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Abstract— In this paper, we propose a novel path-planning
and obstacle avoidance algorithm GODZILA for navigation
in unknown environments. No prior knowledge of the envi-
ronment is required. The path-planning algorithm follows a
purely local approach using only the current range sensor
measurements at each sampling instant and requiring only a
small number of stored variables in memory. No map of the
environment is built during navigation. This minimizes the
memory and computational requirements for implementation
of the algorithm, a feature that is especially attractive for small
autonomous vehicles. The algorithm utilizes three components:
an optimization algorithm, a local straight-line path planner
to visible targets, and random navigation. It is proved, for
navigation in any finite-dimensional space, that the path-
planning algorithm converges in finite time with probability
1. The performance of the algorithm is demonstrated through
simulations for path-planning in two-dimensional and three-
dimensional spaces. It is seen that a relatively small number
of range sensor measurements is sufficient even in complex
unknown environments.

I. INTRODUCTION

Several problems encountered in a variety of applications
including trajectory planning for vehicles and robotic arms
subject to constraints can be formulated as path-planning
and obstacle avoidance problems. Several approaches have
been proposed in the literature to address this problem in
a variety of scenarios. These approaches can be broadly
classified into two categories based on whether they require
building a map of the environment. In two-dimensional
space, the path planning problem has been solved in quite
general cases using the “Bug” algorithm and its variants
[1–3]. This class of algorithms is essentially based on
attempting a straight-line path to the target and tracking
the contour of any encountered obstacle. They require only
a few points from the path to be stored in memory and
do not build any map of the environment. However, since
they depend critically on the fact that any two-dimensional
obstacle has a one-dimensional boundary and hence, that
it is always possible to “go around” an obstacle, these
algorithms cannot be generalized to higher-dimensional
spaces. In higher-dimensional spaces, the available algo-
rithms construct some form of a map of the environment
and utilize it for navigation. Approaches along this direction
include potential-field based methods [4–6], graph theoretic
methods [7–9], control-theory based methods [10], and vari-
ous heuristic methods. Of these, the potential-field approach
which considers a physical analogy with electromagnetic
field patterns generated by a negatively charged target and
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positively charged obstacles appears to be the oldest and
the most popular. While this method was first developed
for known environments [5,6], numerous techniques have
been proposed for navigation in unknown environments
[11] by incrementally building an obstacle map during the
operation of the algorithm. Harmonic potential fields [12–
14] have been considered for elimination of local minima.
Variants of the potential-field approach which utilize a
similar philosophy include analogies with fluid dynamics
[15] and current flow in resistive grids [16]. However, these
approaches are based on the building of an obstacle map
which could impose formidable memory and computational
requirements. While randomized algorithms [17,18] using
random walks and Brownian motions have been proposed
to reduce the computational complexity, these algorithms
still require building and processing of an obstacle map, a
task that is particularly not feasible in the context of small
autonomous vehicles which have tight payload and power
constraints.

In this paper, we propose an algorithm GODZILA
(Game-Theoretic Optimal Deformable Zone with Inertia
and Local Approach) which provides a solution to the
navigation problem in completely unknown environments
without requiring the building of an obstacle map. The algo-
rithm follows a purely local approach using only the sensor
measurements at the current time and requiring only a small
number of stored variables in memory. This minimizes the
memory and computational requirements for implemention
of the algorithm, a feature that is especially attractive for
small autonomous vehicles. The trajectory is generated
through the online solution of an optimization cost at each
sampling instant. It is shown that the optimization cost can
be chosen so that the minimizer can be obtained in closed
form. The optimization cost has three terms which penalize,
respectively, motion in directions other than the direction to
the target, motion towards obstacles, and back-tracking. In
addition to the optimization algorithm, GODZILA includes
two components, a local straight-line planner utilized if the
target is visible and navigation towards a random target.
Since the algorithm follows a local approach, it is possible
to be caught in a local minimum. When a local minimum
or a “trap” is detected, navigation towards a random target
is initiated to escape the trap. It is shown that GODZILA
provides convergence to the target in finite time with prob-
ability 1 in any finite-dimensional space. The path planning
and obstacle avoidance problem that we consider is outlined
in Section II. The three components of the GODZILA
algorithm, i.e., optimization cost-based navigation, local
straight-line motion towards a visible target, and random
navigation when a local trap is detected are explained
in Sections III, IV, and V, respectively. The complete
algorithm is summarized in Section VI and the proof of
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convergence is provided in Section VII. Simulations are
presented in Section VIII.

II. PROBLEM FORMULATION

A path-planning algorithm can be viewed as a dynamic
system operating on sensor measurements (inputs) and
generating heading commands (outputs). It might incorpo-
rate memory (state), the simplest model being one that
“remembers” the current position and heading. Thus, a
path-planning algorithm can be considered as an ordered
quadruplet (U, Y,X, T ) where U is the input space, Y is
the output space, X is the state space, and T is the time
set. The underlying set over which the trajectory-generation
problem is posed is taken to be a Hilbert space1 H . In this
case, U = Rn, Y = H,X = H × H , and T ⊂ R. Here, n
is the number of measurement sensors available.

Fig. 1. The system.

Figure 1 illustrates the interaction of the environment,
the sensors, and the algorithm in the path-planning system.
The sensors provide inputs s ∈ U to the path-planning
algorithm. The sensors themselves can be interpreted as
a system with input ue being a (possibly time-dependent)
subset of H and output s ∈ U . Variable ue defines the
obstacle set, i.e., the set of points in H occupied by
obstacles. The sensors return the distance from the current
position to the obstacle set in the directions of the sensors.
Each sensor direction is defined by a unit vector, i.e., by an
element of H . The sensor geometry provides q ∈ Hn, with
the ith element being the unit vector defining the direction
of the ith sensor. The sensor outputs are described as

si = inf{d ∈ [0,∞) : xp + d(xh + qi) ∈ ue}, (1)
i = 1, 2, . . . , n ; s = (s1, s2, . . . , sn) (2)

1A Hilbert space is a vector space with an inner product < ., . >
such that the metric space endowed with the metric ρ induced by the
inner product is complete. In several applications, H is simply Rn, the
n-dimensional Euclidean space.

where xp and xh are the current position and heading
unit-vectors, respectively. If there is no d > 0 such that
xp + d(xh + qi) ∈ ue, then si is defined to be ∞ .
Variables si are the distances from the current position to
the obstacle set in the n sensor directions (see Figure 2).
The sensor measurements can be modified to enforce a
clearance zone by exaggerating the physical dimensions
of the vehicle. Since this exaggeration is only relevant
when the obstacles are close to the vehicle, introducing, for
instance, s′i = si − pie

−si with pi being positive constants,
we have s′i ≈ si in the far zone and s′i ≈ si−pi in the near
zone. This weighting induces large penalties when obstacles
are near and small penalties when obstacles are distant.

Fig. 2. Sensor Measurements.

We now formulate the path-planning objective. Roughly
stated, the objective is to generate a trajectory that tracks a
target trajectory xd(t) while avoiding the obstacle set ue(t).
This objective is stated more explicitly as follows.

Path-planning Objective: Given time-signals xd(t) and
ue(t), a final time tf , and a positive constant εc , generate a
time-signal xh(t) such that the ensuing position signal has
the properties2

a) inf
t

ρ(xp(t), ue(t)) ≥ εc

b) lim
t→tf

ρ(xp(t), xd(t)) = 0. (3)

Property (a) characterizes the obstacle-avoidance require-
ment with εc being a specified clearance to be maintained
whereas property (b) is the target-reaching requirement. If
only the final position is specified, xd(t) is simply a constant
xd. The GODZILA path-planning and obstacle avoidance
algorithm achieves this objective using a combination of an
optimization procedure, a random walk, and approach to a
visible target. At any time, the optimal heading is computed
by an optimization procedure using as effective target one
of the following:

1) The actual target xd

2) A fictitious target location on an intermediate straight-
line trajectory to the target xd

3) A random target

2Here, we use the customary definition of the distance between an
element x of a metric space H and a subset A of the metric space as
ρ(x, A) = infa∈A ρ(x, a), with the distance being defined as infinity if
A is the empty set.
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III. OPTIMIZATION COST BASED NAVIGATION

The optimization is performed with respect to an objec-
tive function given by

J(y) = J1(y) + J2(y) + J3(y) (4)
which has the following three components:

1) J1(y) - a component that penalizes motion in direc-
tions other than the target direction,

2) J2(y) - a component that penalizes motion towards
obstacles, and

3) J3(y) - a component that penalizes back-tracking.

The first component J1(y) which attempts to make the
vehicle move in the direction of the target is of the form

J1(y) = f1

(∣∣∣∣
∣∣∣∣y −

(xd − xp)

||xd − xp||

∣∣∣∣
∣∣∣∣
)

g1(||xd − xp||) (5)

where f1 is a class-K function3 and g1 is a class-L func-
tion4. Let g1(0) be large so that, in the immediate vicinity
of the target, J1(y) is the dominant term in J(y).

The second component J2(y) attempts to prevent motion
in directions that would bring the vehicle in the proximity of
obstacles. The effect of this component is more important
in directions that are either along the current heading or
along the straight-line heading to the target. This component
should also encourage motion in directions along which
obstacles are far away, especially if such a direction is along
the straight-line heading to the target. Such a behavior is
attained by using a function J2(y) of the general form

J2(y) =
∑
i∈I1

g21(s
′
i)g22

(∣∣∣∣
∣∣∣∣y −

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)
×

×

[
g23

(∣∣∣∣
∣∣∣∣ (xd − xp)

||xd − xp||
−

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)

+g24

(∣∣∣∣
∣∣∣∣xh −

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)]

−
∑
i∈I2

f21(s
′
i)g25

(∣∣∣∣
∣∣∣∣y −

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)
×

× g26

(∣∣∣∣
∣∣∣∣ (xd − xp)

||xd − xp||
−

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)

(6)

where g21, . . . , g26 are class-L functions and f21 is a
positive monotonically increasing bounded function. I1∪I2

is a partition of the set {1, 2, . . . , n} where i ∈ I1 if s′i ≤ C
and i ∈ I2 if s′i > C with C being a threshold clearance
such that if the nearest obstacle in a direction is farther
than C, then it can be considered a relatively obstacle-
free direction. g21 is picked such that g21(0) is large. This
implies that in the close vicinity of obstacles, the effect
of obstacles predominates in the objective function. By
picking an appropriate value of g21(0) relative to the sizes
of the other functions in the optimization cost, a prescribed
clearance to obstacles can be imposed.

3A continuous function f : [0,∞) �→ [0,∞) is said to be a class-K
function if it is strictly increasing and f(0) = 0.

4A function f : [0,∞) �→ [0,∞) is said to be a class-L function if it
is continuous and strictly decreasing.

The third component J3(y) of the objective function
penalizes change in heading and is of the form

J3(y) = f3(||y − xh||) (7)

with f3 being a class-K function.

J1(y) penalizes the deviation of y from the “straight-
line” heading to the target position. J2(y) penalizes ap-
proach to obstacles and J3(y) penalizes change in heading.
J1(y) and J2(y) address the requirements (b) and (a),
respectively, of the path-planning objective. J3(y) which
is inspired by the physical notion of inertia is instrumental
in preventing limit-cycle oscillations. Without J3(y), the
vehicle could be caught in an endless cycle of back-tracking
in a situation wherein the obstacle avoidance incentive is
exactly counterbalanced by the target-reaching incentive.
J3(y) essentially makes a potential limit cycle spatially
larger and hence provides better chance of finding a way
around a blocking obstacle. If J(y) has a unique minimum
over the unit ball B = {y : ||y|| = 1}, the output of
the algorithm is the unique minimizer. If the minimizer is
not unique, the output is defined as one which gives the
smallest J3(y). More explicitly, define Pcm = {y ∈ B :
J(y) ≤ J(y′)∀y′ ∈ B}. Pcm is not empty since J(y)
is a continuous function defined on the compact set B.
The output yh of the algorithm is any y ∈ Pcm such that
J3(y) ≤ J3(y

′)∀y′ ∈ Pcm. Alternatively, the minimization
can be performed over Pc, the projection of the convex hull
of the set (q1, q2, . . . , qn) onto the unit ball. A mechanism
similar to the one outlined above can be used for choosing
one of a set of minima in the case that the optimization
problem does not have a unique minimizer.

The optimization cost J(y) includes the design functions
f1, f21, f3, g21, g22, g23, g24, g25, and g26 which are free
to be picked by the designer. Of particular interest is the
case when f1, f3, g22, and g25 are quadratic. The class-
K functions f1 and f3 can be picked as f1(r) = f1r

2

and f3(r) = f3r
2 where f1 and f3 are positive constants.

The class-L functions g22 and g25 can be chosen to be
g22(r) = g22(4 − r2) and g25(r) = g25(4 − r2) where
g22 and g25 are positive constants. Note that the arguments
of g22 and g25 in (6) being the norms of the differences
between two unit vectors are smaller than 2. Choosing f1,
f3, g22, and g25 to be the specified quadratic functions,
the optimization problem can be solved in closed form to
obtain the optimal heading. Using the Lagrange multiplier
method to model the fact that the optimization is to be
performed over the unit ball, the augmented optimization
cost is Jaug(y) = J(y) + ζ(< y, y > −1). The optimal
heading is given by yh = Y/||Y || where

Y = f1g1(||xd − xp||)
(xd − xp)

||xd − xp||

−g22

∑
i∈I1

g21(s
′
i)

[
g23

(∣∣∣∣
∣∣∣∣ (xd − xp)

||xd − xp||
−

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)

+g24

(∣∣∣∣
∣∣∣∣xh −

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
)]

(xh + qi)

||xh + qi||

+g25

∑
i∈I2

f21(s
′
i)g26

(∣∣∣∣
∣∣∣∣ (xd−xp)

||xd−xp||
−

(xh+qi)

||xh+qi||

∣∣∣∣
∣∣∣∣
)
×

112



×
(xh+qi)

||xh+qi||
+f3xh. (8)

In practice, the calculated heading is translated into a
heading rate that attains the required heading in a time
dictated by the capabilities of the vehicle. The required
heading rate is αmax

yh−xh

||yh−xh|| where αmax is the maximum
heading rate achievable by the vehicle.

The above optimization scheme generates a trajectory to
solve the path-planning problem. In a practical application
of the algorithm, the linear velocity of the vehicle is also
free to be chosen. This freedom in choosing the linear
velocity is particularly useful when the maximum heading
rate achievable by the vehicle imposes a constraint since in
that case, the ideal heading generated by the algorithm will
only be attained after a delay so that it is important that
the vehicle not move too far in that time interval. Thus, the
linear velocity v is designed to be such that it is small in
the close vicinity of obstacles, i.e., v = λ(sds) where λ is
a positive monotonically increasing bounded function and
sds given by

sds = min
i∈{1,...,n}

γv1(si)

[
γo

v1

+γv2

(∣∣∣∣
∣∣∣∣xh −

(xh + qi)

||xh + qi||

∣∣∣∣
∣∣∣∣
) ]

(9)

indicates proximity of obstacles. γv1 and γv2 are class-K
functions and γo

v1 is a positive constant. This ensures that
the speed is smaller when obstacles are close in the heading
direction. When xd is constant, it is also desirable that the
linear velocity be small when the target is near. The linear
velocity can be defined as v = λ(sds)φ(||xp − xd||) where
φ is a bounded class-K function.

IV. APPROACHING A VISIBLE TARGET

At any time, if the target is visible, i.e., the nearest
obstacle in the direction of the target is farther than the
target, then the vehicle can proceed in a straight-line towards
the target. This is particularly true in the case that xd(t)
is a constant. However, a straight-line path to the target
may bring the vehicle in close proximity with obstacles. An
alternative is to prescribe the straight-line path to the target
as a desired trajectory and navigate along this path using
the optimization-based approach described in Section III. If
a clear straight-line path to the target is detected at time
t0 when the vehicle is at position xp0, then a straight-line
trajectory to the target is given by

x̂d(t) = xp0 + (xd(t) − xp0)µ(t − t0) (10)
where µ(r) is an increasing function that takes the value
1 for r ≥ Tsl. Hence, for times later than t = t0 + Tsl,
x̂d(t) coincides with xd(t). The optimal heading at each
time instant is computed using the optimization algorithm
described in Section III with xd replaced by x̂d. This
ensures that the vehicle stays away from obstacles while
tracking the straight-line trajectory to the target as closely as
possible. This feature is of particular use when the vehicle
needs to pass through a narrow corridor to approach the
target. The introduction of an intermediate trajectory makes
the effective target location closer to the vehicle so that the
g1(||x̂d−xp||) term is larger. This, indeed, is the motivation
for introducing the class-L function g1.

If due to detours caused by the presence of obstacles, the
vehicle does not reach the target location xd by time t0+Tsl,
then at the next time instant at which a clear straight-line
path to the target is detected, another intermediate trajectory
can be mapped.

To implement this feature, one of the sensors can be
mounted on a pan-and-tilt stage which keeps that sensor
constantly in the direction of the target to detect a possi-
ble clear straight-line path. Alternatively, the vehicle can
periodically be rotated to align one of the sensors in the
direction of the target.

V. RANDOM NAVIGATION

It is possible for the vehicle to be caught in a local limit
cycle oscillation. The introduction of the inertial term in
the optimization cost has the effect of increasing the spatial
extent of possible limit cycles. However, if the obstacle
set is spatially large, this feature by itself cannot prevent
potential limit cycle situations. This is a consequence of
the fact that the navigation is based on local sensor data
and no map of the environment is built. A local limit cycle
or a trap can be detected using, for instance, the variance
of the position variable over some number of successive
sampling instants. Alternatively, the distance to the target
can be used as a metric and a trap situation can be inferred
if this distance does not change significantly over some
period of time. If a trap is detected at time t0, a random
target location x̂d is chosen. This process is analogous
to simulated annealing. The random location x̂d can be
picked to be a certain (fixed or random) distance droam

away from the current position in a random direction in
which the distance to the nearest obstacle is larger than
droam. Navigation is continued for a time Troam using
the optimization procedure described in Section III with xd

replaced by x̂d. If a trap situation has been detected i times
till time t, α(i) successive random moves using randomly
chosen targets are performed where α(i) is a nondecreasing
positive integer function. At time t = t0 + α(i)Troam, the
target location is restored as xd.

VI. SUMMARY OF THE GODZILA ALGORITHM

The algorithm is initialized at time t = 0. The target
trajectory xd(t) is provided. The algorithm “knows” its
position xp and its heading xh.

The variables targetvisible, trap, and ntrap are initialized
to be zero. At each time t, do the following:

• if (!targetvisible)&(!trap)&(the distance to the nearest
obstacle in the direct heading to the target is more
than the distance to the target) then targetvisible=1,
xp0 = xp, t0 = t, x̂d = xd

• if (targetvisible)&(t < t0 + Tsl) then x̂d = xp0 +
(xd(t) − xp0)µ(t − t0)

• if (targetvisible)&(t ≥ t0 + Tsl) then targetvisible=0
• if (!targetvisible)&(!trap)&(a trap situation is detected)

then trap=1, t0 = t, ntrap = ntrap + 1, x̂d=randomly
chosen target, nt = 1

• if (trap)&(t ≥ t0 + ntTroam) x̂d=randomly chosen
target, nt = nt + 1

• if (trap)&(t ≥ t0 + α(ntrap)Troam) trap=0
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• if (!targetvisible)&(!trap) then compute optimal head-
ing using optimization algorithm described in Sec-
tion III

• if (targetvisible)||(trap) then compute optimal heading
using optimization algorithm described in Section III
with xd replaced by x̂d

The operators !, &, and || stand for logical NOT, AND,
and OR, respectively.

VII. CONVERGENCE OF THE GODZILA ALGORITHM

The optimization algorithm ensures that a specified clear-
ance to the obstacles is maintained. This is achieved by
choosing a large enough value of g21(0) so that the term in
the optimization cost that attempts to move the vehicle away
from obstacles is dominant. The target reaching objective is
achieved in the sense that it is guaranteed that the probabil-
ity of reaching the target within time t goes to 1 as t → ∞.
To demonstrate this property, assume, for simplicity, that
the target location and the obstacle set are constant in time.
This assumption can be relaxed. Assume, furthermore, that
the underlying space H is finite-dimensional. Hence, H is
topologically equivalent to Rn for some n, and therefore
can be considered to be Rn. We can also assume5 that
a path to the target exists with the prescribed clearance
to the obstacles, i.e., assume that a continuous function
ω : [0, 1] 
→ H exists such that ω(0) = xpi, ω(1) = xd,
and infθ∈[0,1] ρ(ω(θ), ue) ≥ εc. Hence, an open set O ⊂ H
containing xd exists such that the target is visible from all
points in O, i.e., ∀a ∈ O\{xd}

inf

{
d ∈ [0,∞) :

(
a + d

(xd − a)

||xd − a||

)
∈ ue

}
>ρ(a, xd). (11)

The presence of the class-L function g1 in J1(y) with
g1(0) large coupled with the mechanism to generate in-
termediate trajectories from points from which the target
is visible implies that convergence to xd is assured from
a nonempty open subset O1 of O. O1 being an open set
contains a ball of radius r1 > 0 centered at xd. Define
r = 1

2
√

n
min(r1, εc). Consider a gridding of Rn using a

hypercube (or box) of side r in any orientation centered
at xd and its translates. Assuming that an upper bound on
supθ∈[0,1] ||ω(θ)|| is known, i.e., an upper bound on the
excursion required to obtain a path to the target is known,
a bounded subset of Rn and hence a finite number of cells
in the grid need to be considered. Such a bound is always
available in practice. Number the finite number of cells in
this bounded subset of Rn as C1, . . . , CN . A nonempty
subset Nt of {1, . . . , N} exists such that Ci ⊂ O1 for
all i ∈ Nt. Define the subset No of {1, . . . , N} to be
the indices of those cells which atleast partially contain an
obstacle, i.e., No = {i|1 ≤ i ≤ N,Ci ∩ ue �= φ}. Then,
the set of cells which are completely free of obstacles have
indices

Nf = {i|1 ≤ i ≤ n, i �∈ No}. (12)

Since infθ∈[0,1] ρ(ω(θ), ue) ≥ εc, the trajectory ω is com-

5If such a path does not exist, then the posed path-planning problem is
not solvable.

pletely contained in obstacle-free cells, i.e.,

Ω = {ω(θ)|θ ∈ [0, 1]} ⊂
⋃

i∈Nf

Ci. (13)

The optimization procedure in the GODZILA algorithm
enforces the εc clearance and ensures that the cells with
indices in No are not entered. At any time, if a cell with
index in Nt is entered, then convergence to the target is
guaranteed. An adjacency graph can be constructed with the
cells {Ci|i ∈ Nf} as vertices with adjacency between two
cells defined by the cells having a common face. While the
resulting graph may not be a connected graph, a path does
exist between the cell containing the initial position and the
cell containing the target. This is ensured by the fact that
ω is a continuous function and is contained in the cells
corresponding to indices in Nf . The random navigation
constitutes a random walk on this graph. The detection of
a local limit cycle is guaranteed by the strategies outlined
in Section V. The length of the random walk initiated on
detection of a trap increases with time t if the target is
not reached. Being a random walk on a finite graph, the
probability of entering a cell with index in Nt goes to 1 as
t → ∞. Hence, the probability of reaching the target goes
to 1 as t → ∞, i.e., the path-planning algorithm converges
in some finite time with probability 1.

VIII. SIMULATION STUDIES

In this section, the performance of the GODZILA al-
gorithm is demonstrated using simulations in various two-
dimensional and three-dimensional environments. The num-
ber of range sensors used in the two-dimensional simula-
tions is three with the orientations being at angles of 0o, 45o

and −45o with respect to the vehicle heading. The three-
dimensional simulations use five range sensors oriented at
yaw and pitch of (0o, 0o), (−45o, 0o), (45o, 0o), (0o, 45o),
and (0o,−45o) with respect to the current heading.

Simulations with two simple two-dimensional environ-
ments are shown in Figure 3. In Figure 4, a more com-
plicated obstacle map is shown in which the path to the
target lies through a narrow corridor which is visible only
from a small region in the space. Note that the GODZILA
path-planning algorithm uses only the current sensor mea-
surements and avoids building a map of the environment.
Hence, a period of wandering is seen since no way out
of the enclosed space is visible. However, when a local
trap is detected, random navigations are initiated which
successfully bring the vehicle into the region from which
the opening is visible.
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Fig. 3. Two simple two-dimensional obstacle maps.

Figure 5 shows a three-dimensional simulation in which
the vehicle starts from an enclosed region to escape from
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Fig. 4. A more complicated two-dimensional maze.

which it needs to move either above or below the wall. In
Figure 6, a small window is provided in the enclosing wall.
It is seen that the algorithm elects to fly through the window
leading to a shorter path.
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Fig. 5. Three-dimensional simulation: The vehicle flies over the wall to
reach the target. (a) 3D view; (b) Top view.

−80

−60

−40

−20

0

20

40

60

80
−100 −50 0 50

−40

−20

0

20

40

y

x

z

−80

−60

−40

−20

0

20

40

60

80

−100−50050

−40

−20

0

20

40

x

y

z

−80 −60 −40 −20 0 20 40 60 80
−100

−50

0

50

x

y

(a) (b) (c)

Fig. 6. Three-dimensional simulation: The vehicle flies through a window.
(a) 3D view; (b) Another 3D view; (c) Top view.

IX. CONCLUSION

In this paper, we proposed a novel path-planning and
obstacle avoidance algorithm GODZILA for navigation in
unknown environments. The GODZILA algorithm does
not require any prior knowledge of the environment. Fur-
thermore, the algorithm follows a purely local approach
using only the current range sensor measurements at each
sampling instant and requiring only a small number of
stored variables in memory. No map of the environment
is built during navigation. This minimizes the memory
and computational requirements for implementation of the
algorithm, a feature that is especially attractive for small
autonomous vehicles. The algorithm utilizes three com-
ponents: an optimization algorithm, a local straight-line

path planner to visible targets, and random navigation. It
was proved, for navigation in any finite-dimensional space,
that the path-planning algorithm converges in finite time
with probability 1. The performance of the algorithm was
demonstrated through simulations. The algorithm features a
number of design functions that are free to be picked. It is
a topic of further research to characterize the precise effect
of these design functions on the algorithm behavior and to
investigate the use of these functions to satisfy additional
performance requirements.
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