

Abstract—In order to solve deadlock in FMS, an integrated

design method for FMS is presented. This method is based on
deadlock free scheduling, deadlock avoidance algorithm and
deadlock detection and recovery. Deadlock is resolved from
views of scheduling and controlling, which is a complete
resolution to deadlock. In scheduling, deadlock free scheduling
is applied. In the on line control, deadlock avoidance algorithm
is used in the controller, which is an improvement and
modification of the Banker’s algorithm. This algorithm is
verified with model checking tools: Spin. The advantage of this
work lies in the complete solution to deadlock for FMS. This
solution can control deadlock while preserving the system
performance.

I. INTRODUCTION

anufacturers must adapt to the changes in the
production environment as well as in the market in
order to achieve and maintain global competitiveness.

Flexible manufacturing systems (FMS) when designed and
operated effectively, can be of assistance to manufacturers
according to a defined production and process plans, which
specify the activities and resources as well as sequence
related conditions, such as precedence relations and
synchronization. Alternative resources and routing for some
of the jobs in FMS may be specified previously. This results
in an increasing flexibility in job scheduling. Some resource
allocation may lead to a deadlock situation, in particular
when the resources in a system are limited. A deadlock is a
state where a set of parts is in “circular waiting”, i.e., each
part in the deadlock set waits for a resource held by another
part in the same set. Deadlock problems can cause
unnecessary cost (e.g. long down-time and low use of some
critical and expensive resources), particularly important to
be solved in Flexible Manufacture Systems. Therefore, to
develop efficient algorithms to improve and optimize the
system performances while preventing deadlock situations
becomes a basic requirement in running an FMS[13]. There
are three strategies to deal with deadlock [3][7]: deadlock
prevention, deadlock avoidance, deadlock detection and
recovery.
 There are many research papers devoted to deadlock

This work is supported by the National Natural and Science Foundation
(Grant No. 60074011, 70071017).

Xu gang is a Ph.D from the Automation department of Shanghai
Jiaotong University, Shanghai, China. Zip code 200030. (e-mail:
steel_xu@yahoo.com).

Wu zhiming, is a professor with Shanghai Jiaotong University. He is
now with the Department of Automation, Shanghai Jiaotong University (e-
mail: ziminwu@sjtu.edu.cn).

problem. In [1] a deadlock avoidance algorithm is proposed
for a class of Petri net models formed for flow shop
manufacturing where a set of sequential processes are
executed without alternating the order of using resources in
each case. The algorithm controls the input flow of new
tokens in a local area, ensuring that token evolutions in a
system are always possible. Ezpeleta et al in [3] has
proposed a policy for resource allocation based on the
addition of new places to the net imposing restrictions that
prevent the presence of unmarked siphons that may directly
generate deadlocks[2]. The crucial point of the procedure is
the complexity that involves in computing the set ofsiphons
of the Petri net model. For a general class of Petri net models,
in [7] both deadlock prevention and avoidance control
policies are proposed. The first part is based on the net
reachability graph, while the second part is based on a
look-ahead procedure that searches for deadlock situations
by simulating the evolution process of a system for a
preestablished number of steps. Due to the fact that the
avoidance policy does not assure that deadlocks are not
reachable in future, they propose to combine this policy with
a deadlock recovery system. In [5] Wu and Zhou point out
that, if an Automated Manufacturing System (AMS)
operates at the deadlock boundary, i.e., under the maximally
permissive control policy, it will not be deadlocked but a
blocking may occur more likely. They present an AMS that
works near but not at the deadlock boundary in order to gain
the highest productivity. For the first time he presents such a
policy: Liveness-policy. Without being too conservative, it
can effectively reduce or even eliminate the blocking
possibility that exists under a maximally permissive control
policy. In [8], Xu and Wu give an algorithm that can find the
optimal deadlock-free scheduling without considering the
buffer. An algorithm for deadlock-free scheduling with
buffer allocation is presented in [12]. In [10] [11], deadlock
prevention algorithm and deadlock avoidance algorithm are
presented.

This paper is based on several work finished by the
authors. They are organized effectively to resolve deadlock
in FMS. This paper is organized as follows: the problem is
presented in Section 2, the structure of the solution is
introduced in Section3, the scheduler is given in Section 4,
the system database in 5, controller in 6 and a conclusion in
Section 7.

Systemic Solutions to Deadlock in FMS
Xu gang, Wu zhi Ming

M

II. MODEL WITH PETRI NET

In this paper, a system is modeled with Systems of
Simple Sequential Processes with Resources (PRS 3) Petri
Net. A bottom-up method is used to model the whole system.
Firstly, classify the whole system into several sub-systems,
construct a sub-model for each sub-system; then merge the
sub-models into a whole model. The places in the whole
Petri net are separated into operation places and resource
places. Tokens in an operation place represent that the
operation is being executed, no token place represents that
the operation is not. Token in the resource place represents
that a resource is idle, no token in the resource place
represents that the resource is being occupied. The sub-
model is shown in Fig1.a.

Deadlock is a kind of system status, in which a set of parts
enter into a waiting loop, each part in the set waits the
resource occupied by another part in the set. Just like what
the Fig1.b has demonstrated, the tokens in P5 and P6 are
waiting for resources of M2 and M1 which are just occupied
by the others. Thus the system can’t evolve. The Gantt chart
of the scheduling corresponding to the Fig.1.b is shown in
Fig.1.c. The structure in Fig.1 can be extended to more
machines and jobs with different routing procedures to

describe a FMS.

III. STRUCTURE OF THE DEADLOCK SOLUTION

Deadlock is considered in the scheduling and control
parts. The whole control structure is shown in Fig.2. Jobs’
information is put into Scheduler, an initial schedule will be
generated. Then it will be send to database. AGV scheduling
is not included into Scheduler, it is considered in the
controller. This is the reason why the deadlock avoidance
exists in controller. The controller gets the schedule from
database and uses it to drive the plant. The system running
information will be mapped to the Petri net model. The Petri
net supervisor is in charge of supervising the system running.
Because deadlock avoidance can’t guarantee that deadlock
can’t occur, deadlock detection and deadlock recovery are
needed. If deadlock occurs, the supervisor can detect and
send command to the controller to execute the deadlock
recovery. The deadlock prevention and deadlock avoidance
algorithm can be simulated and verified by model checking
tools: Spin.

IV. DEADLOCK FREE SCHEDULER

In Scheduler, deadlock free scheduling algorithm is
applied to prevent from a deadlock while the system
performance is guaranteed. Based on the FMS Petri Net
model, this algorithm takes advantage of GA effective
search to conduct scheduling. Such scheduling is deadlock-
free, which is guaranteed by the embedded Petri Net
checking procedure and reachability analysis.

Through the scheduler, the scheduling result including
the buffer allocation is taken into account. This scheduling
can solve three problems:
1. the deadlock free scheduling with no buffer can be

gotten[8];
2. the deadlock free scheduling with buffers can be

gotten[12];

 Deadlock

 Prevention

 System

 Database

 Deadlock

 avoidance

 Scheduler Controller

Physical

System

 Deadlock free

 Scheduling

 Simulation &

 Verification

 Deadlock

 recovery Verification

 Petri Net Supervisor

 Deadlock detection

 Fig.2. System Architecture

m1

m2

m3

 P1

P5

P9

P13

P17

 t1

 t5

 t9

 t13

 a

m1

m2

m3

 P1
P2

P5

P9

P1

P6

P1

P10

P14

P18

 t1

 t5

 t9

 t1

 t2

 t6

 t10

 t14

 b

 P5 P10

 P6 P9

 c

m1

m2

Fig.1 Petri net model of manufacturing system and its Gannt chart

 Coding

 Population initiation

 Fitness function

 > popnum ?
Y

N

 Transition fired?

 Reproduction

 Mutation

 Crossover

Y

 Exit

N

Decodi
ng

kET

 Fig.3. Algorithm

 fM ?
Y N

 Buffer allocation

 Sign Incidence Matrix

3. the optimal deadlock free scheduling with infinite-
capacity buffers can be gotten[12].
With such scheduler, some useful scheduling can be

got as reference for users. Users can select from the
scheduling pool according to their need.
Deadlock-free scheduling algorithm

The initial (or a considered current state)
information of jobs can be expressed in the timed Petri
net via the state of token distribution. From that, a set of
initial schedules can be generated by using GA. Each
schedule may correspond to a chromosome code string.
After a serial of genetic operations and the decoding of
chromosome, the transition firing set to the timed Petri
net can be obtained.

According to this transition sequence, token player is
used to check whether the deadlock status would occur in
the system. Moreover, the system performance under
implementation of different schedules can be evaluated.

To make the reachability graph develop normally, there
are several ways to avoid the deadlock occurring in the
evolution of token player.

(1) Delete the tested un-satisfying schedule and choose
a new one from the chromosome code-pool as a
new candidate [8].

(2) Add a new buffer to contain the processed part
(which has not finished all of its operations)
temporally and resolve the conflict of resource
(buffer space) competition.

(3) Adjust the parts’ input time and sojourn time
(staying in different kinds of buffer) to avoid
resource competition and deadlock.

All these three methods can be programmed as the
sub-modules including in the main of GA scheduling
program. They can be called, switched or branched in
accordance with system constraints or user’s commands.

Since the buffer allocation can be easily included into
the resource set for scheduling if necessary, therefore,
deadlock can be avoided and the final marking becomes
reachable definitely. Suppose during the whole job-
scheduling process, the number of allocated buffer can reach
to an upper number Bm to avoid the deadlock/conflict and
achieve a short makespan in the system, Bm becomes an
important index for the execution of production batch.

If the shop keeps a limited number of buffers that is less
than the maximum buffer capacity Bm needed by
implementing the above ideal schedule, then as the
embedded execution of task scheduling reaches some
definite step, a job that finishes processing on one machine
(not finish all its operations yet) is not able to move to an
empty buffer/machine to release that machine resource. In
that case, a temporary blocking or a deadlock appears in the
shop. To deal with such situation (caused by limited buffer),
the following procedures can be taken:

(i) Stop inputting new job from load station to
reduce space occupation of work in process
(WIP) in the shop.

(ii) Wait for other jobs to finish their processings
and release a buffer to resolve the blocking
state of the shop. As soon as the blocking is
resolved, new job can be input again.

If all the jobs occupying the respective machines have
finished their processing and no buffer has been released,
the tested schedule has fallen into deadlock and can be
deleted. One may choose a new one from the chromosome
pool and try again.

Buffer will be allocated to the corresponding job when
there is deadlock or conflict during the searching procedure
of Petri net. The detail of the algorithm is shown in Figure 3.

1) Deadlock prevention
The initial scheduling result can be verified with

deadlock prevention policy [10] in model checking tool.

V. THE SYSTEM DATABASE

The initial scheduling generated by scheduler is written
into database, and stored in the database for the controller
use. Controller will get the scheduling information
according to the its algorithm. The system database is
relational database.

VI. CONTROLLER

Banker’s algorithm is applied in the controller. Such
controller can prevent the system from entering into
deadlock. The main function of the controller is as follows
[11]:

1. Controlling the system running to avoid deadlock.
2. Recovering the system if deadlock occurs.
3. Simulating the behavior of the controller.
4. Verifying the properties of the controller.

Deadlock avoidance algorithm[11]
It is an improvement and modification of the Banker’s

algorithm. The outline of the algorithm is shown as
following:

Every operation of a job is taken as a process. The
relationship between job and resource is changed to the
relationship between operation and resource. Check every
active process to see if Available resource + Allocation
resource ≥ operations resource Claim. Dynamic change of
the operation resource Claim is taken into account. If an
operation of a job finishes, it will release the resource that it
occupies, and go on to the job’s next operation. The
operation is taken as a process here. The process can finish
firstly, and releases the resource it occupies. Thus, the
resource can be used by another process. That is, completing
the operations of a job can release resources orderly. So, the
resource releases don’t need to wait until the job finishes. In
this case, the operation resource Claim is designed to
change with the job progressing. The definition of
Allocation resource and Available resource are not changed.
The operation resource Claim varies with the information
flowing in channels.
 The route selection of Jobs is involved in the modified

algorithm. When one route is not satisfied with the
condition of the Banker’s algorithm, another route is
selected. If this route is still not satisfied with the
condition of the Banker’s algorithm, then the next one, or
waiting.
Deadlock detection algorithm:

The empty siphon is directly related to deadlock in
Petri net. The Petri net supervisor is responsible for
checking empty siphon in the system Petri net[3]. If the
supervisor detect empty siphon (deadlock), it will send
command to the controller, then the controller will execute
the deadlock recovery algorithm. The command includes the
jobs information that fall into deadlock.
Deadlock recovery algorithm:
According to the command sent from supervisor, the

controller will select one or more victims from the
Jobs that enter into deadlock, and put it into buffer.
Then, the system will go on running.

Simulation and Verification for the FMS Controller
The simulation is carried out on SPIN. SPIN is a tool

for analyzing models expressed in the modeling language
PROMELA [9]. PROMELA was chosen for the study
because of its focus on the interaction between processes.
It is loosely based on Hoare’s language of CSP and on
Dijkstra’s guarded command. Given a PROMELA model,
SPIN can perform simulations or exhaustive verifications
of the system state space, during which it checks for the
absence of deadlocks and for un-executable code. It can
also verify linear time temporal constraints. Exhaustive
verification can show conclusively whether a model
contains errors. The model simulation tool provided in
SPIN allows users to interactively simulate execution of
PROMELA models. This tool is invaluable in the initial
development and refinement of the model for the
controller. The controller’s verification frame is shown in
Fig.4. The simulation result of a FMS is shown as Fig.5.

In the Spin Message Sequence Chart (Fig.5), there are
eight vertical lines that represent the eight processes in the
system (listing from the left to the right): Job1, Job2, buffer,

AGV, M1, M2, M3, and init process (which is used to
initialize the M1, M2, M3 process). The arrows connecting
the processes are channels. Boxes correspond to steps in the
simulation. Communication between Job1, Job2, buffer,
AGV, M1, M2, M3 is executed through channels. Job1
process sends J1Rinfo (Job1 routing information) through
AGV process to M1 process (corresponding to process M:4
in the graph; M2 process to M:5 process; M3 process to M:6
process), M1 process finishes its operation, sends the
J1Rinfo to AGV process, then to M2 process. Finally, M2
process to AGV, then to M3 process. Thus, all operations of
Job1 are finished and M3 Process sends the final J1Rinfo
through AGV to Job1 process. The same to the progressing
of J2Rinfo. If the requested resource is busy, the system will
send the JRinfo to buffer process. The graphical output only
highlights the interaction between processes.

VII. CONCLUSION

A complete deadlock resolution is presented in this paper.
The deadlock is resolved from views of scheduling and
control. In this FMS structure, the control algorithm can be
simulated and verified. The solution of deadlock is
considered all sided. This is also the distinct characteristic of
this work. This work has been adopted by the project of the
virtual workshop prototype design in Shanghai Jiaotong
Univerisity.

REFERENCES

[1] Banaszak, Z.A.; Krogh, B.H. Dec. 1990. Deadlock avoidance
in flexible manufacturing systems with concurrently competing
process flows. IEEE Transactions on Robotics and Automation,
Volume: 6 Issue: 6, 724 –734

[2] Barkaoui, K.; Ben Abdallah, I. 1995. A deadlock
prevention method for a class of FMS. Systems, Man and
Cybernetics, 1995. IEEE International Conference on
Intelligent Systems for the 21st Century, Volume: 5,
4119 -4124 vol.5

[3] Ezpeleta, J.; Colom, J.M.; Martinez, J. April 1995. A
Petri net based deadlock prevention policy for flexible
manufacturing systems. IEEE Transactions on Robotics
and Automation, Volume: 11 Issue: 2, 173 –184

[4] Gen, M.; Tsujimura, Y.; Kubota, E. 1994. Solving job-
shop scheduling problems by genetic algorithm. Systems,
Man, and Cybernetics, 1994. IEEE International
Conference on Humans, Information and Technology,
Volume: 2, 1994, 1577 –1582, 2

[5] Naiqi Wu MengChu Zhou. Oct 2001. Avoiding
deadlock and reducing starvation and blocking in
automated manufacturing systems. IEEE Transactions on
Robotics and Automation, Volume: 17 No.5, Page(s):
658 –669

[6] Song, Y.; Hughes, J.G. 1999. A genetic algorithm with a
machine order-based representation scheme for a class of
job shop scheduling problem. Proceedings of the

 M odel Checking

 Counter example

Deadlock avoidance

 Algorithm

Requirement Assertion in

 Temporal Logic

Fig.4.Controller verification frame

American Control Conference, 1999. Volume: 2 , 1999.
Page(s): 895 -899 vol.2

[7] Viswanadham, N.; Narahari, Y.; Johnson, T.L. 1990.
Deadlock prevention and deadlock avoidance in flexible
manufacturing systems using Petri net models. IEEE
Transactions on Robotics and Automation, Volume: 6
Issue: 6, Dec. 1990 Page(s): 713 –723.

[8] Xu Gang; Zhiming Wu. 2002. Deadlock-free scheduling
method using petri net model analysis and GA search.
Proceedings of the 2002 International Conference on
Control Applications, 2002. Volume: 2 , 2002. Page(s):
1153 –1158.

[9] Holzmann, G.J. 1997. The model checker SPIN. IEEE
Transactions on Software Engineering, Volume: 23 Issue:
5 , May 1997 279–295

[10] Xu Gang; Zhiming Wu. 2003. Deadlock Prevention for
Flexible Manufacturing System. Proceedings of the 2003
American Control Conference.

[11] Xu Gang; Zhiming Wu. 2003. The Application and
Verification of Banker’s Algorithm for Deadlock
Avoidance in Flexible Manufacturing System with Spin.
Proceedings of the 2003 IEEE International Conference
on Robotics and Automation.(ICRA 2003), 2003,2165-
2170.

[12] Xu Gang; Zhiming Wu. 2003. DEADLOCK-FREE
SCHEDULING STRATEGY FOR AUTOMATED
PRODUCTION CELL. Proceedings of the 2003
IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, 2, 20-24, 850-855.

[13] Zhou,M.C, Deadlock Avoidance Methods for a
Distributed Robotic System: Petri Net Modeling and
Analysis”. Journal of Robotic Systems,12(3),177-187.

 Fig.5. Simulation result of the FMS

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP17.3
	Page0: 5740
	Page1: 5741
	Page2: 5742
	Page3: 5743
	Page4: 5744
	Page5: 5745

