
 
Abstract—This paper presents an integrated fault diagnostic

and prognostic approach for bearing health monitoring and
condition-based maintenance. The proposed scheme consists of
three main components including principal component analysis
(PCA), hidden Markov model (HMM), and an adaptive
stochastic fault prediction model. The principal signal features
extracted by PCA are utilized by HMM to generate a
component health/degradation index, which is the input to an
adaptive prognostics component for on-line remaining useful
life prediction. The effectiveness of the scheme is shown by
simulation studies using experimental vibration data obtained
from a bearing health monitoring testbed.

I. INTRODUCTION

he ability to accurately predict the remaining useful life
of electromechanical systems is critical for affordable

system operation and can also be used to enhance system
safety. The theme of condition-based maintenance (CBM)
is that maintenance is performed based on an assessment or
prediction of the component health in stead of its service
time, which achieves objectives of cost reduction and safety
enhancement. If one can predict the degradation of a
component before it actually fails, then it will provide
ample time for maintenance engineers to schedule a repair,
and to acquire replacement components before the
components actually fail.

Bearings are of paramount importance to almost all
forms of rotating machinery, and are among the most
common machine elements. The failures of bearing without
warning will result in catastrophic consequences in many
situations, such as in helicopters, transportation vehicles,
etc. Most of the current maintenance procedure includes
periodic visual inspections and replacement of the
components at fixed time intervals. The application of CBM
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will clearly result in a much lower operational cost and
higher availability, which can be enhanced further by
damage mitigation techniques. The key to successful CBM
consists of early detection of faults of small magnitude,
accurate assessment of current fault or defect size, and
accurate prediction of fault progression [1].

Prior papers by the authors mainly deal with the problem
of fault detection and isolation (FDI), and qualitative
assessment of component health [2, 3]. In this paper, we
present a unified fault diagnostic and prognostic (FDP)
approach to anomaly detection, fault diagnosis, degradation
status assessment, and remaining useful life prediction. The
proposed FDP architecture consists of three diagnostics and
prognostics tools including principal component analysis
(PCA), hidden Markov models (HMM), and an adaptive
prognostic model [4]. More specifically, the principal
features extracted by PCA are utilized by HMM to generate
a health/degradation index representing the current system
health status, which is the input to an adaptive prognostics
component for on-line remaining useful life prediction.

The paper is organized as follows. In Section II, the
integrated FDP architecture is presented. The simulation
results shown in Section III illustrate the effectiveness of
the proposed method by using some real experimental
vibration data obtained from a bearing testbed at Georgia
Institute of Technology. Finally, some concluding remarks
are given in Section IV.

II. THE INTEGRATED DIAGNOSTIC AND PROGNOSTIC

ARCHITECTURE

A block diagram of the proposed FDP architecture is
shown in Figure 1 (see page 6). Basically, it combines three
diagnostics and prognostics tools, including principal
component analysis (PCA), hidden Markov models
(HMM), and adaptive prognostics for remaining useful life
prediction. In addition, the preprocessing component makes
the data suitable for PCA computation by performing some
simple manipulations such as frame blocking, frequency
spectral analysis, and noise filtering. In the proposed
architecture, these three components operate in a unified
fashion and provide complementary fault information to
maintenance engineers. The principal features extracted by
PCA are used by HMM to perform on-line assessment of
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Figure 2 An illustrative example of adaptive PCA

the component health/degradation status. Then based on the
degradation index ( )D t generated by HMM, the adaptive

prognostics component performs remaining useful life
prediction. The degradation index prediction error

ˆ( ) ( ) ( )e t D t D t= − is used to continuously update the fault

propagation model to improve prediction accuracy.
More specifically, the main functions of each of these

three components are summarized as follows:
1) PCA extracts principal signal features and achieves

data reduction. The residual models generated by PCA
are also useful for anomaly detection (for example, new
and unanticipated faults for which no training data is
available a priori).

2) HMM provides robust FDI decisions owing to its
powerful stochastic modeling capability. The state
sequence estimation generated by HMM gives
qualitative information about the current component
health/degradation status. In addition, the component
health/degradation index generated by HMM provides
a quantitative assessment of the current component
health status, which can be used for fault prediciton.

3) The adaptive prognostics algorithm predicts the
remaining useful life of the component by using the
degradation index provided by HMM. This is very
important for CBM avoid catastrophic failures or
unnecessary replacement of components.

In the following sections, we will briefly describe the
three main components shown in Figure 1.

A. Principal Component Analysis

Principal component analysis (PCA) is a multivariate
statistical approach to analyze data sets with significant
redundant information. This technique has been applied to
many applications including signal processing, data
transmission and storage, and pattern recognition, etc [5].
Its main function is to retain the most important
characteristics of its input by using a small amount of
vectors, i.e., the principal components. In recent years, PCA
has also been applied to health monitoring applications [6].

Consider the preprocessed sensor data to be a ( )q k×
matrix X , where each row represents an observation. Let
us denote ip as the loading vectors [6], where i k≤ . The

first principal component is defined as the linear
combination 1 1t Xp= that has the maximum variance

subject to 1| | 1p = . The second principal component is the

linear combination defined by 2 2t Xp= that has the next

greatest variance subject to 2| | 1p = and subject to the

condition that it is orthogonal to the first principal
component 1t . Up to k principal components can be

similarly defined. Suppose the first N principal
components capture an adequate approximation of the

matrix X . Then we define the last k N− component as
minor components. Based on the above discussion, PCA
decomposes the X matrix as

1 1

,
N k

T T
n n m m

n m N

X t p t p
= = +

= + (1)

where nt and mt are the principal and minor components,

respectively, np and mp are the corresponding loading

vectors. Denote 1( )NT t t , 1( )N kT t t+ ,

1( )NP p p , and 1( )N kP p p+ . Then we can rewrite

(1) as follows:
X TP TP= + .

Using the orthogonality of matrices P and P , we have

( )0q k NXP TP P T × −= = ≈ , (2)

where the entries of T are minor components that are
usually very small, as defined above.

Equation (2) provides a residual model that can be used
for anomaly detection. Moreover, the residual models can
be continuously updated to include the latest fault
information. The idea of adaptive PCA is best illustrated by
a simple example shown in Figure 2(a) and Figure 2(b).
Suppose that at the beginning we only have the data
corresponding to the normal operating condition. Then a

residual model B P= corresponding to the normal
operating condition can be generated by using (2). As long
as the system continues to work under normal operating
conditions, the output of the residual model will remain
around zero. Otherwise, we can conclude that an unknown
fault 1 has occurred. Then we can generate a new residual
model 1B using the sensor data corresponding to that

particular type of fault. This procedure can be repeated for
any other new types of faults.

B. HMM-based Diagnostics/Prognostics

The fault progression process of mechanical systems
usually consists of a series of degraded states. This process
can be ideally described by a mathematical model known as
hidden Markov model (HMM). The word “hidden” means
the HMM states are not directly observable. In other words,
the HMM states can only be observed through a set of
stochastic processes that produce the sequence of
observations. A diagram depicting the state transitions of a
bearing from normal to failure is shown in Figure 3.
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Figure 3 An HMM describing the failure mechanism of a bearing

A block diagram of the proposed HMM-based health
monitoring scheme is shown in Figure 4 (see page 6). More
specifically, a bank of trained continuous HMMs estimates
on-line the health status of the system. Each HMM
corresponds to a particular type of fault condition, such as
normal condition (without faults), fault 1, fault 2, etc.
Moreover, the states of each HMM represent different
degradation status of a particular fault that grows from a
very small size to a complete failure. A decision scheme
integrates the fault information generated by each HMM.
Two types of fault information are provided by the decision
scheme: (1) fault detection and isolation by comparing the
likelihood generated by each HMM; (2) health/degradation
status estimation and degradation index generated after the
isolation of a particular fault. More specifically, the HMM-
based scheme is capable of providing the following three
types of fault diagnostic/prognostic information:
1) Given some particular sensor data, we determine the

type of fault that has occurred by choosing the HMM
that has the largest likelihood (i.e., fault detection and
isolation);

2) By monitoring the progression of the state sequence
generated by that particular HMM, we can have a
qualitative understanding of the past fault progression
process and the current degradation status. The fault
information obtained at this stage is qualitative because
a range of fault/defect size can be classified as
belonging to one HMM state.

3) Additionally, the system degradation index generated
by HMM provides a quantitative estimation of the
system health/degradation status, which can be used for
component remaining useful life prediction.

In general, an HMM is described by ( , , )A Bλ π= , where

the matrices A and B represent the state transition
probability distribution and observation symbol probability
distribution, respectively, and π is the initial state
distribution. In this scheme, each of the hidden HMM states
represents the degradation status of a particular fault, for
instance small fault size, intermediate fault size, and
significant fault size, etc. Over the past 30 years, various
fast and efficient training algorithms have been presented in
the speech recognition literature, for example the well-
known Baum-Welch method [7]. However, such training
algorithms are not directly applicable in fault diagnosis

applications, since it is usually not possible to obtain
adequate sequence of data describing a continuous fault
propagation process over time from state to state, as
discussed in the paper by Smith [8]. The HMM training
algorithms used here follows the ideas of [8] and [9].

As described above, in addition to providing a qualitative
estimation of the degradation, the proposed HMM also
generates a degradation index by using the probability
associated with the final state representing a complete
failure. The basic idea is as follows. For all the sensor data,
we can estimate its probability associated with the last state
of the HMM. In a sense, this probability indicates the
similarity between the current degradation status and a
complete failure represented by the final state of the HMM.
To get a better insight into this idea, let us consider the
following scenario. When the component is under normal
condition, its probability associated with the last state of
HMM should be zero. After a fault occurs and starts to
propagate, the probability of the input data associated with
the last state of HMM will slowly increase, since the
features are becoming more and more similar to a complete
failure. At the end of the fault progression process, the
probability of the sensor data associated with the final state
of the HMM will become one, which means a complete
failure. Therefore, the degradation index generated by
HMM provides a measure of the current component health,
which is very useful for fault prediction.

It is worth noting that by monitoring the progression of
state sequences and degradation index generated by HMM,
we can perform fault prognosis and diagnosis in a unified
fashion. Conventional techniques using HMM only deal
with the fault diagnosis problem [8, 10, 11].

C. Adaptive Prognostics for Remaining Useful Life
Prediction

It is our belief that an accurate prognostic method should
be intimately based on the diagnostic results. That is,
prognostics should be done at regular intervals and should
rely on on-line diagnostic results, which provide the latest
information about the system health status. In other words,
the prognostic algorithm needs to continuously update its
model and offer a revised prediction based on the current
health status of the system.

In this work, we employ an adaptive prognostic method
presented in [4], which use a stochastic modeling method to
characterize the uncertainty in material properties, process
conditions, or environmental factors. More specifically, the
fault progression model is given by

( )
0

n Z tdD
D C D e

dt
= = , (3)

where ( )D t is the fault size, 0C and n are constants

depending on the material property of the system, and ( )Z te
is called the lognormal random variable that characterize
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Figure 5: Raw vibration signals from a normal bearing and a
defective bearing

Figure 6: The corresponding power spectrum densities

Figure 7 The principal features extracted by PCA

the amount of uncertainty in material properties or
environmental factors. The random variable ( )Z t is

assumed to be a stationary, exponentially correlated,
Gaussian-Markov Process with the following equation

( ) ( )zZ Z t w tξ= − + ,

where ( )zw t is a Gaussian noise with zero mean and with

{ } 2( ) ( ) ( )ww t w tτ σ δ τΕ = − .

An adaptive algorithm has been derived to update the
model parameters based on the latest diagnostic information

( )D t . Therefore, the effects of maintenance activities and

changing operating conditions are considered. Moreover, a
fourth-order stochastic differential equation was developed
for fault progression prediction, which takes into account
uncertainties due to the complexity of defect progression
and diagnostic model inaccuracies. Detailed description and
analysis of the fault prediction algorithm can be found in
[4].

III. SIMULATION RESULTS

Simulation studies have been carried out to verify the
effectiveness of the integrated diagnostic and prognostic
scheme by using real experimental vibration data obtained
from bearing testing equipment at Georgia Institute of
Technology [4].

Defective bearing would cause mechanical systems to
vibrate abnormally. The vibrations are typically monitored
by accelerometers. In this work, the test bearing was
Timken LM 50130 cup (out race) and LM 501349 cone
(inner race). To accelerate the propagation process, a defect
was artificially initiated on the outer raceway by an
electrical discharge machine. The defect was placed in the
loading zone. The testing was interrupted and disassembled
to perform physical inspection of the defect at 0.378, 1.566,
3.51, 7.452 and 9.666 million cycles. The corresponding
vibration data were recorded in each of these periods at a
sampling rate of 30k. No defect propagation was observed
before the 9.666 million cycles. In the last assembly after
9.666 million cycles, the testing continued until 13.986
million cycles. Excessive vibration was observed during
that period. Since defect propagation was observed to
happen only in the last running, the detailed analysis was
performed only for that period.

Figure 5(a) and Figure 5(b) show the time segments of
vibration signals from a normal bearing and a defective one,
respectively. Their corresponding power spectrum densities
(PSD) are shown in Figure 6(a) and Figure 6(b). It has been
observed that the vibration level in the range of 3500-5000
Hz generated by the defective bearing is closely correlated
to a defect propagation process. Therefore, a band-pass
filter was applied to the raw vibration data.

In our simulation studies, we used two sets of real
vibration data, which correspond to a normal bearing and a

significantly defective one, respectively. An additional set
of data set were obtained via interpolation to represent an
intermediate defect condition. Therefore, an HMM with
three states was used to model these three different levels of
defect, i.e., normal condition, intermediate defect, and
significant defect that could lead to a catastrophic failure of
the bearing.

As described in Section 2, the proposed fault prognostics
scheme mainly consists of PCA for feature extraction,
HMM for degradation state and index estimation, and an
adaptive prognostic method for remaining useful life
prediction. Below we show some simulation results.

The principal features extracted by PCA are shown in
Figure 7, where the clusters in red, green, and blue
represent the normal condition, an intermediate defect, and
a significant defect, respectively. Then the extracted
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(a) RUL prediction at 750th frame

(b) RUL prediction at 1125th frame
Figure 10 Remaining useful life (RUL) prediction

features are used to estimate the HMM model parameters in
the training process. We conducted the following two types
of tests to evaluate the performance of the trained HMM
model. The first test is degradation state estimation, while
the second test is degradation index estimation.

In our first test, three sets of new data corresponding
respectively to the three different defect conditions (i.e.,
normal, intermediate, and significant) were used to
constitute the test data set. The data length for each
condition is the same. The degradation state estimation
generated by the HMM is shown in Figure 8. As we can
see, the HMM is able to detect the change of each defect
condition immediately after it occurs.

In our second test, interpolation was performed to the
data corresponding to the three known different defect
conditions to simulate a continuous defect propagation
process. The data interpolation was based on the well-
known Paris’s formula [4]. The actual defect propagation
curve obtained using the Paris’s formula and its estimation
generated by HMM are shown in Figure 9, respectively.
The estimated degradation index gives a reasonable
estimation of the true defect propagation curve. It is worth
noting that the variations in the estimated curve is due to
various modeling uncertainty in the fault progress process
(see (3)).

Finally, the estimated degradation index was used to
predict the remaining useful life of the bearing. As

mentioned early, one of the key advantages of the proposed
adaptive prognostics algorithm is its on-line learning
capability. In other word, the defect progression model
parameters are online updated using the latest diagnostic
information, therefore improving the prediction accuracy
[4]. It is worth noting since the first 600 frames shown in
Figure 9 give little information about fault progression, so
only the estimated degradation index starting from the
600th frame was used to predict the bearing’s remaining
useful life. Figure 10(a) and Figure 10(b) show the RUL
prediction results obtained at 750th frame and 1125th
frame, respectively. The actual degradation growth curve
and its estimation provided by HMM are plotted in green
and red solid lines, respectively. Moreover, the dashed blue
line is the predicted mean, while the two dotted curves in
magenta represent the predicted variances. By comparing
Figure 10(a) and Figure 10(b), it is obvious that the fault
prediction accuracy is significantly improved as the
prediction model is continuously updated.

It is worth noting that the component’s remaining useful
life can be easily determined by choosing a threshold
representing a critical damage level that could lead to a
failure of the bearing. Then the difference between the
current time and the time instant when the predicted
degradation index reaches this threshold defines the
remaining useful life of the component.

Figure 9 The actual degradation progression curve (dashed line)
and its estimation (solid line) provided by HMM

Figure 8 The degradation status estimation of bearing defect
conditions generated by HMM
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Figure 1 An integrated diagnostics and prognostics framework.
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Figure 4 A block diagram of HMM-based fault diagnostic and prognostic scheme

IV. CONCLUSION

In this research work, three fault diagnostic and
prognostic algorithms have been integrated for bearing
health monitoring. The proposed unified framework is
capable of performing anomaly detection, fault detection
and isolation, health/degradation estimation, and remaining
useful life prediction. Simulation results using some real
bearing vibration data have shown the feasibility of the
proposed method.

Future work includes the following: First, more data
intensive validation and performance evaluation; Second,
the development of open modular software architecture and
the implementation of the fault diagnostics and prognostics
algorithms.
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