

³
�ξ, ū

´
+ S−1θ CT (y − �y)

�y = C�ξ
r = y − �y

(17)
is an observer for (16), with Sθ the gain matrix
satisfying (7) and r is the residual value. Then, the
estimation error dynamic given by

ú² = Aθ²+Φ(², ū) +W (t)
r = C²

(18)

is Uniform Ultimate Bounded, where Φ(², ū) is given
in (10), Aθ = (A − S−1θ CTC), and ² belongs to the
compact set Bb = {² | k²k ≤ b, b > 0}.

Proof: (Sketch) Consider the following Lya-
punov function candidate for system (18):

V (t) = ²TSθ² > 0

Taking the time derivative we have
úV (t) = ú²TSθ²+ ²

TSθ ú²

= −θ²TSθ²− ²TCTC²+ 2²TSθΦ(², ū)
+2²TSθW

For the sake of simplicity we have drop the argument
t in W (t). Since

ATSθ + SθA−CTC = −θSθ (19)

and using the fact ²TCTC² > 0, úV (t) is upper
bounded as
úV (t) ≤ −θ²TSθ²+ 2²TSθΦ(�ξ, ²) + 2²TSθW (20)

analizing each right hand side term of inequality, using
the Cholesky decomposition for a symmetric positive-
deÞnite matrix, the Cauchy-Schwarz inequality, and



assuming that the fault is bounded, i.e. kWkSθ ≤ Γ,
where Γ > 0, it readily follows that the time derivative
úV (t) remains bounded, that is to say

úV (t) ≤ −θ k²k2Sθ + 2γ k²k2Sθ + 2Γ k²kSθ (21)

Here, it is clear, that if the fault is zero i.e.,W = 0, this
leads us to obtain the particular case of exponential
convergence of the high gain nonlinear observer,

úV (t) ≤ −θ k²k2Sθ + 2γ k²k2Sθ = −(θ − 2γ)V (t)
i.e.

k²kSθ ≤ k²(0)kSθ e−(
θ

2
−γ)t (22)

with θ > 2γ. Now, ifW 6= 0, consider inequality (21),
then,

úV (t) ≤ −(θ − 2γ) k²k2Sθ + 2Γk²kSθ
Using the Rayleigh-Ritz inequality

λmin(Sθ) k²k2 ≤ k²k2Sθ ≤ λmax(Sθ) k²k2

we conclude that úV (t) satisÞes

úV (t) ≤ −(θ− 2γ)λmin(Sθ) k²k2 + 2Γ
q
λmax(Sθ) k²k

By applying the UUB Theorem [2], it directly follows
that ²(t) is bounded uniformly for any initial state ²(0),
and ²(t) remains in a compact set

Bb = {² | k²k ≤ b, b > 0}
where

b =

s
λmax(Sθ)

λmin(Sθ)

Ã
2Γ
p
λmax(Sθ)

(θ − 2γ)λmin(Sθ)

!
> 0

In the next section we will study two fault cases:
constant fault and constant sign time-varying fault.

IV. STUDY CASES OF FAULTS
A. Constant fault case
We consider system (14) in the GOCF (16). From

Lemma 2, an observer for this system is given by (17)
with estimation error dynamics (18). First, we tackle
the constant fault case problem with a lemma related
with the existence and uniqueness of solutions of the
error dynamics (18).

Lemma 3: Consider the estimation error dynamics
(18)

ú² = Aθ²+Φ(², ū) +W (t)
r = C²

(23)

when the fault W (t) is constant, i.e. W (t) = Wc =

Col
³
0 0 ... wc

´
, |wc| > 0. Then, there exists a

unique constant solution ²s ∀ t ∈ [0,∞).
Proof: The proof is split into two parts.

a) Existence. Since Φ(², ū) is differentiable, then, there
exists a solution for (23) ∀ t ∈ [0,∞) [1].
b) Uniqueness. First, let ²s be a solution of the
algebraic equation

Aθ²s +Φ(²s, ū) +Wc = 0 (24)

with

Φ(²s, ū) = Col
³
0 ... 0 −L̄0(²s, ū)

´
and deÞning z = ²− ²s, we have

úz = Aθz +Aθ²s +Φ(z + ²s, ū) +Wc

From (24), we replace Aθ²s

úz = Aθz + {Φ(z + ²s, ū)−Φ(²s, ū)} (25)

Consider the Lyapunov function candidate V =
zTSθz, then,
úV = úzTSθz + z

TSθ úz

=
h
zTATθ + {Φ(z + ²s, ū)−Φ(²s, ū)}

i
Sθz

+zTSθ [Aθz + {Φ(z + ²s, ū)−Φ(²s, ū)}]
now, substituting Aθ = (A−S−1θ CTC) and after (19),
and since zTCTCz > 0, zTSθz = kzk2Sθ , as well as
Φ(², ū) is differentiable, then we have

úV ≤ −θkzk2Sθ + 2γkzk2Sθ = − (θ − 2γ) kzk2Sθ
From which it follows that z converges exponentially
to zero for θ > 2γ, then, ² converges to ²s.

Using results from Lemma 1 we establish the fol-
lowing theorem.

Theorem 4: Consider equation (24)

Aθ²s +Φ(²s, ū) +Wc = 0 (26)

with solution ²s, kWck > 0, and Φ(², ū) is differen-
tiable, i.e.

kΦ(², ū)k ≤ γk²k (27)

then, the residual value rs = C²s satisÞes the follow-
ing inequality

|wc| ≤ (θn + γ
q
H(θ)) |rs| (28)

where
p
H(θ) |rs| = k²sk, with H(θ) a positive

function for θ > 0.



Proof: From (26) and (13) we have obtain

²s2 = ²s1(nθ)

²s3 = ²s1

³
n(n−1)
2! θ2

´
...

²sn−(n−r)−1 = ²s1

³
n(n−1)(n−2)···(n−(n−r))!

(n−r)!r! θn−(n−r)
´

...
²sn−1 = ²s1

³
n(n−1)
2! θn−2

´
²sn = ²s1

³
nθn−1

´
wc − L̄0(²s, ū) = ²s1θn

(29)
where ²s =

h
²s1 ²s2 · · · ²sn−1 ²sn

iT
. Then, the

norm of ²s is written compactly as

k²sk2 = H(θ)²2s1
or

k²sk =
q
H(θ) |rs| (30)

where rs = C²s = ²s1 and

H(θ) = [1 + (nθ)2 +

µ
n(n− 1)
2!

θ2
¶2
+ · · ·

+

µ
n(n− 1)(n− 2) · · · (n− (n− r))!

(n− r)!r!
θn−(n−r)

´2
+ · · ·+

µ
n(n− 1)
2!

θn−2
¶2

+
³
nθn−1

´2
]

Note that H(θ) > 0 for θ > 0. Now, from (29), we
have

wc − L̄0(²s, ū) = ²s1θn

Note that
°°L̄0(²s, ū)°° = kΦ(²s, ū)k ≤ γk²sk. Then

|wc| ≤ θn |²s1|+ γ k²sk
and using (30) we Þnally obtain

|wc| ≤ (θn + γ
q
H(θ)) |rs|

B. Constant sign time-varying fault case
In this case, the fault term is considered as W (t) =

Wc + F (t) where Wc = Col
³
0 0 ... wc

´
and

F (t) = Col
³
0 0 ... f(t)

´
. We assume that

W (t) satisÞes the following properties:
P1) kWck > 0.
P2) 0 < kF (t)k ≤ Fmax < |wc|

Theorem 5: Consider the estimation error dynamics
(18) with W (t) =Wc + F (t),

ú² = Aθ²+Φ(², ū) +Wc + F (t) (31)

Then, r is strictly greater that zero if the following
inequality is satisÞed

|wc|
θn + γ

p
H(θ)

− λmax(Sθ)

[λmin(Sθ)]
3/2

µ
2Fmax
(θ − 2γ)

¶
> 0

(32)

Proof: Let us deÞne z = ²− ²s, then, from (31)
and (26) we have

úz = Aθz +Φ(z, ū) + F (t) (33)

where we have used the fact that

Φ(², ū)−Φ(²s, ū) = Φ(z + ²s, ū)−Φ(²s, ū)
= ϕ(�ξ + z + ²s, ū)− ϕ(�ξ, ū)

−ϕ(�ξ + ²s, ū) + ϕ(�ξ, ū)
= ϕ(z + �ξ + ²s, ū)

−ϕ(�ξ + ²s, ū)
= Φ(z, ū)

The above dynamics is analyzed using the following
Lyapunov function candidate V = zTSθz, then

úV = úzTSθz + z
TSθ úz

=
h
zTATθ +Φ

T (z, ū) + F T (t)
i
Sθz

+zTSθ [Aθz +Φ(z, ū) + F (t)]

Using Aθ = (A − S−1θ CTC) and θSθ + ATSθ +
SθA = CTC, and since Φ(z, ū) is differentiable°°°ΦT (z, ū)Sθz°°° ≤ γkzk2Sθ and kF T (t)Sθzk ≤
FmaxkzkSθ , then, úV is upper bounded as follows

úV ≤ −θkzk2Sθ + 2γkzk2Sθ + 2FmaxkzkSθ
≤ −(θ − 2γ)kzk2Sθ + 2FmaxkzkSθ

with λmin(Sθ)kzk2 ≤ kzk2Sθ ≤ λmax(Sθ)kzk2 we
obtain

úV ≤ −(θ−2γ)λmin(Sθ)kzk2+2Fmax
q
λmax(Sθ)kzk

(34)
By applying the UUB Theorem [2] we have that z is
bounded uniformly and converges to the compact set
BR = {z / kzk ≤ R} where

R =
λmax(Sθ)

[λmin(Sθ)]
3/2

µ
2Fmax
(θ − 2γ)

¶
(35)



then

kzk ≤ R = λmax(Sθ)

[λmin(Sθ)]
3/2

µ
2Fmax
(θ − 2γ)

¶
Now, since z = ²−²s, then, k²− ²sk ≤ R from which
we have |²s1 |− |²1| ≤ |²1 − ²s1| ≤ R, i.e.

|rs|−R ≤ |²1| (36)

where we have using the fact that r = ²1 and rs = ²s1.
From (28) it follows that

|rs| ≥ |wc|
θn + γ

p
H(θ)

(37)

Then, replacing (35) and (37) into (36), we get

|rs|−R >

"
|wc|

θn + γ
p
H(θ)

− λmax(Sθ)

[λmin(Sθ)]
3/2

µ
2Fmax
(θ − 2γ)

¶#
Finally, if inequality (32) is satisÞed we conclude that
|r| ≥ |rs|−R > 0.

From the above result it is clear that the constant
part Wc of the fault must dominate over the time-
varying part F (t) for a nonzero residual r.

V. CONCLUDING REMARKS
In this paper we studied the fault detection prob-

lem using a residual generator based upon a high
gain nonlinear observer obtained using a differential
algebraic approach. Stability of the residual generator
under a fault was studied. We have also considered two
faults types: constant and constant sign time-varying.
It was shown that under some mild conditions over
the aforementioned faults the residual is different from
zero. For the sake of space we left the incipient fault
case outside of this work.

REFERENCES
[1] Bellman, R. (1953), Stability of differential equations, Mc-

Graw Hill
[2] Corless, M. J., Leitmann, G. (1981), Continuous state feed-

back guaranteeing uniform ultimate boundedness for uncer-
tain dynamic systems. IEEE Trans. on Aut. Control, Vol.
AC-64, No. 5, pp. 1139-1144.

[3] Diop, S., Fliess, M. (1991), On nonlinear observability. Proc.
of the First European Control Conference. Hermes, Paris, pp
152-157.
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