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Abstract— In this paper, we consider the problem of control-
oriented modeling of the thermoacoustic dynamics of ducted,
premixed bluffbody stabilized combustion. We make a simpli-
fying assumption of ignoring the vortex dynamics, but retain
the effects of burning and fuel actuation. The thermoacoustic
model arises as an interconnection of acoustics and heat-
release submodels. For acoustics, we model the effects of mean
reacting flow and for heat-release, we model the effects of
distributed flame and fuel dynamics. We carry out a control-
oriented analysis of the resulting coupled thermoacoustic
model that highlights the important role of density ratio in
obtaining combustion instability.

I. INTRODUCTION

Flameholder stabilized premixed combustion in a duct
has been a subject of extensive research in the past because
it is a generic geometry of relevance to a number of power
generation devices such as gas turbines and rockets. The
effective operation of these devices is often plagued by
thermoacoustic instabilities that arise due to a positive
feedback coupling of the duct acoustic modes with the
unsteady heat released due to combustion [1], [2]. Recent
control-oriented modeling works in this area [2], [3], [4]
have, for the most part, considered simplified, lumped
representation of the combustion process and ignored fluid
dynamics arising both as a consequence of exothermicity
as well as vortex effects; see recent review in ref. [1]. The
primary reason for ignoring the reacting fluid dynamics is
the relative difficulty of modeling - in a reduced order
fashion - these effects. Another feature of these earlier
studies is that they typically consider the combustion region
to be compact with respect to the acoustic wavelength - this
is based upon low Mach number, small flamelength, and low
acoustic frequency assumption.

In this paper, we build upon our recent work on mean
flame response in [5] to obtain linear distributed acoustic
and heat-release submodels that incorporate some of the
reacting flow effects. We use the heat-release submodel to
study the response of heat-release to distributed (acoustic)
velocity perturbations. Such a response with only flame dy-
namics has been studied for lumped velocity perturbations
in [6], [4], [7] and for distributed modal perturbation in
the recent paper of [8]. Unlike these papers however, we
incorporate the effects of exothermicity (density ratio) as
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Fig. 1. Schematic of the physical problem.

well as fuel perturbations. We also use the acoustic and heat-
release submodels to carry out a control-oriented analysis
of the coupled thermoacoustic problem.

The outline of this paper is as follows. In Section II,
we briefly present the physical problem. In Section III, we
describe the equations for distributed acoustics, and in Sec-
tion IV, we build upon our work in [5] to derive a distributed
model for flame/fuel dynamics and resulting heat release.
In Section V, we employ the Galerkin procedure to obtain
a finite-dimensional model for the coupled thermoacoustic
problem and in section VI, we carry out a control-oriented
analysis of this model. Finally, we draw some conclusions
in Section VII.

II. PROBLEM STATEMENT

We consider the 2D physical problem of premixed
combustion stabilized by a single rectangular bluff body
flameholder of height h in a channel of height H (see
Figure 1 for a schematic). Fuel is introduced at the trailing
edge x = L1, where it mixes with the incoming air to
yield a uniform reactants mixture (see [9] for details on
fuel injection). The Mach number is low and both reactants
(of density ρu) and products (of density ρb) are assumed to
behave as ideal gases. On account of the low Mach number,
we assume that the density jump arises entirely because
of the temperature difference between the reactants and
the products. Premixed combustion is modeled using two
flamesheets anchored to the two lips of the flameholder. For
fluid dynamics, we retain the exothermic effects of burning
but neglect vortical effects and the effect of geometrical
expansion downstream of the bluffbody assuming a constant
inflow of reactants with velocity U0 (see [5], [10] for details
on mean combustion models). Acoustics is introduced as
perturbation to the reacting flow model and is described in
the section below.



III. ACOUSTICS

The acoustics describe compressible effects of the flow
that arise as perturbation of the mean reacting flow solution
obtained with the mean combustion model of [5]. We start
with the inviscid transport equations following the approach
of [2], [9]

∂ρ

∂t
+ ∇ · (uρ) = 0 (1)

ρ
∂u

∂t
+ ρu · ∇u = −∇p − η (2)

ρ
∂e

∂t
+ ρu · ∇e = −p∇ · u + q. (3)

In (2), η models the impact of turbulent noise. By assuming
ideal gas, and substituting e = 1

γ−1
p
ρ

(γ denoting the ratio
of specific heats) into (3) and applying (1) we obtain

∂p

∂t
+ γp∇ · u + u · ∇p = (γ − 1)q. (4)

Next, we use the decomposition

u = U + û, p = P + p̂,

ρ = ρ0 + ρ̂, q = Q + q̂, (5)

to obtain the energy equation for acoustics

∂p

∂t
+ (U · ∇)p + ∇P · u + γP (∇ · u) + γ(∇ · U)p

+ γp(∇ · u) + (u · ∇)p = (γ − 1)q, (6)

where, as a matter of notation, we have dropped the hats on
the perturbation variables. Denoting speed of sound c2 =
γP
ρ0

, and using the continuity equation for the hydrodynamic
mean U , we obtain

∂p

∂t
+ (U · ∇)p + ∇P · u + γµST δ(x − x̄f )p

+ ρ0c
2(∇ · u) + (u · ∇)p + γp(∇ · u) = (γ − 1)q,

(7)

where x̄f denotes the mean flame location and the mean
hydrodynamic pressure due to flow is given by

∇P = −ρ0(U · ∇)U. (8)

The momentum equation for the acoustics is given by

ρ0

[

∂u

∂t
+ (U · ∇)u + (u · ∇)U + u · u

]

= −∇p − η, (9)

where, we have neglected additional terms involving ρ

on the left hand side because of the low Mach number
assumption. For the purpose of this study, we write u =
(u, v) and assume longitudinal acoustics with

v ≈ 0,
∂

∂y
= 0, (10)

an assumption that leads to two scalar equations (describing
acoustics) in two unknowns (p, u) that - after ignoring the

nonlinear terms - yields

∂p
∂t

+ U ∂p
∂x

+ γµST δ(x − x̄f )p

−
[

ρ0U
∂U
∂x

]

u + ρ0c
2 ∂u

∂x

}

= (γ − 1)q,

ρ0
∂u

∂t
+ ρ0

∂(Uu)

∂x
= −

∂p

∂x
− ηu, (11)

where ηu denotes the u co-ordinate of turbulent noise - we
drop the subscript u subsequently. We require mean flow
and flame solutions to determine the coefficients of the
acoustics model (11). For this, we use the reduced order
mean models derived in [5] to obtain mean axial flow

U(x, y) =

}

U0 x ∈ [0, L1]
U0 + 2α(x − L1) x ∈ [L1, LT ]

, (12)

where α =
µS0

T

H
, µ = (ρu

ρb
− 1), and S0

T = ST [Y 0
f ] is

the flame speed (evaluated as a function of local fuel mass
fraction [10]) for the uniformly premixed mean flow. The
mean flame location x̄f = (ξ̄(y), y) for the upper flame is
obtained as the solution of G-equation [5]

(

S0
T + 2α(

H

2
− y)

)

∂ξ̄

∂y
= U0 + 2α(ξ̄ − L1),

ξ̄(x = L1, y =
h

2
) = 0, (13)

whose solution (valid for y ∈ [h
2 , H

2 ]) is given by

ξ̄(y) = L1 +
U0

2α

y − h
2

b − y
, (14)

where b = H
2

(

1 + 1
µ

)

. The solution for the lower flame
is obtained as a symmetric reflection (about y = 0) of
the upper flame solution. The length of the combustion
domain over which the flame exists is obtained from the
flame solution (14) by substituting y = H

2 to obtain

L =
U0

S0
T

[

H

2
−

h

2

]

. (15)

Finally, the acoustic boundary conditions are assumed to be
choked-choked at the combustor inlet and exit, i.e.,

u(x = 0, t) = u(x = LT , t) = 0. (16)

IV. HEAT-RELEASE

After [5], we begin with a model for flame dynamics
- written here for the upper flame - in the presence of
longitudinal acoustic velocity perturbation

∂ξ

∂t
+ (ST + 2α(

H

2
− y))

∂ξ

∂y
= U0 + 2α(ξ − L1) + u,

ξ(x = L1, y =
h

2
) = 0, (17)

where ST = S0
T + S

′

T yf , the second term represents the
effect of fuel perturbation yf at the flame - S′

T = dST

dYf
[Y 0

f ]
is the derivative of the flame speed function evaluated at
its nominal uniformly premixed fuel mass fraction Y 0

f . The



infinitesimal fuel or acoustic velocity perturbation leads to
the linearized flame response (valid for y ∈ [h

2 , H
2 ])

1

2α

∂ξ̂

∂t
+ (b − y)

∂ξ̂

∂y
− ξ̂ =

u

2α
−

U0

2α

S′

T

S0
T

yf ,

ξ̂(y =
h

2
, x = L1) = 0, (18)

where ξ(y, t) = ξ̄(y) + ξ̂(y, t) is the instantaneous flame
location. On taking the Laplace transform of (18), making a
co-ordinate change y → x [5], and multiplying the resulting
equation by integrating factor, we obtain

d

dx

[

ξ̂(x)a(x)
s
2α

−1
]

=

[

u(x)

U0
−

S′

T

S0
T

yf (x)

]

a(x)
s
2α

−2,

(19)
where a(x)

.
= 1+ 2α

U0

(x−L1) and explicit integration gives

ξ̂(x) =
1

a(x)
s
2α

−1

∫ x

L1

a(z)
s
2α

−2

[

u(z)

U0
−

S′

T

S0
T

yf (z)

]

dz.

(20)
We note that here, as in remainder of this paper, identical
notation is used for denoting both the variable as well as
its Laplace transform. The fuel perturbation yf (x, t) at the
flame arises as a consequence of the fuel perturbation

y0
f = Y 0

f [−
u

U0
+ uc]

∣

∣

∣

∣

x=L1

(21)

at the fuel injection surface (see [9]) convecting to the flame
location. The two perturbations may be related as

yf (x, t) = y0
f (t − τ(x)), (22)

by modeling the convection as a distributed delay τ(x) =
1
2α

log(1 + 2α
U0

(x−L1)) that arises because the fuel pertur-
bation y0

f convects to the distributed flame with the axial
reacting mean flow velocity U in (12); uc in (21) represents
the fuel control input. On combining (21) and (22) and
taking the Laplace transform, we obtain

yf = e−sτ(x)Y 0
f [−

u

U0
+ uc]

∣

∣

∣

∣

x=L1

= a(x)−
s
2α Y 0

f [−
u

U0
+ uc]

∣

∣

∣

∣

x=L1

. (23)

Finally, infinitesimal flame and fuel perturbation leads to
heat release perturbation

q

ρu

= QF

[(

1 +
(ST Yf )′

S0
T Y 0

f

yf

)

δ(x − xf ) − δ(x − x̄f )

]

,

(24)
where QF

.
= (γ−1)∆HS0

T Y 0
f = µc2

uS0
T (1+φ)Y 0

f , φ is the
equivalence ratio, cu is the speed of sound in the region of
reactants, and (ST Yf )′ denotes the derivative (with respect
to Yf ) evaluated at the nominal premixed fuel mass fraction
Y 0

f .

V. THERMOACOUSTIC MODEL

In this section, we obtain control-oriented reduced order
models from the distributed models described above.

A. Acoustics submodel

Assuming longitudinal acoustics (10) and substituting the
mean flow (12) and flame (14) solutions in (11), we obtain
the equations for the acoustic submodel

∂p
∂t

+ (U0 + 2αx) ∂p
∂x

+ γµST δ(x − ξ̄(y), y)p
−ρ02α(U0 + 2αx)u + ρ0c

2 ∂u
∂x

}

= (γ − 1)q,

ρ0
∂u

∂t
+ ρ0(U0 + 2αx)

∂u

∂x
+ ρ02αu = −

∂p

∂x
− η. (25)

We now apply the Galerkin procedure to obtain a finite-
dimensional representation of the pde model (25). On
account of the choked-choked nature of the boundary con-
ditions (16), we use the basis functions Gn(x) = sin(nπx

LT
)

to expand the velocity u and turbulent noise model η and
Fn(x) = − cos(nπx

LT
) to expand the variables p and q:

p

ρu

=

N
∑

n=1

pnFn(x),
q

ρu

=

N
∑

n=1

qnFn(x), (26)

u =

N
∑

n=1

unGn(x), η =

N
∑

n=1

ηnGn(x), (27)

where N denotes the number of basis functions included in
the finite-dimensional model.

On dividing (25) by the density of reactants ρu, taking the
Laplace transform of resulting equations, and applying the
Galerkin procedure, we obtain the transfer function models
of acoustics, expressed symbolically as

(Is + D + C1)p
N + (C2 − c2

udiag(
nπ

LT

))uN = IqN (28)

(B(s + 2α) + C3)u
N = −diag(

nπ

LT

)pN − IηN , (29)

where the notation pN .
= {pn}

N
n=1, uN .

= {un}
N
n=1, qN .

=
{qn}

N
n=1, and ηN .

= {ηn}
N
n=1. For the Galerkin procedure,

we use the 2D inner product

< u1, u2 >
.
=

2

(HLT )

∫

Ω

u1 u2 dxdy, (30)

so that the effect of change in the mean density ρ0 between
reactants and products can be captured. Here Ω

.
= [0, LT ]×

[−H
2 , H

2 ] - note either of the basis functions is orthonormal
with respect to the inner product. Computation of individual
terms is not entirely straightforward and we discuss some of
these terms below. The matrix D corresponds to the damp-
ing effect due to (mean) burning, where its contribution -
for Galerkin projection onto the mth mode - arises as

< Fm,

N
∑

n=1

γµST δ(x − x̄f )pnFn >

=

N
∑

n=1

2γµST

H(LT )

∫

Ω

δ(x − x̄f )pnFn(x)Fm(x)

≈ 2γα

N
∑

n=1

pn

2

LT

∫ LT

L1

Fn(x)Fm(x)dx, (31)



where if L1 = 0, then this term further simplifies to 2γαpm

and the matrix D = 2γαI; I denotes the size N identity
matrix. The terms C1 and C3 capture the convective effect
of exothermic mean flow and C2 the effect of mean pressure
on acoustics. Finally, the term B is quite important in
capturing the increase in the natural frequency associated
with burning (because of increase in the speed of the
sound in the burning region). Its contribution - for Galerkin
projection onto the mth mode - arises as

< Gm,

N
∑

n=1

(s + 2α)
ρ0

ρu

unGn >

=
N
∑

n=1

2(s + 2α)

H(LT )

∫

Ω

(1 − νXProd)Gn(x)Gm(x)

= (s + 2α)

[

δmn −
2ν

H(LT )

∫ LT

L1

2Ȳ(x)GnGmdx

]

,

(32)

where ν
.
= (1− 1

1+µ
), Xprod is a characteristic function that

is defined to take values 1 in the region of products and 0 in
the region of reactants, and Ȳ(x) is the y co-ordinate of the
mean flame. Substituting (29) into (28), we may eliminate
the co-ordinate uN and obtain a coupled oscillators model
for the acoustics in pressure co-ordinate.

pN = Apn(s)ηN + Apq(s)qN . (33)

In order to obtain the forcing term on account of unsteady
heat release (expressed in co-ordinate qN ), we consider the
formula for heat release perturbation (24).

B. Heat-release submodel

On projecting the heat release perturbation on to the mth

mode, we obtain

qm = g1

∫

Ω

(δ(x − xf ) − δ(x − x̄f ))Fm

+ g2

∫

Ω

δ(x − xf )yfFm

≈ g1

∫ LT

L1

d

dx
(Fmξ̂)dx + g2

∫ LT

L1

yfFmdx,

= g1(−1)m−1ξ̂(LT ) + g2

∫ LT

L1

yfFmdx, (34)

where g1 = 4QF

HLT
and g2 =

(ST Yf )′

S0

T
Y 0

f

g1. The heat release
response thus decomposes in to two parts: part 1) arising
because of flame response, and part 2) arising because of
upstream fuel perturbation as it is felt downstream at the
(nominally fixed) flame. Using (23), the fuel perturbation
at the flame

yf = a(x)−
s
2α Y 0

f

[

−
N
∑

n=1

Gn(L1)
un

U0
+ uc

]

, (35)

where Gn = sin(nπx
LT

), is easily obtained and gives the heat
release response for part 2 - we denote the resulting transfer

function matrix from uN → qN as A
f ,2
qu . For obtaining the

part 1 of the response, we use the flame solution (20) for
the linearized flame dynamics

ξ̂(LT ) =

N
∑

n=1

a(LT )
1− s

2α
un

U0

∫ LT

L1

a(z)
s
2α

−2Gn(z)dz

+ a(LT )−
s
2α

(

S′

T

S0
T

)

Y 0
f

N
∑

n=1

un

U0
Gn(L1)L, (36)

where the first term corresponds to flame response en-
tirely due to acoustics and the second term to the flame
response on account of fuel perturbation (effect on flame
speed) - the corresponding transfer function matrices from
uN → qN are denoted as Aqu and A

f ,1
qu respectively. Since

a(LT )−
s
2α = exp−

s
2α

log(a(LT )), the response A
f ,1
qu arises as

an effective delay. We note that the delay character is by
no means apriori apparent as the heat-release response for
this path arises due to acoustics→fuel→convection →flame
dynamics→heat-release chain of effects. We show in the
following section that at high frequencies, this is the portion
of the heat release response that dominates and likely
explains why delay models of heat release models are so
popular in literature. Similar considerations apply in ob-
taining the transfer function matrix - denoted symbolically
as Aquc

- from the fuel input uc → qN , the heat release
modal coefficients. We thus obtain the heat release model
expressed symbolically as

qN = Aqu(s)uN + A
f
qu(s)uN + Aquc

(s)uc, (37)

where A
f
qu(s) = A

f ,1
qu (s) + A

f ,2
qu (s), the combined heat

release response because of fuel perturbations arising due
to acoustics. The individual transfer function matrix entries
are obtained using (34)-(36).

C. Coupled model

Using the finite-dimensional models derived above, we
construct a coupled thermoacoustic model as a feedback
interconnection of (33) and (37). In this paper, we are
mainly interested in stability characteristics and forced
excitation of the primary thermoacoustic mode. For this
purpose, the acoustic model is forced by (turbulent) noise
further modeled by specifying

η1 = 1 (38)

in (29).
Table I tabulates the numerical values of non-dimensional

problem parameters for which the model was constructed.
The speed of sound cu in (28) is specified by its values in
the unburnt reactants. The effect of increase in the speed
of sound (because of temperature effect) on raising the
acoustic modal frequencies is captured by the equivalent
mean density change as described by term B in (29)
presented in Section V-A. The control problem is to modify
the coupled dynamics of the thermoacoustic loop by fuel
manipulation - term involving uc in (37).



Parameter Value Description
S0

T /U0 0.1 Flame speed
U0/cu 0.1 Inlet Mach number
h/H 0.25 Bluffbody width

L/H U0

2S0

T

[

1 −
h
H

]

Flame length (see (15))

L1/L 1/3 Length of combustor inlet
µ 1-5 Heat release parameter
γ 1.4 Ratio of specific heats

S′

T

S0

T

Y 0
f

1 Gain in fuel → flame path
(ST Yf )′

S0

T
Y 0

f

Y 0
f

1 Gain in fuel → heat release path

TABLE I
NUMERICAL RANGE OF NON-DIMENSIONAL PROBLEM PARAMETERS

Fig. 2. Block diagram schematic of the thermoacoustic coupled model.

VI. CONTROL ORIENTED ANALYSIS

Figure 2 shows the schematic of the thermoacoustic
feedback loop as an interconnection of acoustic and heat
release submodels derived above. The acoustic submodel is
forced by turbulent noise ηN . Figure 3 plots the frequency
response from the noise input (38) to the pressure output at
bluffbody trailing edge x = L1 - with acoustics submodel
alone - for a range of heat release parameters µ. The figure
shows that as the heat-release parameter µ increases:

1) the speed of sound - in the products region - increases
thereby increasing the modal frequencies, and

2) the damping of the individual modes increases be-
cause of the mean heat release effects (term D in

Fig. 3. Effect of density ratio on the frequency response for the acoustic
submodel transfer function from noise input (38) to the pressure sensor
output evaluated at x = 0.

(28)).
The heat release submodel is forced by the scalar control

input uc and the acoustic velocity input - modeled by uN .
There are three distinct ways - captured in our model - in
which acoustic perturbation causes heat release perturba-
tion:

Aqu direct acoustic perturbation of the flame leading
to perturbation in heat release,

A
f ,1
qu acoustic perturbing the fuel and these perturba-

tions affecting the flame motion leading to pertur-
bation in heat release, and

A
f ,2
qu acoustic perturbing the fuel and these perturba-

tions directly affecting the heat release as in for-
mulae (34).

Figure 4 compares the frequency responses due to these
three effects - where we have normalized the individual
responses by factor µ. As noted in Section V-B, the heat
release response A

f ,1
qu is characterized by an effective delay

- the phase rolls-off while the magnitude is uniformly
constant. The portion of heat release response Aqu due
to the direct acoustic perturbation of flame motion arises
as a low pass filter and in the limit µ → 0, yields the
heat release response of [4] described in literature. Finally,
the heat-release response A

f ,2
qu due to the other fuel path -

convection of fuel perturbation to a nominally fixed flame
- also arises as a low pass filter. In all of these heat-release
responses, as the density ratio increases, the physics of the
problem becomes faster because of the acceleration due
to expansion velocity and this leads to benign phase roll-
off characteristics. However, the gain in the heat-release
submodel also increases by a factor µ.

We finally note that the gain in the fuel dynamics path
depends upon the shape of heat release nonlinearity at the
mean location (normalized gains S′

T

S0

T

Y 0
f and

ST Y ′

f

S0

T
Y 0

f

Y 0
f ). In

our analysis, we have taken these to be 1 (see Table I)
although these values may be greater for lean combustion
and smaller near stoichiometric limit. These values deter-
mine which of the three competing heat release responses
are dominant for any frequency. However, for higher fre-
quencies, the low pass heat release response Aqu and A

f ,2
qu

typically roll-off and the heat release response arises merely
as a delay due to response A

f ,1
qu .

Figure 5 plots the Nyquist diagram for the thermoacoustic
loop for values of µ =0.01 (near non-reacting limit), 1.2,
and 5. In the non-reacting limit, the thermoacoustic loop
gain is zero and the noise to pressure response is charac-
terized by acoustics alone (see Figure 3). With increasing
µ, the increase in the loop gain - by factor µ - eventually
causes the primary mode to become unstable for a critical
value of µ ≈ 1.2 as shown in the Figure 5. Even for
moderate values of µ, increased thermoacoustic loop gain
and roll-off present in the heat release response can lead to
eigenvalues close to imaginary axis causing large pressure
oscillations due to noise excitation. Figure 6 compares the
frequency response from noise (38) to pressure (at axial



Fig. 4. Effect of density ratio on the frequency response for (a) Aqu(s), (b) A
f ,1
qu (s), (c) A

f ,2
qu (s), and (d) the cumulative Aqu + A

f ,1
qu + A

f ,2
qu (s)

heat release transfer functions from acoustic velocity input (uN (1) = 1) to the heat release output qN (1).

Fig. 5. Effect of density ratio on the Nyquist diagram

Fig. 6. Effect of the unsteady heat release feedback on the frequency
response from noise input (38) to the pressure sensor output evaluated at
x = 0 (µ = 1).

location x = L1) with and with out unsteady heat release
for a stable µ = 1 case. The damped characteristics of
acoustic submodel (because of mean heat release effects)
together with delay induced roll-off present in the heat-
release feedback leads to a peaksplitting in the response
to noise for the coupled model as shown in the figure.

VII. CONCLUSIONS

In this paper, we studied the distributed linear dynamics
of a coupled thermoacoustic problem. We showed that the

density ratio parameter µ is very important in determin-
ing the magnitude and phase characteristics of both the
acoustics (mean effects) and unsteady heat-release blocks.
As the parameter µ increases, 1) the damping of the
individual acoustic mode increases, 2) the acoustic modal
frequency increases (due to increase in speed of sound), 3)
the bandwidth of heat release response increases (physics
of the problem becoming faster) and 4) the thermoacoustic
loop gain increases. We also constructed a coupled ther-
moacoustic model that exhibits an instability as the density
ratio parameter is increased beyond a critical value.
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