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Abstract— This paper deals with the application of multi-
agents algorithm to the core design tool in a nuclear 
industry. We develop an original solution algorithm for the 
automatic core design of boiling water reactor using multi-
agents and reinforcement learning. The characteristics of 
this algorithm are that the coupling structure and the 
coupling operation suitable for the assigned problem are 
assumed, and an optimal solution is obtained by mutual 
interference in multi state transitions using multi-agents. 
We have already proposed an integrated optimization 
algorithm using a two-stage genetic algorithm for the 
automatic core design. The objective of this approach is to 
improve the convergence performance of the optimization in 
the automatic core design. We compared the results of the 
proposed technique using multi-agents algorithm with the 
two-stage genetic algorithm that had been proposed before. 
The proposed technique is shown to be effective in reducing 
the iteration numbers in the search process. 
 
 1. INTRODUCTION 
A boiling water reactor (BWR) is one of the commercial 
nuclear power reactors. The reactor core of a BWR is 
arranged as an upright cylinder containing a large number 
of fuel assemblies. The coolant flows upward through the 
core. Control rods occupy alternate space between fuel 
assemblies and can be withdrawn into the guide tubes. 
Positive core reactivity control is maintained by using 
movable control rods interspersed throughout the core.  
 
When a BWR is shut down between successive operation 
cycles refueling or reloading is performed. This refueling or 
reloading is called “loading pattern (LP)”. The number of 
control rods inserted at many particular time and depth to 
which they are inserted is called “control rod pattern (CRP)”. 
In the actual core design of a BWR, it is necessary to decide 
these two optimal patterns at the same time. The core design 
is a NP-complete combinatorial optimization problem. 
Therefore, although there is a strong desire for to save labor, 
automatic optimization of the core design of a BWR has 
been assumed to be a very difficult combinatorial 
optimization problem. 
 
For the last several years, we have been using genetic 
algorithms (GA) without transcendental information to 
optimize the core design of BWR. We were able to achieve 
the automatic optimization of the complex core design of a 

BWR by the two-stage optimization algorithm using GA. In 
this paper, we further proposed a new original algorithm for 
combinatorial optimization using multi-agents and 
reinforcement learning. We name it as multi-agents 
algorithm (MAA). In order to improve the convergence 
performance of the core design optimization of BWR, we 
introduce this new algorithm to the first stage of the two-
stage GA previously developed. 
 
 2. OPTIMIZATION PROBLEM OF CORE DESIGN 
Since the LP of a BWR usually has one-eight symmetry 
property, the optimization of LP and CRP is carried out 
generally on the octant core as shown in Fig.1. (In this 
example, the numbers of fuel assemblies are 115.) The 
numbers of the loading position of each fuel are applied as 
shown in Fig.1. The fuel assembly placed in loading 
position l is defined as lx and this list is arranged 
as ),,,,( 1 Ll xxx LL=x , where 'll xx ≠ , 'll ≠ , 

},,1{, ' Lxx ll L∈ . L is the number of fuel assembly. Then, 
if the insertion depth of the CR position ),,1( cNnn L= at 
each burn-up step t is defined as ny , the list is expressed as 

))(,),(,),(()( 1 tytytyty
cNn LL= (see Fig.2). There are 

tN burn-up steps including both BOC (beginning of cycle) 
and EOC (end of cycle), and defined as ),,1( tNt L= . The 
time change of control rod pattern list y at all the burn-up 
points can be written as ))(,),1(()( tNyy L=•y .  
 
LP evaluation of the list x is performed with a three-
dimensional diffusion code coupled with neutronic and 
thermal hydraulic models. The core performance calculation 
based on CRP outputs some parameters, which are the two 
limiting value of FLCPR (fraction of limiting critical power 
ratio) and FLPD (fraction of limiting power density) and 

effk (reactor eigenvalue) and relative nodal power 
distribution. These output parameters are shown as a 
function of LP list x and CRP list y . Because y is 
expressed as a function of t , they can be respectively 
expressed as ))(,( te f yx , ))(,( tr ml yx , ))(,( tflcprl yx , 

))(,( tflpd ml yx . Subscript l indicates each bundle in 
octant core ),,1( Ll L= , and subscript m indicates the 
axial node of fuel )24,,1( L=m . Because the target values 
and the upper limit values of these parameters are expressed 
as a function of t , they are defined as: 

)(te f  : the target value of effk , 



)(tr  : the upper limit value of relative nodal power, 

)(tflcpr  : the upper limit value of FLCPR, 

)(tflpd  : the upper limit value of FLPD. 

 
Fig. 1  Position numbers of fuel and 

locations of control rods ( example of 5CC ) 
 

 
Fig. 2  Sample coding of chromosome in second stage 

 
In the master-servant relationship between LP and CRP, it is 
important that the set of CRP y searched later agrees with 

the target value of )(te f for the set of LP searched first. 
Such a pattern x is called a controllable LP, and the cluster 
is expressed as Eq. (1) using tolerance LPε : 
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where ))(,),1(()( tNyy L=•y . As the control rod position, 
constrained set Y concerning )(•y is given by: 
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where inpos , outpos , and allpos are the limitation of 
insertion of control rods, the limitation of drawing, and all 
rods out. In addition, there is a core flow )(tflow which can 
be adjusted at each burn-up point as the control parameter. 
The upper limit value of flow at EOC is defined as 

upper
EOCflow . From these, the objective function and the 

penalty function are shown as the following at every burn-
up step t : 
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where )(•y is given by: 
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Eq. (8) is the objective that reduces the fluctuation of the 
control rod positions as much as possible. From these, the 
problem of core design is formulated as: 
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The values of 1d to 5d  in Eq. (11) are determined by some 
trial-and-error based on the empirical rule obtained by the 
reload core design of a real plant. In the optimization of the 
first stage, x is renewed under the constraint of the 
controllability for x of Eq. (12). In the optimization of the 
second stage, )(•y which is subordinate for x is required, 
after Eq. (14) is executed.  
 
 3. OUR PREVIOUS APPROACHES 

The optimization problem of LP and CRP formulated in the 
previous section is a two-stage complex combinatorial 
problem. Therefore, the application of an efficient and 
convenient search algorithm is desired. In our previous 
approaches, we use GA as such algorithm. Although 
comparatively many optimal solutions exist for such a 
complex combinatorial optimization problem, the reason for 
using GA is the simplicity and fast in comparison with other 
heuristic search algorithm. GA is a multi-point search 
method, where a lot of solutions are explored concurrently 
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is the solution space. GA has the potential to find a good 
global solution in conditions with multiple variables, and it 
is more likely to obtain a solution that is better than one an 
expert finds stochastically. For these reasons, GA was 
chosen as the search method, and we aimed at improvement 
of efficiency in solving this problem. In this section, we 
present our modification of GA designed to enhance its 
performance. 
 
3.1 Improved GA 

First of all, we developed an improved GA [1] for a 
complex combination optimization problem. The features of 
improved GA that we developed before are described as 
follows: 

1. Performance of the GA is improved by the execution 
of the deterministic operator, 

2. Convergence efficiency is raised by the adoption of an 
elite strategy that utilizes the fact that the LP problem 
is a two-objective problem, 

3. Convergence efficiency is raised further by self-
reproduction done every several generation, and 

4. Convergence performance is improved by using the 
initial value dependence. 

This algorithm provides both good convergence and global 
searching ability. 
 
3.2 Integrative two-stage GA 

Next, we developed an integrative two-stage optimization 
technique [2] of dynamic stage and static stage based on GA. 
In the first stage optimization, the improved GA is applied 
and the LP is optimized by the improved GA. The fitness 
function in the first stage is defined as:  
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In the second stage, for each individual of the LP, the CRP 
)(•y  of Eq. (14) is optimized by a powerful heuristic if-

then rule. In the search process for the CRP, the search 
space of  )(•y  is constrained to the one that satisfies Eq. 
(13); in addition, the search space of the epistatic LP is also 
constrained. Thus, the search efficiency is improved by 
introducing the if-then rules in the search process of )(•y . 
The fitness function in the second stage is defined as: 
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4. CONCEPT OF MULTI -AGENTS ALGORITHM 
We present the basic concept of the proposed algorithm in 
this section. First, consider an agent space that has several 
agents in it, as shown in Fig.3. Each agent has a state. In our 
MAA, the optimal solution in the combinatorial 
optimization problem is obtained by exchanges of 
information using the coupling relations among multiple 
agents. The concept of our MAA is composed of the 
following five items: 

1. The coupling structure among agents, 
2. The dimensions and neighborhood of the coupling 

structure, 
3. The type of coupling operation, 
4. The acceptable threshold of the minimization 

function value, and 
5. The selection of the firing elements by the operation. 

A state transition of the agents’ element is called a “firing.” 
We will explain the five elements according to the above 
criteria. 

 
Fig.3 Agents Space and Agent State 

 
4.1 Coupling Structure among Agents 

A structure in a specific neighborhood that can be defined 
for any agent in the space among agents is called the 
“coupling structure.” An agent’s state is changed by 
exchanging information according to specific rules in the 
neighborhood of the agent. A specific coupling structure 
among agents in a specific neighborhood is defined, and the 
coupling structure is variable when one partner of the 
information exchange is changed according to a specific 
rule. There are three kinds of coupling structure as examples 
of the variable structure: (1) variable coupling structure, (2) 
probable variable coupling structure, (3) random variable 
coupling structure. 
 
4.2 Dimension and Neighborhood of coupling Structure 

In the coupling structure, the spread of a coupling is expressed by 
the concept of dimension. Let us consider a combinatorial 
minimization problem in which all elements of variable x are the 
integer value { }N,,1 L of the permutation type. If these multiple 
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individuals are associated with a set of M numbers multi-agents, this 
optimization problem can be expressed as the following problem 
which solves for multiple states:  

 ,)(min mE
m

x
x

 (21) 
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At this time, in the case of a one-dimensional coupling structure, the 
state of agent mx  in problem (21) is expressed by )(kx . In the 
case of a two-dimensional coupling structure, it is expressed 
by ),( 21 kkx . Here, k , 1k  and 2k  are integer values that express 
the structure of the agent set. 
 
4.3 Coupling Operation 

Some coupling operations are defined by the distance 
between agents in the neighborhood. In this paper, the 
distance between two agents x and y is defined as follows: 
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where Ne is the total number of element in an agent. From 
this definition, the coupling operations can be classified into 
the following three types: 

Forward coupling operation 
An operation in which the specific agent moves toward  
all agents’ states in the neighborhood, 

Backward coupling operation 
An operation in which the specific agent goes away from
 all agents’ states in the neighborhood, 

Neutral coupling operation 
An operation in which the specific agent keeps a constant 
distance ( h ) from all agents' states in the neighborhood. 

In addition, an operation that adopts one side of the 
neighborhood as a neighborhood is called a “convection 
coupling operation,” and the operation that adopts both 
sides of the neighborhood is called a “diffusion coupling 
operation.” For example, in the case of one-dimensional 
coupling structure, the coupling operations between 

)1( ±kx and )(kx can be classified into the following six 
types.  

Forward convection coupling operation 
 )()1(min
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Backward convection coupling operation 
 )()1(max
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Neutral convection coupling operation 
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Forward diffusion coupling operation 
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Backward diffusion coupling operation 
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Neutral diffusion coupling operation 
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Multi-agents should minimize the function E during the 
same time as the state transition while interfering with the 
coupling operations each other. Various synthesis methods 
for the minimization operation and the coupling operation 
are also considered. However, in this paper, the algorithm in 
which the minimization operation of the function was 
maintained only by the coupling operation was adopted.  
 
4.4 Threshold Acceptance of Minimization Function 

 Value 

In the coupling operation, the ability to decrease the 
minimization function is not provided. Therefore, the 
minimization of the function depends on a method that 
allows a wide range of deterioration of the function value. 
Let ),( tkx be the state of an agent in the current 
generation and let )1,( +tkx be the state of the agent in the 
next generation. If the difference in the minimization 
function value between both is expressed as 

));(())1;(());(( tkEtkEtkE xxx −+=∆ , and the threshold of the 
threshold acceptance is set to )0(≥T , the formula that 
judges whether a new state is permitted will be given as 
follows: 
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4.5 Selection of Firing Element 

As for the state transition in the combinatorial state space, it 
is necessary to adopt either an asynchronous system or a 
linking system. The asynchronous system is a state 
transition that fires only a single element and changes. The 
linking system is a state transition that synchronizes and 
fires a small number of elements. In particular, the state 
transitions of the linking system in the constrained problem 
are adopted for the state transition that satisfies constraints. 
In this case, there are two methods to select the firing 
element: 

(a) A rule selection system that selects an firing element 
regularly according to element subscript numerical 
order, and a random selection system in which it is 
uniformly selected completely at random, 

(b) A selection element fixed system that selects the firing 
element of the fixed number, and a selection element 
gradual increase system, which increases and selects 
the number of selection elements. 



In addition, we introduced the concept of reinforcement 
learning (RL) to the selection of firing elements. An 
adaptation of the standard one-step Q-learning [3] was used: 
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where ),,( 1 pxxQ nn + reflects the desirability of choosing fuel 
assembly nx  at position p  and fuel assembly 1+nx  at 
position 1+p . a denotes all actions available in 1+nx . α  
and γ are learning and discounting parameters respectively. 
The reward )(nr is a weighted combination of local and 
global rewards: 
 )()1()()( nrnrnr globallocal ϕϕ −+=  (34) 
 aveklocal GGnr /)( =  (35) 
 topkglobal GGnr /)( =  (36) 
where localr  is the local reward, globalr  is the global reward, 
ϕ  is a weighting factor, kG is the fitness of agent k , aveG is 
the average fitness of all agent at the current generation, 
and topG is the best fitness until previous generation. We 
chose a simple greedy−ε proportional policy. 
 

5. APPLICATION TO THE CORE DESIGN OF A 
 BWR 

We applied the MAA proposed in this paper to the actual 
core design of a BWR plant with 115 fuel assemblies and 
1356 MWe, and the performance was compared with the 
integrated two-stage optimization technique using improved 
GA that had been proposed before. This MAA was 
introduced into the first stage of this integrated two-stage 
optimization technique. Table 1 shows the parameter of LP 
optimization in the first stage. s is upper generation 
numbers of LP, t is upper generation numbers of CRP, and 
Sc is interval generations of self-reproduction. Table 2 
shows the parameters of CRP optimization in the second 
stage. Target values in the objective functions are shown in  
 

Table 1 Parameters of LP optimization in the first stage 

M s  t  Sc 
30 100 2 10 

 

Table 2 Parameters of CRP optimization in the second stage 

Nc Nt Posin Posout Posall 
5 6 60 100 200 

 

Table 3 Target values 

      
0.9980 0.9974 0.9968 0.9963 0.9962 0.9986

    LPε    

1.70 0.95 0.95 111% 0.0003   
 

Table 3. The parameters were used 0.1 forα , 0.5 for ε ,ϕ , 
and 0.9 for γ . In the integrative two-stage optimization 
using the MAA, we used the value of 30 as the number of 
agents (M). 
 
In applying this multi-agent technique to an actual 
combinatorial optimization problem, only the single 
coupling operation is not performed but convergent ability 
improves by the combination of several coupling operations 
corresponding to the problem to be solved. In out pretest, 
the best convergence performance was obtained in the 
combination of a coupling operation of executing the 
backward convection coupling calculation of one dimension 
during nine generations after the forward convection 
coupling calculation of one dimension during one 
generation. The following three cases were compared as an 
agent in the neighborhood.  

• Case 1 Random variable coupling 
• Case 2 Probable variable coupling by the roulette 

strategy 
• Case 3 Variable coupling by the competition rule 

In the case of the backward convection coupling calculation, 
when each case was adjusted to four as the number of 
agent’s firing elements, the best result was obtained. In the 
case of the forward convection coupling calculation, the 
method in which all elements states of the current agent 
change to all elements states of the neighborhood agent was 
adopted. In addition, the minimization problem was 
converted to a maximization problem by using the fitness 
functions of the Eq. (18) and the Eq. (20) respectively in the 
first stage and the second stage instead of the minimization 
function of the Eq. (21). 
 
The results of applying the MAA and conventional two-
stage GA to the optimization of the actual core design of a 
BWR are shown in Table 4. This table shows the generation 
numbers of the average value, the best value, the worst 
value, and the standard deviation until reaching the 
optimum LP in ten trials with a different initial value in 
each case. The initial values are decided randomly using 
random numbers. The convergence performance is 
improved in three cases using the MAA compared with 
conventional two-stage GA, as shown in Table 4. Moreover, 
of cases 1-3, the best convergence performance was 
obtained in case 2 using a probable variable coupling by the 
roulette strategy.  
 
The transition of entropy, numbers of renewal agents, and 
fitness function with generation renewal in a case near the 
average value of case 2 are shown in Fig.4. Entropy [4] is 
an index of the agent's diversity. As can be seen, the 
repetition of the process in which a local search is 
performed concentrating on the best agent by the forward 
convection coupling, while the agent’s diversity is 
maintained during nine generations by the backward 
convection coupling and a global search is performed in 
part, plays the role of keeping the balance between a global 
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search and a local search. 
Fig.5 shows an example of optimal LP and Fig.6 shows an 
example of optimal CRP. 
 
Table 4 Numbers of generations for optimum LP and CRP 

Multi-agents + GA  Two-stage 
GA Case 1 Case 2 Case 3

Generation 
Numbers      

Average 48 40 33 42 
Worst 74 72 60 68 
Best 21 15 13 22 

Sigma (%) 5.8 5.5 4.5 4.5 
(M = 30, 10 trials / case) 

 
Fig. 5 Example of optimal loading pattern (case of 5CC ) 
 

6. CONCLUSION 
In this paper, MAA was applied to the optimization of the 
automatic core design of a BWR, and the performances 
were compared with conventional two-stage GA. The 
convergence performance was considerably better than 
conventional two-stage GA alone. The reason is that A good 
solution is searched early by combining the coupling 
operation using the multi agents. As a result, the design time 
has decreased by about 30% in the complex automatic core 
design of a BWR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Examples of optimal control rod pattern 
 

 REFERENCES  
[1] Y. Kobayashi, E. Aiyoshi, “Optimization of Boiling 
Water Reactor Loading Pattern Using Improved Genetic 
Algorithm,” Proceeding of American Nuclear Society 
International Topical Meeting on Nuclear Plant 
Instrumentation Control and Human-Machine Interface 
Technologies, Washington DC, November, 134-156, 2000. 
[2] Y. Kobayashi, E. Aiyoshi, “Optimization of Boiling 
Water Reactor Loading Pattern Using Genetic Algorithm,” 
Nuclear Science and Engineering, 142,119-139, 2002. 
[3] C. Watkins, P. Dayan, “Q-learning,” Machine learning, 
8, 279-292, 1992. 
[4] N. Mori, J. Yoshida, H. Tamaki, H. Kita, and Y. 
Nishikawa, “A Thermodynamical Selection Rule for the 
Genetic Algorithm,” Proceedings of  IEEE ICEC’95, 188-
192, 1995. 
 
 

Fig. 4  Transition of entropy, numbers of renewal agents and fitness Function 
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