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Abstract— This paper is concerned with unknown input
observers in the case of switched linear discrete time systems.
Sufficient conditions of global convergence of such kind of
observers along with a systematic procedure to design the
gains of the observers is proposed. A discussion about the
existence of such observers is provided.

I. INTRODUCTION

In recent years, the study of switched systems has
received a growing attention in control theory and practice.
By switched systems we mean a class of hybrid dynamical
systems consisting of a family of continuous (or discrete)
time subsystems and a rule that governs the switching
between them [1]. Most of the contributions in this field
deal with stability or controllability analysis and some
control design problems [2], [3], [4]. On the other hand,
Unknown Input Observers (UIO) have been widely studied
and commonly used in engineering applications. One of
the most well-known practical interest of such kind of
observers is the fault detection and isolation problem.
Nevertheless, UIO have been largely investigated for
linear systems [5][6][7][8] or bilinear systems [9]. To
our knowledge, there is no result related to the design of
UIO for switched systems. This motivates the present work.

In this paper, an unknown input observer is proposed
for state reconstruction of switched linear discrete time
systems. Conditions of global convergence of the observer
are derived. It is shown that the conditions differ from the
linear case in a substantial way and are based upon a LMI
approach.

Notation
Throughout the paper, for a symmetric matrixX, X > 0
indicates thatX is positive definite and the symbol(•)T

denotes each of its symmetric block.‖.‖ stands for the
Euclidean norm.X† corresponds to the Moore-Penrose
generalized inverse ofX given byX† = (XT X)−1XT .

II. PROBLEM STATEMENT

We consider switched linear systems with the following
dynamics :

{
xk+1 = Aαxk + Eα + Bαuk

yk = Cαxk
(1)
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where xk ∈ Rn is the state,uk ∈ Rr is the control
input and yk ∈ Rm, m < n, is the output vector.
{(Ai, Bi, Ci, Ei) : i ∈ E} are a family of matrices of
appropriate dimensions parameterized by an index set
E = {1, 2, ..., N} and α : Rn × N → E is a switching
signal (i = α(xk, k)). The switching sequence may also be
generated by any strategy or supervisor. We assume that the
switching signal is unknown a priori but real time available.

The problem considered in this paper can be sketched
as follows : design an unknown input observer such that
the reconstructed statêxk asymptotically coincides withxk

given anyuk and any initial statêx0 :

lim
k→∞

‖xk − x̂k‖ = 0 ∀x̂0 and ∀uk (2)

A. The standard linear case

Consider the autonomous discrete-time linear system :
{

xk+1 = Axk + Buk

yk = Cxk
(3)

The observer guaranteeing the global convergence of the

state reconstruction errorεk
4
= xk− x̂k, is known to get the

form : {
x̂k+1 = ẑk+1 + Qyk+1

ẑk+1 = Nẑk + Lyk
(4)

with the matrices verifying :




P = 1n −QC
N = PA−KC
L = K + NQ

(5)

It is called an Unknown Input Observer sinceuk is not
available. Details concerning unknown input observers for
linear discrete-time systems are provided for instance in [6].

It can be shown by direct substitutions that the dynamics
of the state reconstruction error obeys the following equa-
tion :

εk+1 = (PA−KC)εk + PBuk (6)

whereP and K are two matrices which must ensure the
convergence ofεk towards zero.
A necessary and sufficient condition for the existence of the
observer (4) is given by the following theorem :

Theorem 1. [6] For the system (3), the observer (4) exists
if and only if :

ia) rank(CB) = rank(B) = r
iia) the pair (PA, C) is detectable



On one hand, the conditionia) ensures the existence of
a gainQ causing the termPB to vanish, that is a gainQ
being solution of :

B = QCB (7)

The general solution of (7) is of the form :

Q = B(CB)† + Y (1m − (CB)(CB)†) (8)

with Y an arbitrary matrix.
On the other hand, the additional conditioniia) ensures the
existence of a gainK which causes the matrixPA−KC
to be Hurwitz and so the errorεk to converge towards zero.

In order to extend such an observer to switched linear
systems, it is convenient to rewrite (4) into a single recur-
sion :

x̂k+1 = (PA−KC)x̂k + Kyk + Qyk+1 (9)

B. The switched linear case

For system (1), a natural extension of the unknown
linear input observer structure is proposed in this paper
and gets the following dynamics.

x̂k+1 = (PαAα −KαCα)x̂k + Kαyk + Qαyk+1 + PαEα

(10)
with Pα = 1n −QαCα.
Subtracting (10) from (1) yields :

εk+1 = (PαAα −KαCα)εk + PαBαuk (11)

with εk = xk − x̂k the state reconstruction error. In the
next section, conditions of global convergence of this error
towards the origin are derived. It will be shown that these
conditions differ from the linear case in a substantial way.

III. MAIN RESULT

First, in order to achieve an input independence
property, the termsPiBi, i ∈ E , in (11) have to vanish.
Thus, following reasonings of the linear case, it can be
stated the following proposition.

Proposition 1. For (1)-(10), the state reconstruction error
equation (11) is input independent wheneverrank(CiBi) =
rank(Bi) = r.

In fact, this proposition ensures that for alli ∈ E ,
equationsPiBi = 0 can be solved. Indeed, fori ∈ E ,
PiBi = 0 entails thatQi is subject to :

Bi = QiCiBi (12)

Proposition 1 ensures the existence of the matricesQi,
solutions of (12). The general expression ofQi is :

Qi = Bi(CiBi)† + Yi(1m − (CiBi)(CiBi)†) (13)

with Yi an arbitrary matrix,i ∈ E . A thorough discussion
about the choice ofYi will be subsequently carried out.

WhenQi, i ∈ E , satisfies (13), (11) turns into :

εk+1 = (PαAα −KαCα)εk (14)

Compared with the linear case, a major distinction lies
in the computation of the matricesPi and Ki, i ∈ E , for
achieving the global convergence. It is worth emphasizing
that ensuring each linear dynamics to be stable does not
necessarily guarantee the stability of the switched linear
dynamics. As a consequence, the conditioniia) of Theorem
1 does no longer hold. That’s why a new condition has to
be derived. Moreover,Yi involved in Pi plays the role of
a parameterization. In some special cases discussed in the
next section, an arbitrary choice ofYi may not be suitable
(See [5] in the linear case). To overcome the problem of an
arbitrary choice ofYi, the computation of a suitableYi must
be included in the design procedure. From this perspective,
the dynamical matrix involved in the state reconstruction
error (14) is rewritten as follows :

εk+1 = (Ãα − K̃αC̃α)εk (15)

with Ãi = Ai − Bi(CiBi)†CiAi, K̃i = [Ki Yi] and C̃i =
[CT

i (CiÃi)T ]T , i ∈ E .
Let note that the rank condition of Proposition 1 ensures
also(CiBi)† to exist. Conditions of global stability of (15)
are stated in the following Theorem.

Theorem 2. The unknown input observer (10) ensuring
that the errorε converges globally towards the origin exists
and can be designed whenever the following conditions are
satisfied :

ib) rank(CiBi) = rank(Bi) = r
iib) there exist matricesGi, Fi and symmetric matricesSi

such that the LMI’s (16) are feasible
[

Gi + GT
i − Si (•)T

ÃT
i Gi − C̃T

i Fi Sj

]
> 0 (16)

∀(i, j) ∈ E × E .

Moreover, the resulting gains are directly given bỹKi =
(G−1

i )T FT
i .

Proof 1. ib) ensures the input independence property ac-
cording to Proposition 1. The proof of iib) follows similar
reasoning as in [10].

The observer design involves the computation of the
matricesKi andYi which can be extracted from the parti-
tioning K̃i = [Ki Yi]. The matricesQi are then computed
from (13).

IV. OBSERVABILITY AND DETECTABILITY
ISSUES

The following proposition gives a necessary condition of
existence of the proposed unknown input observer.

Proposition 2. A necessary condition for the existence
of the proposed unknown input observer is that the pairs
(Ãi, C̃i) are detectable.



The feasibility of (16) includes the necessary condition
of Proposition 2. Indeed, according to Theorem 2,
satisfying (16) is equivalent to guarantee stability of the
error dynamics whatever the switching rule can be. This
incudes the case where the switching rule leads to a linear
behavior. Hence,̃Ai − K̃iC̃i has to be Hurwitz, that is the
pairs (Ãi, C̃i) must be detectable.

The matrixYi plays an important role for the necessary
conditions. For some special setting ofYi, the pair
(PiAi, Ci) might not be detectable, preventing (14) from
being stable. Based on the new formulation (15),Yi

belongs to the unknown matrices through̃Ki. And yet,
since feasibility of (16) includes the necessary condition
of detectability of Proposition 2 as mentioned before, the
solution of (16) enforcesYi to belong to an admissible set
of solutions. As a result, the problem of a suitable choice
of Yi does no longer hold.

Moreover, additional remarks can be made according to
the respective dimensions of the input and outputr andm:

a) m < r
In this case, the condition of Proposition 1 which is a
necessary condition is not fulfilled. The observer (10)
cannot exist.

b) m = r
In this case,(CiBi)† = (CiBi)−1 and soCiÃi = CiAi −
CiBi(CiB

−1
i )CiAi = 0. The observability matricesQO

i

reduce to :

QO
i =

[
Ci

02m(n−1)×n

]

Hence,rank(QO
i ) = rank(Ci) = m < n which implies

that all the pairs(Ãi, C̃i) are unobservable. This means that
there existn − m eigenvalues which are kept unchanged
whatever beK̃i. On one hand, if at least one of those
fixed eigenvalues get a modulus greater than one, the pairs
(Ãi, C̃i) are not detectable and in view of Proposition 2,
the observer (10) cannot exist. On the other hand, if all the
fixed eigenvalues get a modulus less than one, condition
(16) is likely to be feasible.
Furthermore, sinceCiÃi = 0, one has :

Ãi − K̃iC̃i = Ãi −KiCi − YiCiÃi = Ãi −KiCi (17)

Consequently, the solution of (16) does no longer depend
on Yi which can be set to zero. From a practical point of
view, owing to numerical problems,CiÃi might not strictly
be zero, causing (16) to be bad conditioned. Taking into
consideration (17), (16) can be equivalently reformulated :

[
Gi + GT

i − Si (•)T

ÃT
i Gi − Ci

T Fi Sj

]
> 0 (18)

and the resulting gains are directly given by
Ki = (G−1

i )T FT
i , i ∈ E . The gains Qi reduce to

Qi = Bi(CiBi)−1 according to (13).

c) m > r
In this case, the observability matricesQO

i may be of
maximal rankn. Consequently, all the eigenvalues could be
arbitrarily fixed. Besides, if the conditioniib) of Theorem
2 is feasible then the matricesPi and Ki of the observer
(10) are designed from both the solutions of (16) and the
solutions of (13).

V. ILLUSTRATIVE EXAMPLE

We want to design an unknown input observer for a
system given by (1) withxk = [x1

k x2
k x3

k]T :

- Ai =




0 0.89 −2
hi 0.89 0
−0.1 0 0.1


, h1 = −1.28, h2 = 1.95

- E1 = [0 0 0]T andE2 = [0 − 6(a + λ) 0]T

- the input matrix is chosen to be constant such that
B1 = B2 = [1 − 2 1]T

The switching rule is defined by:
- α = 1 if x1

k < 6
- α = 2 if x1

k ≥ 6

A. First setup

The considered setup is related to the output matrix
C1 = C2 = [1 1 − 1] (m = 1).

Let us apply Theorem 2. The first conditionib) is
satisfied sincerank(CiBi) = rank(Bi) = 1, i = 1, 2.
This setup corresponds to the casem = r = 1. Thus,
according tob) of Section IV,rank(QO

i ) = rank(Ci) = 1
and only one eigenvalue of the state reconstruction error
matrix Ãi − K̃iC̃i can be fixed arbitrarily. The two
remaining eigenvalues are{−3.0427, 0.6127} for i = 1
and {−0.06837,−0.1313} for i = 2. Since one of the
eigenvalues has a modulus greater than one (fori = 1),
the pair (Ã1, C̃1) is not detectable and according to the
necessary condition of Proposition 2, the observer (10)
cannot exist.

B. Second setup

The considered setup is related to the output matrix

C1 = C2 =
[

1 1 −1
2 −1 1

]
(m = 2).

Let us apply Theorem 2. The first conditionib) is satisfied
sincerank(CiBi) = rank(Bi) = 1, i = 1, 2. This setup
corresponds to the casem > r. Thus, according toc) of
Section IV and sincerank(QO

i ) = 3, the pairs(Ãi, C̃i) are
observable and the necessary condition of Proposition 2 is
satisfied. By solving (16), it turns out thatiib) is feasible
and yields :

K1 =

2
4

0 0
0.3166 −0.4893
0.3166 −0.4893

3
5 , K2 =

2
4

0 0
0.8295 0.0236
0.8295 0.0236

3
5

Y1 =

2
4

0.2008 0.6647
−0.5069 1.4647
−0.8646 1.0257

3
5 , Y2 =

2
4

0.9074 −1.1019
−1.2495 3.3212
−1.2358 1.9537

3
5



From (13), one obtains :

Q1 = Q2 =

2
4

0.3333 0.3333
0.2060 −0.3176
−0.4606 0.0157

3
5

Simulation results are performed withuk given in Figure
1. The observer behavior is depicted on Figure 2.
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Fig. 1. The inputuk
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Fig. 2. The switching ruleα and the observer error components

VI. CONCLUSION

The work presented in this paper deals with unknown
input observers for switched linear discrete time systems.
The existence of such observers, the conditions of global
convergence along with a systematic procedure to com-
pute the gains have been derived. The computation of the
observer gains is performed by solving a tractable set of
Linear Matrix Inequalities. Th extension of this work to
nonlinear polytopic systems have been performed in [11]
where the application to chaos synchronization of discrete-
time systems for communications purposes is addressed.
The information to be masked is embedded in the chaotic
dynamics of thetransmitterand acts as an external input. It

cannot be transmitted to thereceiverfor security preserva-
tion purposes. Hence, thereceiversystem must be designed
such that the information can be unmasked, given the only
available output data consisting of a function of the state
vector.
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