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Abstruct- Traditional missile autopilot design typically uses 
a three loop feedback topology with gains dependent on the 
current flight condition of the missile. These gain values 
are obtained by interpolation on a predefined gain table. The 
gain values that make up this table are designed to balance 
performance and stability on the grid of flight conditions that 
define the missile’s flight envelope. Robustness to parameter 
variation either requires a dense gain table, which necessitates 
a significant amount of on-board memory, or large stability 
margins, which may limit the aggressiveness of the missile’s 
performance. 

This paper describes the continuing autopilot design project 
Adaptive Nonlinear Dynamic Inversion (ANDI). The ANDI 
autopilot uses non-linear dynamic inversion with an adaptive 
element to account for errors in the inversion process. A 
reference model is designed to provide the desired output 
performance, This technique allows the missile’s performance 
to be tuned by simply adjusting a few reference model 
parameters. This results in a design that is robust with 
respect to aerodynamic modeling inaccuracies and to external 
disturbances. 

I. INTRODUCTION 

A missile is a highly agile system that exhibits nonlinear 
behavior. The typical missile autopilot is designed using 
system linearization and linear methods. Generally, no sin- 
gle autopilot design can stabilize the missile and provide the 
performance required over the entire desired flight envelope. 
To account for the changes in missile dynamics with varying 
flight conditions, a grid of design points is selected that 
covers the expected flight envelope. Unique autopilot gains 
are designed for the missile at each design point. This 
process can be both tedious and cumbersome. Typically, 
the gains for a given flight condition are designed using a 
linearization of the missile dynamics following a step com- 
mand. Each autopilot design is then optimized to minimize 
the rise time and the command overshoot, while maintaining 
the required stability margins and flexible body and fin 
attentuation. These gains are then combined to create a gain 
table, which is examined point by point and spurious data is 
reexamined and adjusted. The autopilot gains used during 
flight are obtained by interpolating on this gain table for 
the appropriate gain values for the current flight condition. 
This method of autopilot design and operation is called gain 
scheduling. There are several problems encountered when 
using gain scheduled autopilots. The first is the assumption 
that flight condition changes slowly. When flight condition 
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changes rapidly, such as for a missile with high thrust and/or 
high angle-of-attack flight, the resultant autopilot may not 
possess the stability properties of the linear control designs 
displayed statically at their local flight conditions. The 
second issue is that modifications are often made to a system 
during its service lifetime which require a redesign of the 
autopilot gain tables. Additionally, the payload of some 
systems may vary each time they are flown. Designing 
a gain scheduled autopilot for all contingencies would be 
extremely difficult. 

The nonlinear autopilot design presented in this paper, 
ANDI, is based on the work presented in [1],[2]. ANDI 
does not involve gain scheduling. Instead it uses dynamic 
inversion (DI) to account for changes in the missile dy- 
namics. Since DI is not robust to modeling errors [3], 
ANDI includes an adaptive control element in the form of 
an artificial neural network (ANN). The ANN is designed 
to correct those errors as well as other small magnitude 
errors due to wind, sensors, and/or modeling inaccuracies. A 
reference model is designed to provide an idealized closed- 
loop behavior for the missile system. The response of the 
reference model to the desired acceleration commands is 
measured, and the autopilot controls the missile to mimic 
that response. Pseudo control hedging (PCH) is added 
to avoid actuator saturation which may result in incorrect 
ANN learning [4]. PCH uses an actuator model with 
rate and position saturations to estimate the response of 
the fins to the fin commands. PCH maps the estimated 
fin deflections back to the estimated achievable control 
commands. The difference between the achievable and the 
commanded control levels can then be used to adjust the 
behavior of the reference model. This adjusted response is 
such that the autopilot will not require more of the actuators 
than they can provide. PCH adjusts the reference model 
when it identifies a response that is too aggressive for the 
actuators. 

11. ANDI 
The ANDI autopilot is designed in an attempt to control 

the missile over the entire flight envelope without gain 
scheduling. Typical autopilot designs balance stability 
against performance to provide a uniform design throughout 
the envelope. The step response at one flight condition will 
typically look very similar to the step response at another. 
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As flight conditions change it would be desirable to change 
the system performance appropriately. By varying parame- 
ters in the DI, the designer can control the shape of the 
response at different flight conditions. When the dynamic 
pressure is high, such as at low altitude and high Mach flight 
condition, missile response may be more aggressive than 
when the dynamic pressure is low. Gain scheduled design 
is motivated by the necessity to meet stability and perfor- 
mance requirements. Parameter scheduled design provides 
freedom to set system performance. Parameter selection, 
in general, will be a much simpler and less extensive task 
than designing a gain schedule. Ultimately, the desire is 
that either an analytic function, based on dynamic pressure, 
or a very sparse table can be used to provide the changing 
values of these parameters. 

Figure 1 shows DI autopilot within a top level block 
diagram of the ANDI system. 

Fig. 1 .  ANDI Top Level Block Diagram 

The "External Commands" block models commands from 
the guidance loop. These commands are issued to a 
reference model which then produces a desired command 
trajectory. This desired trajectory is the input to the "Non- 
linear DI Autopilot", but this signal is also used by the 
ANN located inside the "Adaptive Control" block and by 
the "PCH" block. The ANN, trained using a Lyapunov 
learning rule, augments the DI autopilot in order to more 
accurately achieve the desired command trajectory. The 
PCH function adjusts the reference model, based on an 
estimate of the actuator capability, to avoid saturation. It 
prevents the reference model from commanding a trajectory 
unachievable by the system. This is necessary given the 
ANN'S ability to change the signal produced by DI autopilot. 
The DI produces fin commands, 6,, which are issued to 
the actuators to produce fin deflections within rate and 
deflection limits. The fin deflections pass into the equations 
of motion, "Missile EOM", to generate body angles, forces, 
and moments. The "Sensors" block observes the changes 
in the missile state and models the feedback information 
available to the autopilot. 

The missile coordinate system used for this paper is 
shown in Figure 2. It complies with the industry standard 
aerodynamic body coordinate system. 

This coordinate system is in motion relative to the inertial 
axis with the instantaneous velocity components U ,  V, and 

x 

........................... 

...... ....................... 

Fig. 2. Missile Coordinate System 

W that align with the missile 5, y, and z body axes. This 
missile coordinate system is also rotating relative to the 
inertial system with angular velocity components P, Q, and 
R around the x, y, and z body axes. Figure 3 is an expansion 
of the "Nonlinear DI Autopilot" block. The elements of this 
diagram will be discussed individually throughout this paper. 

Fig. 3. Autopilot Block Diagram 

A. Dynamic Inversion 
Feedback linearization is one of the more popular forms 

of nonlinear control. It is a nonlinear coordinate trans- 
formation which recasts the nonlinear system into a lin- 
ear time invariant (LTI) form allowing the designer to 
then apply classic linear control techniques. This may 
be performed on the entire system, or part of the system, 
using an exact state transformation and feedback. This 
method is unlike traditional linear techniques which use 
linear approximations of the plant dynamics. This technique 
presents the complication of requiring exact knowledge of 
the plant dynamics. Without such knowledge the system 
will have poor robustness [3]; however, this requirement 
can be overcome by including an adaptive element to 
account for inaccuracies. This will improve the robustness 
characteristics of the DI autopilot. It could also help reduce 
extensive (and expensive) aerodynamic modeling and wind 
tunnel testing. 

DI is specific type of feedback linearization where the 
nonlinear plant dynamics are inverted and used as feedback 
[2]. Equation 1 is a nonlinear system description 
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x = f + g . u, (1) 
which is affine in u. If g is invertible, then the following 
control input would exactly cancel the system dynamics 

V + 
(Pseudo 4 

TABLE I 
GAIN EQUATION PARAMETERS 

W P  

- 
f +  

D n n v e m  + x 4 

leaving 

Sensor Out 

Feedback 
Signals 

and Conid 
OmMWe$ ' 

x = u. (3) 

Typically dynamic inversion can only be applied to sys- 
tems that are minimum phase [5]. Minimum phase indicates 
that a system has stable zeros, if it is linear, or that a system 
has stable zero-dynamics, if it is nonlinear. Non-minimum 
phase systems show an initial response in the "wrong" di- 
rection when the control is applied. Tail controlled missiles 
are non-minimum phase when acceleration at the center of 
gravity (CG) is used as a system output; therefore, they 
are not good candidates for DI control. By redefining the 
control output, one can create an output that is minimum 
phase allowing DI control to be used. This will be discussed 
further in Section 11-(2.2. 

Figure 4 is an expansion of the "Dynamic Inversion" block 
within the "Inner Loop Control". The inputs to this block 
include the pseudo control signal, u, given by 

CD"fO1 
-D Mam --* 

where 

v c  = Yc + kp-inner ( ~ c  - Y) 9 (5) 

and uad, the ANN output element, which will be covered 
in Section 11-B. 

Y 

Feedback "-I 
Fig. 4. Dynamic Inversion Block Diagram 

Equations 6, 7, and 8 show the gain equations for the 
"Linear Controller" contained within the "Inner Loop Con- 
trol". It is a proportional controller on the redefined output 
y, to be covered in Section 11-C.2, with a feed-farward term, 
I j c  . 

kp-znner,P = 3 . W P  

kp_anner.z = 3 . 2 . c, . w, 

(6) 

(7)  

Table I are the w and ( parameters selected for this appli- 
cation. These parameters could be optimized and scheduled 
should the designer choose to do so. That possibility was 
not explored in this paper for two reasons. First, it was a 
desire to demonstrate an ability to reduce the scheduling and 
optimization requirements of the system. Second, the ANN 
should correct for suboptimal choices of these parameters. 

E. Adaptive Neural Network 

There are two methods of adaptive control: direct and 
indirect. The indirect method involves an adaptive sys- 
tem that produces estimates of system parameters. These 
evolving estimates are used by the control algorithms to 
continually update the controller parameters, which could 
be autopilot gains or something more advanced. Once the 
system successfully tracks the desired command, the adap- 
tive autopilot is satisfied, even if the parameter values do not 
converge to their true values. If accurate estimates of the 
parameters are required, further effort will be required. With 
the direct adaptive method, estimates of system parameters 
are not made. Instead the algorithm adjusts the control 
parameters directly, which may not translate to physical 
system parameters at all. Again, the adapted parameters 
need not converge to any expected values, as long as proper 
command tracking is achieved. 

One method of direct adaptive control uses Artificial 
Neural Networks (ANN). ANNs are widely used for their 
ability to accurately approximate continuous nonlinear func- 
tions. When used with DI, ANNs can help remove the effects 
of system and aerodynamic modeling inaccuracies [l]. This 
paper is restricted to multilayer feedfonvard networks. The 
weights of the various layers are trained using an online 
update law, designed using a Lyapunov stability proof [l]. 
The resultant system modifies the weights continuously and 
its output augments the computed control signal. This 
increases the robustness of the DI autopilot to uncertainties 
in the inversion process [2]. 

The "Adaptive Control" block, in Figure 1, consists of the 
Error Observer (EO) and the ANN as shown in Figure 5.  
The EO is discussed in Section 11-C.4. 

A common type of activation function used for the hidden 
layer neurons of such a network is the log-sig (9), 

(9) 
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Fig. 5 .  Adaptive Control Block Diagram 

where a E R is called the activation potential of the 
neuron. In this paper, multilayer networks with a single 
hidden layer of log-sig neurons and a linear output layer 
are used. For a network with n1 inputs, n 2  hidden layer 
neurons, and 723 output neurons, the value of the output layer 
of the neural network is given by the 723 dimension vector, 

j=1 

where the activation of the hidden layer neurons is given by 
/ \ 

\ i=l / 
A top level block diagram view of the ANN is shown in 

Figure 6. 

Obravsr 
out I t 

A N I  
'out 

Fig. 6 .  Adaptive Neural Network 

The values of pwk  and pvj are weights multiplying 
constant bias terms (equal to one) affecting the activation 
level of the neurons. By defining the weight matrices and 
the activation vector as 

[ ' p v l  . ' . 
^ A  V =  

the neural network output can be rewritten as 

Vad  = WTa(VTp).  (15) 

The variable p is the input to the ANN with the constant 1 
appended as the first term for the biases. The learning rule 
for W and are given by the Lyapunov function derived 
equations [ 1,  page 1071. 

W = - rWp - ~ ' V T p ) k T P B m s g n ( H G )  + I C ~ ~ ~ ~ ~ ~ W ]  
(16) 

? = - r , [pE 'TPB,sgn(Hi i )~T~ '  + I C e ~ ~ l ~ ~ V ]  (17) 

The variables rV and rW control the learning rates of the 
hidden and output layers. The variable IC, is used in the 
e-modification to ensure the ANN finds local solutions [l]. 
Table I1 contains the values of these variables used in this 
paper. 

C. Supporting Technologies 

I )  Model Following: Ideally, for a given reference signal, 
the autopilot produces the needed fin commands for the 
missile to accurately follow that signal. Therefore, the refer- 
ence model must be designed to meet system performance 
requirements within autopilot capabilities. The reference 
model provides the ideal closed loop behavior of the system. 
The reference models used in the AND1 autopilot are second 
order, in observability canonical form, one for the pitch 
channel and a second for the yaw channel. This form for 
the reference model is as specified in [l]. This is more 
restrictive than necessary. As long as the error observer is 
of the required form (second order, observability canonical 
form) then the ANN training laws will work as intended. 

For a traditional system attempting to follow a step input, 
large errors are immediately observed by the autopilot. 
These errors will generate, through feedback signals, large 
control commands which drive the system to the com- 
manded levels rapidly. When a continuous reference model 
replaces the step command, the initial errors observed by 
the autopilot will be small and will grow slowly producing 
a slow response. Therefore, in order to accurately follow a 
given reference model trajectory, the autopilot must provide 
lead using feed-forward signals of the given trajectory. This 
adds risk to the stability of the autopilot, but is required to 
provide the necessary impetus to initiate motion. Determin- 
ing the appropriate feed-forward signal is an ongoing task. 
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2) Output Redefinition: Tail controlled missiles often use 
pitch acceleration, a,, and yaw acceleration, a y ,  as control 
variables. Because these variables are non-minimum phase, 
the autopilot must be separated into two elements, an inner 
loop and an outer loop [ 5 ] .  The inner loop is minimum 
phase and suitable for DI while the outer loop maintains 
the non-minimum phase characteristics of the system. To 
bridge the two elements, the output of the outer loop is 
redefined in terms of appropriate minimum phase variables, 
such as a and q in the pitch channel or @ and r in the yaw 
channel. Limiting this discussion to the pitch channel, the 
outer loop output is redefined as 

Y = a + cqq, (18) 

which acts as the input to the inner loop control. The 
parameter cq is tunable and approximately equal to one. 
The DI pseudo control variable is defined as 

u, = y. (19) 
The relationship between u, and 6, is assumed to be of the 
form 

u, = f +g6,. (20) 

The variable f is known as the drift vector and the 
variable g is the control derivative matrix, both of which are 
computed using estimates of the plant dynamics. Assuming 
g is nonsingular, Equation 20 can be inverted to obtain the 
command, 

6, = g-l(f - VC). (21) 

3) Outer Loop Control: The outer loop control stabilizes 
system accelerations using classical PI control techniques. 
ANDI uses PI control on the error signals; however, PI 
control is not strictly required. Any control methodology 
which provides a stable response and meets performance 
requirements may be used. The gains for the PI control 
are calculated using the desired and w of the outer loop 
transfer function. The outer loop control also includes a feed 
forward term based on the commands from the reference 
model. Additionally, the outer loop maintains the system 
characteristics, i.e., a non-minimum phase system is still 
non-minimum phase at this level. 

The gains of the outer loop controller are given by 

(25)  
-1 

k i - o u t e r , y  = Cr . kp-0uter .y  

where Z, and Yp are the partial derivatives of the accel- 
erations with respect to body angle in the pitch and yaw 
channels. 

4) Error Observer: The weight training laws of each 
artificial neural network require knowledge of the error 
between the model state and the missile state. However, 
only the missile output (acceleration) is available, not the 
state. Using an error observer driven by the output error, 
an estimate of the state error is obtained [l]. The error 
observer model is a LTI system based on the reference model 
dynamics. The output feedback gain matrix is designed 
such that the poles of the closed loop EO are two orders of 
magnitude greater than the reference model poles. Figure 
7 shows the block diagram of the EO. 

Fig. 7. Error Observer Block Diagram 

In order to match the minimum phase characteristics of 
the reference model outputs, the plant outputs are converted 
to minimum phase. This is accomplished by moving the 
location of the measured acceleration forward of the missile 
CG. 

5) Pseudo Control Hedging: A commanded control level, 
6,, may not be fully achievable due to fin rate or position 
saturation. The achieved actuator position, 6, if not mea- 
surable, can be estimated by modeling the response of the 
actuators to 6,. The estimated control, 8, is used to calculate 
an estimate of the achieved pseudo control signal, D, as 

D = f + & .  (26) 

The pseudo control hedging signal, uh, is given by the 
difference between the commanded pseudo control, u,, and 
the estimated achieved pseudo control, 6 .  

This is the amount of pseudo control lacking due to actuator 
saturations [4]. When the actuators are not saturated, the 
pseudo control hedge signal will be zero. Traditionally this 
signal would be used to “hedge” the model that outputs the 
command y. However, in the ANDI model, the command 
y is produced not by a reference model, but by the outer 
loop acting on the commanded and measured accelerations. 
In order to connect the hedged pseudo control signal to the 
acceleration reference model, a transformation using Z, is 
used. Figure 8 is the block diagram of the PCH subsystem 
in its current configuration. 
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Fig. 8. Psuedo Control Hedging Block Diagram 

111. RESULTS 
Figure 9 shows the response of a classically designed 

gain scheduled autopilot and the ANDI autopilot in a fully 
coupled nonlinear missile simulation. A 7 G acceleration 
step command was initiated at 0.1 seconds in both pitch and 
yaw channels (yaw not shown). The response in the yaw 
channel exhibited similar characteristics. The dynamics of 
the reference model are given by the transfer function 

(28) 
136.13 

s2 + 16.5s + 136.13 R M ( s )  = 

The flight condition for this example is fixed at an altitude 
of 20 Kft and Mach 2.0, which represents a common 
condition for many air-to-air missiles. The reference model 
response to the 7 G step command is denoted by ”RM” in 
Figure 9. The reference model natural frequency, w,, is 
11.667 radsec and the damping ratio, 5, is 0.707. 

Sfcp Rcrpomr Cornparkon 

Fig. 9. Step Response of a Classic and ANDI Autopilots 

Both autopilot responses show an initial “wrong“ way 
response characteristic of non-minimum phase systems. The 
gain scheduled autopilot has a negative departure of ap- 
proximately -0.65 Gs while the ANDI autopilot show a 
negative departure of approximately -0.2 Gs. The time 
constants of the two responses are nearly identical at 0.16 
seconds. There are other quantitative measurements of 
performance, some that will favor the classic autopilot in this 
example, that fail to accurately express the true performance 
of these two systems. These quantitative measurements of 

performance will change for the ANDI system based on the 
chosen reference‘ model while the gain schedules autopilot’s 
response is fixed. The strength of the ANDI system is the 
flexibility of choosing the performance based on the needs 
of the system at the specified flight condition. 

IV. CONCLUSION 
This paper has presented the implementation of the ANDI 

autopilot on a skid-to-turn missile model. The commanded 
accelerations are processed by a reference model to provide 
the desired missile behavior to both the DI and the ANN. 
The ANN uses the response from the reference model and 
the DI autopilot to remove inversion errors and adjust the 
control signal to achieve the desired response. The autopilot 
is separated into an inner loop control and an outer loop 
control. The outer loop control maintains the non-minimum 
phase characteristics of the system while the inner loop 
control generates the minimum phase control signal used 
by the DI. PCH is used to adjust the reference model 
response when it would drive the system beyond the physical 
capabilities of the actuators. 

To explore the benefits of this design, it was compared 
to a classic linearly designed autopilot. The results of this 
comparison are encouraging. Using the minimum phase 
output, the ANDI autopilot was able to track the desired 
reference trajectory accurately. The ANDI autopilot’s non- 
minimum phase output follows the controlled minimum 
phase response closely. The primary difference in the 
responses is due to the initial ‘wrong’ way behavior char- 
acteristic of non-minimum phase systems. By adjusting 
the reference model, performance of the ANDI autopilot 
can be improved. Perhaps the most valuable quality is 
ANDI’s robustness to aerodynamic modeling errors, which 
may reduce expensive and time consuming wind tunnel 
testing. 
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