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Abstract— In this paper, we present a stable receding
horizon model predictive control for discrete-time nonlinear
systems. The standard MPC scheme is modified to incorporate
(1) a block implementation scheme where a string of the
optimized input is applied instead of a single value; (2)
an additional constraint which guarantees that a Lyapunov
function will decrease over time; (3) a variable implementation
window that facilitates the constraints enforcement. Stability
of the closed-loop system with the proposed algorithm is
established. Examples and simulation results are given to
illustrate the effectiveness of the control scheme. The impacts
of several key design parameters on the overall performance
are also analyzed and discussed.

I. INTRODUCTION

Model predictive control (MPC)[1], despite the compu-
tational intensity associate with its on-line implementation,
has found many successful industrial applications [2]. Its
simple and flexible formulation, together with its capability
in dealing with constraints and nonlinearities, has been
a major advantage. The main challenges that come with
the MPC scheme, such as how to ease the computational
requirements and how to guarantee stability, have also
attracted attentions of many researchers and control practi-
tioners.

In the standard MPC implementation, a finite horizon
open-loop optimization problem is solved at each sampling
instant, using the current state as the initial condition.
The optimization results in a control sequence, whose first
element is selected and then applied as the control input to
the plant. In repeating the process, the state used in the op-
timization is re-initialized at each sampling instant, thereby
providing a feedback mechanism for disturbance rejection
and reference tracking. The designer can choose different
cost function and receding horizon in the optimization prob-
lem formulation in order to meet different design objectives.
State and input constraints, whether they are pointwise-in-
time or accumulative, can also be accommodated with an
added computation burden.

The two major challenges associated with MPC schemes
are the computational intensity and stability. For systems
with nonlinear constraints, the numerical difficulties in solv-
ing the optimization problem often represent road blocks to
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the realtime implementation of MPC schemes. However,
advances in computing technology and efficiency improve-
ments in optimization algorithms are easing the computa-
tional burden and paving the way for new MPC applications.
As the cost of computer hardware goes down, the realtime
implementation of MPC schemes also becomes more af-
fordable. The issue of stability, on the other hand, has been
recognized as a more fundamental problem. Algorithms and
mechanisms that assure stability for MPC schemes have
been actively pursued by the control engineering community
(see the survey paper [3] and the references therein). Thus
far, the key mechanisms used to guarantee stability for MPC
fall into two main categories: one is to extend the prediction
horizon, and another is to incorporate a proper penalty or
to impose certain constraints on the final state at the end
of the prediction horizon. Other strategies have also been
proposed, such as the dual mode control, which uses the
MPC to steer the trajectory into a terminal set inside which
the control is then switched to a local stabilizing controller
[4].

In this paper, our attention is mainly focused on the
stability of MPC schemes. Our research was motivated by
the all-electric ship reconfiguration control problem, where
the system has to be moved from one (damaged) state
to another (safe operation) with limited available energy
resource and within a given time constraint. The unpre-
dictable and adversarial operational scenarios that the naval
ships have to face in their reconfiguration stage often render
the open-loop based optimal trajectory planning strategy
insufficient and inflexible. The MPC, on the other hand,
has the capability to incorporate the state feedback to reject
disturbances and to ensure performance. Its ability to deal
with nonlinear constraints also makes it an ideal candidate
for the reconfiguration problem. Given the survival critical
nature of the naval ship reconfiguration problem, the stabil-
ity of the control system is an overriding requirement and
cannot be compromised.

It is with the motivation to develop efficient and safe
naval ship reconfiguration algorithms that we investigate the
performance and stability of the MPC scheme. In particular,
we propose a block MPC scheme where a string of the
control signal from each optimization run is implemented
instead of only the first element. An additional constraint,
which guarantees that a Lyapunov-like function will be
decreasing over time, is also enforced. By allowing the
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implementation window to vary in size, the enforceability
of the constraints is greatly enhanced. Stability of the
closed-loop system with the proposed MPC is established.
Numerical simulation examples are also given to illustrate
the effectiveness of the proposed scheme.

The paper is organized as follows: In Section 2, we
will first introduce the block MPC concept and specify
the conditions under which the asymptotic stability can be
achieved. The new constraint, added to the block MPC
algorithm to guarantee stability, will be analyzed in Sec-
tion 3 for its enforceability. This leads to the variable block
MPC algorithm proposed in Section 4. A numerical example
is given in Section 5 to demonstrate the control scheme
and to illustrate how the design parameters in the block
MPC implementation may impact the performance. Finally,
a brief summary is included in Section 6 to conclude the
paper.

II. BLOCK MPC SCHEME

Consider a class of nonlinear discrete-time systems de-
scribed by the following equation:

x(k + 1) = f(x(k), u(k)) (1)

where x is the state and u the input. Assume that the
standard MPC scheme is designed by solving the following
optimization problem at each time instant k:

min J = min
{u(·)}

{
k+Nr−1∑

i=k

L(x(i), u(i)) + K(x(k + Nr))

}

subject to the dynamic equation (1) (2)

and constraints x(i) ∈ S, u(i) ∈ U

where S and U are the admissible sets for the state and
input respectively, and L(x, u) and K(x) are non-negative
functions of (x, u) and x respectively. In (2), Nr is the
prediction horizon over which the performance of the
control system is evaluated and optimized, and the term
K(x) reflects the penalty on the terminal state. The string
{u(k), u(k + 1), · · · , u(k + Nr − 1)} is varied within the
input admissible set to minimize the cost function J for (2).

Note that for time invariant systems given by (1), the
optimal solution {u∗(k), u∗(k + 1), · · · , u∗(k + Nr − 1)}
for the problem (2) depends only on the starting state x(k).
To assure a meaningful MPC formulation, we make the
following assumption:

• (A1) Let {u∗(k), u∗(k+1), · · · , u∗(k+Nr−1)} be the
solution for (2). If the sequence is applied to (1), then
there exist a r > 0 and a continuous function g(·) > 0
with g(0) = 0 such that if ‖x(k)‖ ≤ r, we have

‖x(k + i)‖ ≤ g(‖x(k)‖), ∀i ∈ {1, · · · , Nr}. (3)

Note that (A1) does not imply stability1 for the MPC
scheme. It only guarantees that, inside the prediction win-
dow, the open loop optimization leads to a state trajectory
that is bounded by a function of the initial state. Also
note that this property is required only in a local region
around the origin. The constant r can be sufficiently small,
as long as it is non-zero. (A1) is satisfied for most practical
systems with the MPC-based control that we encountered.
In particular, we have:

Proposition 2.1: For linear systems with a quadratic cost
function, (A1) is satisfied if

• (A2) There exists a B(x) ⊂ S, with x = 0 being an
interior point for B(s), inside which the constraints are
inactive for the optimization problem (2).

The proof of the Proposition can be derived by rec-
ognizing the fact that the unconstrained optimal solution
{u∗(k), u∗(k + 1), · · · , u∗(k + Nr − 1)} is linear in x(k)
for linear systems with a quadratic cost function. Therefore,
for sufficiently small ‖x(k)‖, (A2) guarantees that the
solution of (2) is equal to the solution of the corresponding
unconstrained problem, thus it is linear in x(k). (A1) then
follows immediately.

For linear models, constraints on the states are normally
imposed for large signals, when the states go beyond the
linear region. Since (A2) in Proposition 2.1 is only needed
for a small neighborhood B(s) around the equilibrium, it is
non-restrictive and can almost always be satisfied.

In contrast to the standard MPC which applies the first
element in the string of {u(k), u(k+1), · · · , u(k+Nr−1)}
to the control signal, we propose the following block MPC
scheme:

Definition 2.1: (Block MPC) Let {u∗(k), u∗(k + 1),
· · · , u∗(k+Nr−1)} be the optimal sequence for (2) and Nc

be a fixed integer satisfying 1 ≤ Nc ≤ Nr. If

• (a) the first Nc elements, i.e., the sub-string
{u∗(k), u∗(k+1), · · · , u∗(k+Nc−1)} of {u∗(k), u∗(k +
1), · · · , u∗(k + Nr − 1)}, are applied to the control
signal at time t = k, k + 1, · · · , k + Nc − 1 and

• (b) the optimization for (2) is repeated after Nc steps
at t = k + Nc with the new state x(k + Nc),

we call Nc the control implementation window and the
resulting control scheme the Nc-block MPC algorithm.

The block MPC scheme specified in Definition 2.1 has
similar properties to that of the regular MPC algorithm.
Without adding new constraints, the block MPC requires
less computation effort when Nc > 1. In fact, the Nc-
block MPC can be viewed as a hybrid control scheme where
the control update and optimization are carried out at two
different sampling intervals: T and NcT . Like many other
multi-rate sampling control systems, it has the advantage

1In this paper, we are interested in the asymptotic stability of the
equilibrium x = 0. Unless otherwise specified, “stability” in the rest of
the paper refers to “asymptotic stability of x = 0.”
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of requiring less computational resource. The saving in
the computational effort, however, may be achieved at the
cost of reduced disturbance rejection capability. Within each
control implementation window, the block MPC essentially
behaves as an open-loop control system, and as such its
inter-sampling behavior is subject to interference from
disturbances.

It should be pointed out that the notion of the control
implementation window Nc used here is different from the
control window defined in [5]. In [5], the control window
N refers to the dimension of the optimization problem,
when only the first N elements of the input sequence
{u(k), · · · , u(k+Nr−1)} are allowed to vary in minimizing
J .

In the sequel, we explore the additional design flexibility
offered by the block MPC scheme to achieve the desired
stability properties:

Theorem 2.1: Let V (x) be a positive definite function
of x. If (A1) is satisfied and the Nc-block MPC scheme as
defined in Definition 2.1 is designed such that the following
additional constraint2

V (x(k + Nc)) ≤ γV (x(k)) (4)

is satisfied for some 0 < γ < 1 and for k ∈
{0, Nc, 2Nc, · · · , }, then the closed-loop system with the
Nc-block MPC is asymptotically stable. �
For the proof of Theorem 2.1, we choose V as the Lyapunov
function. Because of the block implementation, (4) implies
that we have:

V (k) ≤ γ
k

Nc V (0), ∀k ∈ {0, Nc, 2Nc, · · ·}.

Therefore, the subsequence {V (k1)}, k1 = 0, Nc, 2Nc, · · · ,
converges to zero as k1 → ∞, which implies that x(k1) →
0 for k1 = 0, Nc, 2Nc, · · ·.

For the system behavior within the control implementa-
tion window, i.e., for x(k1 + n), n = 1, · · · , Nc − 1, k1 ∈
{0, Nc, 2Nc, · · · , }, assumption (A1) implies that ‖x(k1 +
n)‖ ≤ g(‖x(k1)‖) when ‖x(k1)‖ is sufficiently small,
which is guaranteed by x(k1) → 0. Therefore ‖x(k1)‖ → 0
and the continuity of g(·) at 0 together imply that ‖x(k1 +
n)‖ → 0 for k1 = 0, Nc, · · · and n = 0, 1, · · · , Nc − 1.
Hence, x(k) → 0 for k → ∞ and the stability follows.

For Nc = 1, the result of Theorem 2.1 can be viewed
as a special case of the standard MPC with an additional
constraint. For Nc > 1, even if the constraint (4) is
enforced in its optimization of J , the standard MPC cannot
guarantee stability because V (x(k+1)) ≤ γV (x(k)) is not
established. With the block MPC algorithm, the constraint
(4) is enforced not only in optimization, but also in control
implementation and execution.

2This condition generalizes the one-step stability enforcing MPC [3].
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Fig. 1. Standard and block MPC for the plant of Example 2.1: case 1:
standard MPC; case 2: MPC with block implementation, without constraint
(6); case 3: standard MPC with constraint (6); case 4: block MPC with
constraint (6).

Example 2.1. Consider the following second order unsta-
ble system

x(k + 1) =
[

1 0.25
1 0

]
x(k) +

[
1
0

]
u(k),

y(k) =
[
−2

3 1
]
x.

(5)

With the cost function defined as:

J =
5∑

i=0

[x(k + i)�Qx(k + i) + u2(k + i)]

where

Q =
[

4/9 −2/3
−2/3 1

]
one can show that the standard MPC yields an unstable
response, shown in case 1 in Fig. 1.

Adding a new constraint

V (k + 2) ≤ γV (k) (6)

where V = y2 + 1/9x2
2, γ = 0.98, the 2-step block MPC

implementation gives a stable response, as shown by case
4 in Fig. 1.

It should be noted that the block implementation alone
(i.e., without enforcing the constraint (6)) does not lead to
a stable system for the example considered here (case 2 of
Figure 1). On the other hand, adding the constraint (6) to
the standard MPC alone(i.e., use only the first control from
the optimized sequence) cannot provide the stabilization
mechanism either (case 3). It is the combination of the two
that leads to the result of case 4 in Fig. 1. ∇

For the system discussed in Example 2.1, a constraint
similar to (6) cannot be enforced in a single step. The
main advantage of the block MPC implementation is that it
allows longer horizon to enforce a condition that can lead
to stability. Furthermore, it assures that the constraint is
enforced not only at the optimization stage, but also at the
control execution stage by the proper implementation.

836



III. ENFORCEABILITY OF THE CONSTRAINT (4)

With the block MPC scheme, we have shown that when
the optimization problem (2) with an additional constraint
(4) has feasible solutions for each k ∈ {0, Nc, 2Nc, · · ·},
the stability of the system can be established according to
Theorem 2.1. More often than not, given a positive definite
function V , the constraint (4) is not enforceable at each
sampling instant {0, Nc, 2Nc, · · · , } for arbitrary x ∈ S.
Even if the problem (2) with (4) has feasible solutions for
some initial x0, there is no guarantee that feasible solutions
will exist for x(k) when k > 0, as the following example
shows:

Example 3.1: Consider the simple double integrator sys-
tem: {

x1(k + 1) = x1(k) + x2(k)
x2(k + 1) = x2(k) + u(k) (7)

with |u| ≤ 1, if V is chosen as V (x) = x2
1 + x2

2, we have

V (x(k + 1)) = x1(k + 1)2 + x2(k + 1)2

≥ (x1(k) + x2(k))2

= V (x(k)) + 2x1(k)x2(k).

If x1(k)x2(k) ≥ 0, we always have V (x(k + 1)) ≥
V (x(k)). In other words, for Nc = 1, the constraint (4)
cannot be satisfied for any state in the first and third
quadrants for any γ ∈ (0, 1).

Now consider an initial state x(0) = (−2, 3) for which
V (1) ≤ γV (0) can be satisfied for γ = 0.95 and some u
(i.e., u = −1). This, however, will lead to x(1) = (1, 2) for
which no control will exist to satisfy V (2) ≤ γV (1).

Similar scenario can be created for Nc = 2. For example,
if one chooses the initial state as x(0) = (−4, 3), then
the constraint V (2) ≤ γV (0) (γ = 0.95) is enforceable.
However, V (4) ≤ γV (2) cannot be enforced with bounded
input |u| ≤ 1. ∇

The above example shows that the constraint (4) may not
be enforceable for all states of interest. Furthermore, even
it is enforceable initially, since the property is not invariant
for (1), the enforceability may be lost with state transition.
The block MPC with a variable implementation window, to
be discussed in Section 4, will improve the enforceability
of the added constraint, and thus mitigating the problem
caused by the lack of feasible solutions for (2). In order
to define the block MPC with a variable implementation
window, we first introduce the following definition:

Definition 3.1: (n-step (V, γ)-contractible region) Given
a positive definite function V , an n-step (V, γ)-contractible
region Pn is defined as the set of all the states x0 for which
the constraint V (x(k + n)) ≤ γV (x(k)), in addition to the
constraints given in (2), is enforceable by a proper choice
of the string {u(k), u(k + 1), · · · , u(k + n − 1)}.

The n-step (V, γ)-contractible region Pn depends on the
contraction window n and the contraction rate γ, in addition
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Fig. 2. Contractible regions for the double integrator system, V (x) =
x2
1 + x2

2, γ = 0.95.

to (1) and the selection of V . For γ1 ≥ γ2, we have
Pn(γ1) ⊇ Pn(γ2). However, n1 ≥ n2 does not necessarily
imply Pn1(γ) ⊇ Pn2(γ) for the same γ. In fact, a larger
n does not necessarily lead to a larger (V, γ)-contractible
region. For example, Fig. 2 shows the contractible regions
for n = 1 and n = 2 for the double integrator system with
V (x) = x2

1 + x2
2, |u| ≤ 1, and γ = 0.95. It is obvious that

P2 does not include P1, neither does P1 include P2.
Remark 3.1: In [6], the λ-contractive region is defined

as the set P that for any x ∈ P , there exists a control u(x)
such that f(x, u(x)) ∈ λP for some λ ∈ (0, 1]. It should be
noted that even when n = 1, the (V, γ)-contractible region
given by Definition 3.1 is different from the λ-contractive
region defined in [6].

If x0 ∈ Pn does not guarantee x(k + n) ∈ Pn, the value
of Theorem 2.1 is limited. In an attempt to expand Pn and to
make the constraint (4) easier to be satisfied, we introduce:

Definition 3.2: Let Pn be the n-step contractible region
for V as defined in Definition 3.1, where n = 1, · · · , Nc

for some Nc ≤ Nr, and Nr be the prediction horizon. We
define

P �
=

Nc⋃
n=1

Pn.

If S = P3, where S is the admissible set for x, then we
call the function V Nc-step contractible for (1).

Definition 3.2 expands the V -contractible region to cover
S. By allowing the implementation window size to vary
between 1 and Nc, the resulting region covered by P is
always bigger than the fixed step contractible region.

It should be also pointed out that the contractibility of V
is collectively defined by the function V and the system (1).
Changing V or the system definition both could change the
V -contractible property. For example, for V = x2

1 +x2
2 and

γ = 0.95, the contractible regions for the double integrator
(7) and for the system (5) of Example 2.1 are shown in
Fig. 2 and Fig. 3 respectively. For S = {x||x1| ≤ 2, |x2| ≤
2}, V is 2-step contractible for the unstable system (5),
but it is not 1-step or 2-step contractible for the double
integrator system (7).

3By the definition of Pn, we always have Pn ⊆ S.
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Remark 3.2: The condition (4) is a special case of a more
general condition

V (x(k + Nc)) − V (x(k)) ≤ −α(||x(k||), (8)

where α is a continuous function satisfying α(0) = 0,
α(x) > 0 if x �= 0. Since the complete controllability of
discrete-time systems depends on the time interval being
sufficiently large, the constraint (8) may also not be en-
forceable at each sampling instant. Enforcing the condition
(8) instead of (4) can nevertheless offer additional flexibility
due to a choice of α(·).

Remark 3.3: For most “well-behaved” nonlinear systems
(such as those satisfy (A2) in Proposition 2.1), one can
always find V that is Nc-step contractible for some finite
Nc, as long as S lies inside the stabilizable region with
constraints of (2). One can show that any Control Lyapunov
Function [7] constructed for the unconstrained system can
be used as V . More rigorous proof is omitted due to space
limitations.

IV. STABLE BLOCK-MPC WITH A VARIABLE

IMPLEMENTATION WINDOW

We now exploit the properties of the contractible V and
the variable control implementation window to design a sta-
ble MPC. Let Nc be the maximum control implementation
window that defines P , we first define the optimization task
Tn, for 1 ≤ n ≤ Nc, as:

min J = min
{u(·)}

{
k+Nr−1∑

i=k

L(x(i), u(i)) + K(x(k + Nr))

}

subject to equation (1)

and constraints x(i) ∈ S, u(i) ∈ U (9)

V (x(k + n)) ≤ γV (x(k))

Then we consider the following algorithms:
Algorithm 1: The minimum cost BMPC algorithm is

defined as

1) For x(k) ∈ P , solve the optimization problem Tn of
(9) for n = 1, 2, · · · , Nc. If no feasible solution exists,
set J∗

n = ∞.

2) Find n∗ that corresponds to minn J∗
n, where J∗

n is the
minimum cost achieved for Tn.

3) Apply n∗-step block MPC as defined in Defini-
tion 2.1.

4) Set k = k + n∗ and repeat the process after n∗ steps.

Algorithm 2: The minimum window BMPC algorithms
is defined as

1) For x(k) ∈ P , set n = 1.
2) Solve the optimization problem Tn of (9). If (9) has

a feasible solution, set n∗ = n and go to step 3.
Otherwise, set n = n + 1 and repeat step 2.

3) Apply the n∗-step block MPC as defined in Defini-
tion 2.1.

4) Set k = k + n∗ and repeat the process after n∗ steps.

For the two algorithm defined above, the following the-
orems establish their stability properties:

Theorem 4.1: If S = P and Algorithm 1 or 2 is applied,
then S is an attraction region for the equilibrium x = 0
of (1). Namely, for any x0 ∈ S, the trajectory defined
by the minimum-cost or the minimum window BMPC will
converge to the equilibrium x = 0.

The proof of Theorem 4.1 follows immediately from
Theorem 2.1 and the definitions of Algorithm 1 and 2.

Proposition 4.1: When P ⊂ S, if there exists a subset
S0 satisfying (a) S0 ⊆ P , (b) x = 0 is an interior point of
S0, (c) there exists a constant c such that the set defined
as Rv = {x|V (x) ≤ c} satisfies S0 ⊆ Rv ⊆ P , then any
trajectory of (1) defined by Algorithm 1 or 2 with x0 ∈ S0

will converge to the origin.
For unbounded S, satisfying S = P is very difficult,

if not impossible, especially with bounded u. In this case,
Proposition 4.1 can be applied to determine the region of
attraction S0.

Remark 4.1: If the sets Pn are pre-calculated, then Al-
gorithm 1 and 2 can be substantially simplified. For the
minimum cost BMPC, the optimization task Tn does not
need to be carried out for all n, but only for those whose
corresponding Pn includes x(k). Similarly, the minimum
window n∗ in Algorithm 2 can be determined without
solving the optimization problem.

Remark 4.2: The condition associated with Rv in Propo-
sition 4.1 is needed to guarantee that the enforceability
of the constraint (4) will not get lost along the trajectory.
Without it, one may encounter the scenarios that, even when
(4) is enforced, the trajectories inside P may leave P at the
end of the implementation window. The requirement for
S0 ⊆ Rv ⊆ P , however, might lead to different Nc for
different V , as the following example shows.

Example 4.1: Consider the double integrator system of
(7), if V (x) = x2

1 + x2
2 is chosen, we can see from Fig. 2

that the set S0 = {x||x1| ≤ 2, |x2| ≤ 2} cannot be covered
by P = P1

⋃
P2.
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Now we consider two other functions defined as

V1(x) = x2
1 + 9x2

2

and
V2(x) = (x1 + x2)2 + 4x2

2.

Their contractible regions are shown in Fig. 4.
Note that for V1, even though we have S0 ⊆ P1

⋃
P2,

no constant c can be found such that Rv = {x|V1(x) ≤ c}
is covered by P1

⋃
P2 and covers S0. Therefore, we have

to increase the control implementation window to Nc = 3
when Rv1 = {x|V1(x) ≤ 40} satisfies the conditions in the
Proposition 4.1, thus making S0 an attractive region with
V1 used in the BMPC algorithm.

For V2, on the other hand, Fig. 4 shows that the conditions
on Rv can be satisfied with Rv2 = {x|V2(x) ≤ 32} for
Nc = 1. ∇

V. EXAMPLE AND DISCUSSION

As an example, we consider the minimum energy control
problem for the double integrator system. The control
objective is to regulate the system from the initial state
x(0) into the target set Sf = {x|x2

1 + x2
2 ≤ 0.01}

with a minimum control effort. For comparison, numerical
simulations are performed for three different MPC schemes:
the minimum cost BMPC (mc-BMPC), the block MPC with
fixed implementation window Nc (3-BMPC, Nc = 3 for this
study), and the standard MPC (s-MPC) with a constraint
V (x(k + 3)) ≤ γV (x(k)).

With V (x) = x2
1 + 9x2

2, γ = 0.95, Nr = 5, the
simulation results, which include the total control cost and
time to reach the target, are summarized in Table 1 for
three different MPC schemes. For all three initial conditions
which are selected randomly, the mc-BMPC gives the best
performance in terms of the control effort.

Table 1: Comparison of Different MPC Schemes
x0 = (5, 1) x0 = (6, 0) x0 = (2, 2)∫

u2dt tf
∫

u2dt tf
∫

u2dt tf
mc-BMPC 0.6872 48 0.0008 119 1.3017 49
3-BMPC 1.1526 60 0.0050 69 1.4158 119
s-MPC 0.9586 86 0.0041 94 1.6798 122

tf is the time it takes to reach the target set.

Design parameters for the BMPC schemes include: γ,
the contraction rate; Nr, the prediction horizon; and the
function V . Their choices will affect system performance as
well as the attraction region of the equilibrium. The effects
of the prediction horizon on the performance of the BMPC
are similar to that of the standard MPC, which are discussed
in [3]. In general, reducing γ will make it harder to enforce
constraint (4) and thus take more control effort. The effect
of different choices of V on the response, however, is more
complicated. It primarily affects the contractible region Pn

and thus the control implementation window. For the double
integrator system, two different functions V1(x) = x2

1 +
9x2

2 and V2(x) = (x1 + x2)2 + 4x2
2 are used and their

contractibility properties are shown in Fig. 4. The results of
the same algorithm with different V are compared for the
same initial condition x0 = (2, 2). The function V2 leads
to a trajectory with

∫ tf

0
u2 = 1.3501 and tf = 51, both are

slightly larger than those with V1(x) shown in Table 1.

VI. CONCLUSION

In this paper, we propose a new MPC scheme which uses
block implementation to assure stability. With the design
flexibility offered by the block implementation with variable
window size, we are able to enforce a constraint that lead
to the decrease of a Lyapunov-like function over the time
interval, therefore guaranteeing stability. This new design
feature can also be exploited to improve performance, such
as shown in the example in Section 5, or to save the on-line
computational effort as the optimization is performed every
NcT instead of every T interval for the block MPC.
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