
Fault Diagnosis in Discrete-Event Systems:
Incomplete Models and Learning

David L. Yeung
School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Email: dlyeung@uwaterloo.ca

Raymond H. Kwong
Electrical and Computer Engineering

University of Toronto

Toronto, Ontario, Canada M5S 3G4

Email: kwong@control.toronto.edu

Abstract— Most state-based approaches to fault diagnosis of
discrete-event systems require a complete and accurate model
of the system to be diagnosed. In this paper, we address the
problem of diagnosing faults given an incomplete model of the
system. We introduce the learning diagnoser, which estimates
the fault condition of the system and attempts to learn the
missing information in the model using discrepancies between
the actual and expected output of the system. We view the
process of generating and evaluating hypotheses about the
state of the system as an instance of the set covering problem,
which we formalize by using parsimonious covering theory. We
also explain through an example the steps in the construction
of the learning diagnoser.

I. INTRODUCTION

Fault detection is an important part of many engineer-

ing systems. A large variety of model-based methods for

automated fault diagnosis have been developed [1], [2]. A

major disadvantage of any model-based approach is that it

is sometimes very difficult to create an accurate model of an

electro-mechanical device or physical system (for example,

see the various papers collected in [2]).

Recently, a state-based framework for fault diagnosis in

discrete-event systems (DES) has been presented in [3]. In

this framework, the diagnoser does not have to be initialized

at the same time as the system, and no assumptions are

made at the initiation of the diagnoser about the state of

the system to be diagnosed or its failure status. However,

construction of the diagnoser again requires accurate model

of the DES.

In this paper, we describe a fault diagnosis framework

for DES which may be used to diagnose faults even when

a complete model of the system is unavailable. We introduce

the notion of learning in fault diagnosis of DES and describe

how a learning procedure can be combined with fault

diagnosis. Machine learning in finite state machines has

been extensively studied in the literature. The problem

of inferring a finite state automaton from its input-output

behaviour is discussed in [4], which also gives procedures

for carrying out the inference. The complexity as well as

the possibility of learning finite automata are discussed in

[5], [6]. In addition, computational learning methods for

finite automata, such as the use of genetic algorithms, have

been applied to natural language processing applications

[7]. However, the techniques described in much of this

literature require the use of inputs for learning. For fault

diagnosis in control systems, the use of test inputs is often

infeasible. Our approach uses only the outputs for both

learning through hypothesis generation and fault diagnosis

through estimation of the system fault status.

The paper is organized as follows. In Section II, we

review some notations and definitions. In Section III, we

examine the fault diagnosis process when the model of the

system is incomplete, leading to the development of the

learning diagnoser in Section IV. We conclude in Section V

with a discussion of more theoretical aspects of the problem.

II. BASIC NOTATIONS AND DEFINITIONS

We review some basic notations and definitions for the

state-based approach to fault diagnosis of discrete-event

systems (DES). Further details may be found in [3], [8],

[9].

The system to be diagnosed (the plant along with contin-

uous controllers and DES supervisors) is modeled as a non-

deterministic finite-state Moore automaton (FSMA). This is

represented as a 6-tuple structure

G = (X,Σ, δ, x0, Y, λ)

where X is the finite state set, Σ is the finite (non-empty)

event set, Y is the finite output set, x0 is the initial state,

δ : X × Σ → 2X is the (partial) transition function, and

λ : X → Y is the output map.

The event set Σ includes the set of failure events Σf .

In addition to the normal mode N , there are p failure

modes F1, . . . , Fp that describe the operation of the system.

We denote the condition set of the system by K :=
{N,F1, . . . , Fp}, and we assume that it is possible to

partition the state set X according to the condition of the

system: X = XN ∪̇ XF1
∪̇ . . . ∪̇ XFp

. (The symbol ∪̇
denotes disjoint union.) The occurrence of a failure event

brings the system into one of the sets XFi
, corresponding

to the failure mode Fi.

The condition map, κ : X → K, is defined as follows:

for every x ∈ X , κ(x) = N if x ∈ XN and κ(x) = Fi

if x ∈ XFi
(for some i ∈ {1, . . . , p}). We extend (abusing

notation) the definition of κ to subsets of X:

∀z ⊆ X, κ(z) =
⋃
x∈z

{κ(x)}

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThC15.5

3327

Only changes in the output are assumed to be observable, so

that in the output sequence, we have yk �= yk+1 for k ≥ 1.

For simplicity, we consider only the case p = 1 in this

paper, and denote the single failure mode by F . Further-

more, faults are assumed to be permanent. The extension

to p > 1 is conceptually the same but notationally more

complex.

We use a running example to illustrate the ideas presented

in this paper.

Example 1 Figure 1 shows a DES model of a plant under

control. The dashed line between states 11 and 14 represents

a failure event. In this example,
X = {1, 2, . . . , 16},

Y = {λ, α, β, γ, µ, ζ, η, ξ},

K = {N,F}, and

κ(i) =

{
N 1 ≤ i ≤ 13
F 14 ≤ i ≤ 16.

For any two states x, x′ ∈ X , we say that x′ is output-
adjacent to x and write x ⇒ x′ if λ(x) �= λ(x′) and ∃l ≥ 1,

states x1, . . . , xl−1, and events σ1, . . . , σl such that xi+1 ∈
δ(xi, σi+1) and λ(xi) = λ(x) for all 0 ≤ i ≤ l − 1, with

x0 = x and xl = x′.

A diagnoser D is a finite-state machine which takes the

output sequence of the system (y1y2 . . . yk) as its input, and

based on this sequence calculates a set zk ∈ 2X − {∅} to

which x must belong at the time that yk was generated. The

estimate of the system’s condition will be κ(zk). Formally,

D = (Z ∪ {z0}, Y, ζ, z0, K̂, κ)

where Z ∪ {z0} is the state set, Y is the event set, ζ :
Z∪{z0}×Y → Z is the (partial) transition function, z0 :=
(z0, 0) is the initial state with z0 ∈ 2X−{∅}, K̂ ⊆ 2K−{∅}
is the output set, and κ : Z ∪ {z0} → K̂ is the output

map. We define Ψ(z) = {x | ∃x′ ∈ z : x′ ⇒ x}. The

diagnoser state transition zk+1 = ζ(zk, yk+1) is given by

z1 = z0 ∩ λ−1({y1}), and for k ≥ 1,

zk+1 = Ψ(zk) ∩ λ−1({yk+1})

Example 2 Figure 2 shows the diagnoser for the DES

model of Figure 1. Each state of the diagnoser, shown

as a rounded box, is a set of states of the system. An

output symbol and a failure condition is associated with

each diagnoser state, except for the initial state.

Suppose that, subsequent to the initialization of the

diagnoser, the output sequence (µζη) is observed. If the

next output symbol is anything other than λ or ξ, then it

is inconsistent with the model and the diagnoser cannot

proceed.

In the next section, we describe how to extend the

diagnoser so that it can continue to perform fault diagnosis

even with an incomplete model.

III. DIAGNOSIS USING AN INCOMPLETE MODEL

It is assumed in the diagnosis framework described above

that a complete and accurate DES model of the system

is available for the purpose of diagnosis. If the system

develops an unforeseen failure mode, or if the properties of

the system are not sufficiently known to provide an accurate

model, then diagnosis could not be guaranteed in general

using the diagnoser described above. In this section, we

study what happens if the model is incomplete.

We assume that it is possible to accurately represent the

system to be diagnosed as a DES model, and designate

this model the true model of the system, Gt. We call

the model that we start with the nominal model of the

system, Gn. The nominal model is typically obtained from

a simplification of the system, and may be incomplete in

the sense that it may be missing a number of transitions

which are found in the true model. If the true model of the

system is Gt = (X,Σt, δt, x0, Y, λ), and the nominal model

is Gn = (X,Σn, δn, x0, Y, λ), we assume that Σn ⊆ Σt

and δn ⊆ δt. We also assume that the number of missing

transitions is ≤ Nmax, a fixed constant. In addition to

performing fault diagnosis, we would like to learn the true

model of the system. While our incompleteness model is

somewhat specific, we believe it represents the first time

that learning has been incorporated into fault diagnosis of

discrete-event systems.

The upper bound to the number of missing transitions,

Nmax, is assumed in practice to be a small number. While

the theoretical development only requires Nmax to be

finite, the computational effort increases rapidly with Nmax.

Assuming Nmax to be small corresponds to assuming the

nominal model is reasonably accurate. As model-based

diagnosis is unlikely to be successful if we use a bad

model to begin with, this assumption appears reasonable. A

more detailed discussion on the computational complexity

associated with learning can be found in [9].

We call the diagnoser Dn created from the nominal

model the nominal diagnoser. Suppose that we have the

nominal model Gn and the output sequence (y1y2 . . .).
Then Gn is consistent with the output sequence if Ψ(zk)∩
λ−1({yk+1}) �= ∅ for all k ≥ 1, where zk is the state

estimate of the Dn. It is inconsistent otherwise. If Gn is

inconsistent with the output sequence, then zk+1 = ∅ for

some k, causing the diagnoser to fail.

Given an output sequence (y1y2 . . .) and a nominal model

Gn which may be inconsistent with the output sequence, we

would like to accomplish the following goals: (1) to give a

fault estimate for the system, and (2) to revise the nominal

model by adding to it hypothetical transitions which we

believe to be in the true model but are missing from the

nominal model. A hypothetical transition d = (xsrc, xdst)
is an ordered pair of states denoting a transition from the

state xsrc ∈ X to the state xdst ∈ X which is not found in

the transition graph of Gn. For convenience, we will denote

a hypothetical transition d = (xsrc, xdst) by dsrc
dst .

A model G may be extended by a transition or a set of

transitions by modifying the transition function δ. Given

an output sequence, a hypothesis H is a non-empty set

of hypothetical transitions, such that the extension of the

3328

5 6 7 9 108

2 3 4

1

11

12

13

14

15 16

F

λ

N

β γα

µ µ µ µ µ µ µ

η
ζ

η ξ

ζ

Fig. 1. A DES model of a plant under control.

1 2

3

4

5,6,7,8 12 13

12,14 13,15 169,10,11

5,6,7,8,9,10,117,8,9

yk

zk

κ(zk)

F

N

N N N

N

N

α

β

γ

N

µ

µ

µ

N

ζ η

ζ

N,F

η

N,F

ξ

N

µ

λ

N

Fig. 2. The diagnoser for the DES model shown in Figure 1.

nominal model Gn by H is consistent with that output

sequence. We call the hypothesis comprising transitions in

Gt missing from Gn the correct hypothesis.

We motivate the main ideas behind hypothesis generation

and evaluation with an example.

Example 3 Suppose that the two transitions d5
13 and d9

13

are missing from the nominal model Gn shown in Figure 1.

We consider the output sequence (λαµηλβµηλγµηλ),
which is possible under the true model but which is im-

possible according to the nominal model.

After the occurrence of λαµ, the estimate of the nominal

diagnoser is z = {5, 6, 7, 8}, which has a condition estimate

of {N}. The next output symbol, η, is inconsistent with the

nominal model since none of the states in {5, 6, 7, 8} have

a transition going to a state with the output η. The only

states with the output η are 13 and 15. Thus, we guess

that the true model contains (at least) one of the following

transitions: {d5
13, d

6
13, d

7
13, d

8
13, d

5
15, d

6
15, d

7
15, d

8
15}. We call

this set of hypothetical transitions a competing set, since

only one of them is necessary to explain the inconsistency.

Furthermore, state 13 has the condition N while state 15

has the condition F , so that at this point, we cannot be sure

whether the fault F has occurred.

The next output symbol is λ. The only state with this

output is 1. We can infer that the previous state (with output

η) was 13, because state 13 has a transition to state 1. It

is impossible for the system to go from state 15 to state 1,

since κ(15) = F and κ(1) = N , and faults are assumed

to be permanent. Thus, we can narrow the hypothetical

transitions under consideration to {d5
13, d

6
13, d

7
13, d

8
13}. We

can also deduce that the condition of the system at this

point is N , since we know that the system is in state 1.

By the above reasoning, following the output of a further

βµηλγµηλ, we know that the missing transitions consist

of (at least) one transition from {d5
13, d

6
13, d

7
13, d

8
13}, (at

least) one from from {d7
13, d

8
13, d

9
13}, and (at least) one

from {d9
13, d

10
13, d

11
13}. When the nominal model is extended

by a hypothesis of the form H = {d1, d2, d3} where

d1 ∈ {d5
13, d

6
13, d

7
13, d

8
13}, d2 ∈ {d7

13, d
8
13, d

9
13}, and d3 ∈

{d9
13, d

10
13, d

11
13}, the resultant model will be consistent with

the output sequence.

In order to capture the relationships between hypothe-

3329

d5
13 d6

13 d7
13 d8

13 d9
13 d10

13 d11
13D

m3m2m1M

Fig. 3. Causal network for Example 3.

ses and their component transitions, we view the process

of composing and evaluating hypotheses as a set cover
problem, using the parsimonious covering theory (PCT)

presented in [10].

Let D denote the set of all hypothetical transitions di

of the nominal model, and let M denote the set of all

competing sets containing the hypothetical transitions, i.e.

for each di ∈ D, ∃mj ∈ M s.t. di ∈ mj . We create a

causal network from these two discrete finite sets. Fig-

ure 3 shows the causal network after the complete output

sequence of Example 3. Letting m1 = {d5
13, d

6
13, d

7
13, d

8
13},

m2 = {d7
13, d

8
13, d

9
13}, and m3 = {d9

13, d
10
13, d

11
13}, the bi-

partite graph shown in the figure represents the relationship

between the three competing sets. It may be seen that each

cover of this bipartite graph is a hypothesis, such that the

extension of Gn by the hypothesis is consistent with the

output sequence.

Let g1, g2, . . . , gn be non-empty pairwise-disjoint subsets

of D. Then GI = {g1, g2, . . . , gn} is a generator. The class
generated by GI , designated as [GI], is defined to be [GI] =
{{d1, d2, . . . , dn} | di ∈ gi, 1 ≤ i ≤ n}. Notationally, we

write GI = (g1, g2, . . . , gn) (with rounded brackets) for

readability. Let G1, G2, . . . , GN be generators and [GI] ∩
[GJ] = ∅ for I �= J . Then G = {G1, G2, . . . , GN} is

a generator-set, and the class generated by G is [G] =∑N

I=1
[GI].

We call the number of transitions in a hypothesis its

cardinality. Not all hypotheses are equally preferable, since

they have different cardinalities and some contain unnec-

essary transitions. A hypothesis is said to be a minimum
cover of M if its cardinality is smallest among all covers

of M. It is said to be an irredundant cover if none of

its proper subsets is also a cover of M, and a redundant
cover otherwise. Since the correct hypothesis may be a

non-minimum cover, it is insufficient merely to find all

the minimum covers. One can always obtain the set of all

minimum covers from the set of all irredundant covers by

simply picking out the covers of minimal cardinality. Note

also that each redundant cover has a subset which is irredun-

dant, and that both a redundant cover and its irredundant

subset are hypotheses. While the correct hypothesis may

indeed be a redundant cover, the redundant cover cannot

be distinguished from its irredundant subset by the output

sequence. The principle of parsimony says that, all other

things being equal, the simpler hypothesis is preferable.

Hence we need only focus on irredundant covers when we

generate hypotheses. The PCT framework provides effective

algorithms to find all irredundant covers for a set covering

problem, thereby providing the tools for efficient generation

and evaluation of hypotheses.

Example 4 In the causal network of Figure 3, there

are eight hypotheses for the bi-partite graph. These may

be compactly represented by the generator-set G =
{({d7

13, d
8
13}{d

9
13, d

10
13, d

11
13})({d

5
13, d

6
13}{d

9
13})}. The class

generated by G is [G] = {{d7
13, d

9
13}, {d

7
13, d

10
13}, {d

7
13, d

11
13},

{d8
13, d

9
13}, {d

8
13, d

10
13}, {d

8
13, d

11
13}, {d

5
13, d

9
13}, {d

6
13, d

9
13}}.

Generator-sets provide a compact way to represent mul-

tiple hypotheses so that their relationships to each other

are evident. Furthermore, by defining certain operations on

generator-sets, we can revise the hypotheses based on the

observed output of the system.

IV. THE LEARNING DIAGNOSER

In this section, we present a state-based fault diagnosis

framework which is tolerant of missing information about

the system to be diagnosed.

A learning diagnoser is a system that detects and isolates

failures, and furthermore, attempts to learn the true model

of the system if the nominal model is incomplete. It is

a finite-state machine which takes the output sequence of

the system (y1y2 . . . yk) as its input, and generates as its

output hypotheses regarding the information that is missing

from the nominal model, and an estimate of the system’s

condition for each hypothesis.

We define a candidate to be a pair c = (G, z), where z is

an estimate of the state of the system, and G is a generator-

set representing a set of hypotheses. A candidate is a state

estimate along with information on the “history” of that

estimate. Each hypothesis in the class generated by G is

a set of hypothetical transitions which would result in the

state estimate z had those transitions actually occurred. All

the hypotheses within a candidate are indistinguishable from

one another by the currently known output sequence, since

they all produce the same state estimate. For a candidate

c = (G, z), we say that [G] is the set of hypotheses under

consideration. A candidate c = (G, z) is said to be a match
for a state of the nominal diagnoser Dn if z is a state of the

nominal diagnoser. Let C denote the set of all candidates.

The learning diagnoser is exactly analogous to the di-

agnoser defined in Section II, by substituting candidates

for states of the system. The diagnoser determines a set of

states of the system based on the current output, and updates

that set of system states based on the subsequent output

sequence. The learning diagnoser determines, in addition,

sets of hypotheses (each set of which is associated with a

state estimate), and these sets of hypotheses are updated

according to the subsequent output sequence of the system.

In other words, each candidate is a state estimate along

with hypotheses which explain how the system arrived at

that state.

3330

Suppose that G is a generator-set, and H is a set of

hypothetical transitions. Then the revision of G due to H

is a new generator-set

G′ = revise(G, H)

such that each hypothesis generated by G ′ contains (at

least) one transition from H. (In particular, note that

revise(∅, H) = {(H)}.) The revise operation involves

several steps which we now outline.

Given a generator-set G and a set of hypothetical tran-

sitions H, the revise operation first creates a generator-set

F called the division of G by H which generates all the

hypotheses in [G] that already contain a transition from H.

It also creates a generator-set F ′ called the residual of the

division of G by H which generates the hypotheses [G]\[F],
that is, those hypotheses in [G] which do not contain a

transition in H. Next, it augments each hypothesis in [F ′]
with each transition from H to form a new set of hypotheses

having a generator-set Q called the augmented residual of

G by H. Finally, G′ = revise(G, H) is formed by taking the

union of F with Q, with duplicate hypotheses removed. The

final result is a generator-set G ′ which explains both the old

hypotheses as well as the new transitions, and therefore can

be taken as the updated hypothesis generator.

In an analogous fashion to the definition of the diagnoser

given in Section II, we define the learning diagnoser to be

a finite-state machine

LD = (W,Y, ρ, w0, K̂, κ)

where W is the state set, Y is the event set, ρ : W ∪{w0}×
Y → W is the transition function, w0 is the initial state,

K̂ ⊆ 2K −{∅} is the output set, and κ : W ∪ {w0} → K̂ is

the output map.

Each state of the learning diagnoser, except for the initial

state w0, is identified with a non-empty subset of C, that is,

W ⊆ 2C − {∅}. If w = {(G1, z1), . . . , (Gn, zn)}, then the

set of hypotheses under consideration in w is [G1∪. . .∪Gn].
The learning diagnoser state transition function wk+1 =

ρ(wk, yk+1) is given by w1 = {(∅, z0 ∩ λ−1({y1}))}, and

for k ≥ 1, wk+1 = update(wk, y). The interested reader

may consult [9] for the definition of the update operation.

Conceptually, for a state of the learning diagnoser wk =
{c1, . . . , cn}, the update operation applies an update law

involving the revise operation described above to each of

the candidates c1, . . . , cn, but with the addition of some

housekeeping such as the merging of candidates with the

same state estimate.

We illustrate the use of the revise operation and the

process of updating candidates with the following example,

which gives the learning diagnoser for the running example

used throughout this paper. More technical details are given

in [9].

Example 5 Figure 4 shows the learning diagnoser for

Example 3 after the output sequence (λαµηλβµηλγµηλ).
Transitions of the learning diagnoser where the set of

hypotheses under consideration are changed are denoted by

a ‘z’-like break. For other transitions, the state estimate of

the system has changed, but not the hypotheses regarding

the missing transitions. Candidates c = (G, z) which are a

match for a state of the nominal diagnoser Dn are shown

in dotted lines.

When the learning diagnoser is initialized (step 0), no

output has yet been observed, and the state estimate is X

(the system may be in any state). No hypotheses have been

generated, which we may represent by G0 = ∅. The known

information about the system may be captured using the

candidate c0 = (X,G0). After the output of λαµ (after step

3), the state estimate becomes z3 = {5, 6, 7, 8}. Because

the output sequence has thus far been consistent with the

nominal model, no hypotheses have been generated, so

G3 = ∅ and c3 = (z3,G3).
The next output symbol, η (step 4), is inconsis-

tent with the nominal model, and the only states with

the output η are 13 and 15. Thus, either the sys-

tem is in state 13 and the nominal model is missing

one of the transitions {d5
13, d

6
13, d

7
13, d

8
13}, or the sys-

tem is in state 15 and the nominal model is miss-

ing one of the transitions {d5
15, d

6
15, d

7
15, d

8
15}. We can

capture this information using two candidates c4a =
({13},G4a) and c4b = ({15},G4b), where G4a =
revise(G3, {d

5
13, d

6
13, d

7
13, d

8
13}) = {({d5

13, d
6
13, d

7
13, d

8
13})}

and G4b = revise(G3, {d
5
15, d

6
15, d

7
15, d

8
15}) = {({d5

15, d
6
15,

d7
15, d

8
15})}.

Since the next output symbol is λ (step 5), we know that

the system is in state 1. Since faults are assumed to be

permanent, it is impossible for the previous state to have

been 15. Thus, the candidate c4b leads to a dead end, and

the known information about the system after the output of

λ may be captured by a single candidate c5 = ({1},G5),
where G5 = G4a. Similarly, c6 = ({3},G6) (step 6) and

c7 = ({7, 8, 9},G7) (step 7), with G5 = G6 = G7.

The next output symbol, η (step 8), is again inconsistent

with the model. By the same reasoning as above, either

the system is in state 13 and the nominal model is missing

one of the transitions {d7
13, d

8
13, d

9
13}, or the system is in

state 15 and the nominal model is missing one of the tran-

sitions {d7
15, d

8
15, d

9
15}. As above, there are two candidates,

c8a = ({13},G8a) and c8b = ({15},G8b), where G8a =
revise(G7, {d

7
13, d

8
13, d

9
13}) = {({d7

13, d
8
13})({d

5
13, d

6
13}

{d9
13})} and G8b = revise(G7, {d

7
15, d

8
15, d

9
15}) = {({d5

13,

d6
13, d

7
13, d

8
13}{d

7
15, d

8
15, d

9
15})}.

Note that while G8a = {({d7
13, d

8
13})({d

5
13, d

6
13}{d

9
13})}

might look quite complicated, it generates precisely

those hypotheses which contain one transition from

{d5
13, d

6
13, d

7
13, d

8
13} and one transition from {d7

13, d
8
13, d

9
13}.

It is easy to verify that the learning diagnoser of Fig-

ure 4 follows the “thought process” illustrated in Ex-

ample 3. In particular, note that after the output of the

final λ, the sole remaining candidate has the generator-set

G = {({d7
13, d

8
13}{d

9
13, d

10
13, d11

13})({d
5
13, d

6
13}{d

9
13})}, and

the class generated by G is precisely just the hypotheses

3331

21

1

13 15 1

9,10,11

13 15 1 3 7,8,9

13 15 4

5,6,7,8

α

λ

η λ

µ

η βλ µ

γη

µ

X

0 31 2λ

4

8

12

9 10 11

5 6 7

13

N

∅

N

N

({d5
13, d

6
13}{d

9
13})}

{({d7
13, d

8
13}

{d9
13, d

10
13, d

11
13})

N F

{({d7
13, d

8
13}

{d9
15, d

10
15, d

11
15})

({d5
13, d

6
13}{d

9
13}

{d9
15, d

10
15, d

11
15})

({d5
13, d

6
13}{d

9
13})}

{({d7
13, d

8
13}

{d9
13, d

10
13, d

11
13})

N

N N

N

{({d5
15, d

6
15, d

7
15, d

8
15})}{({d5

13, d
6
13, d

7
13, d

8
13})}

F N

{({d5
13, d

6
13, d

7
13, d

8
13})} {({d5

13, d
6
13, d

7
13, d

8
13})}

N

{({d5
13, d

6
13, d

7
13, d

8
13})}

N

N F

{({d7
13, d

8
13}) {({d7

13, d
8
13})

({d5
13, d

6
13}{d

9
13})} ({d5

13, d
6
13}{d

9
13})}

{({d7
13, d

8
13})

({d5
13, d

6
13}{d

9
13})}

{({d7
13, d

8
13})

({d5
13, d

6
13}{d

9
13})}

{({d5
13, d

6
13, d

7
13, d

8
13}

{d7
15, d

8
15, d

9
15})}

N,F

∅∅

N

∅

Fig. 4. The learning diagnoser for Example 3, after the output sequence (λαµηλβµηλγµηλ).

given in Example 4.

The reader may consult [9] for further details on the

learning diagnoser and on the computational complexity of

the learning diagnoser.

V. CONCLUSIONS

In this paper, we have presented a framework for fault

diagnosis in discrete-event systems which can carry out

diagnosis even when the model of the system to be diag-

nosed is incomplete. We have illustrated the main concepts

behind the learning diagnoser with some examples. The

learning diagnoser generates hypotheses about the missing

information in the model and estimates the state (and fault

condition) of the system by using parsimonious covering

theory. We have left out many technical details, which the

interested reader may find in [9].

Owing to space limitations, there are a number of theo-

retical issues which we have not discussed in this paper. In

[9], we have obtained conditions for the diagnosability of

incomplete models and the learnability of the missing tran-

sitions. We will treat these issues as well as computational

complexity and model reduction in future papers.

REFERENCES

[1] Sampath, Meera, Sengupta, Raja, Lafortune, Stéphane, Sinnamo-
hideen, Kasim, and Teneketzis, Demosthenis, “Diagnosability of
Discrete-Event Systems,” IEEE Transactions on Automatic Control,
vol. 40, no. 9, pp. 1555–1575, 1995.

[2] Hamscher, W., Console, L., and de Kleer, J., Readings in Model-
based Diagnosis. Morgan Kaufmann, 1992.

[3] Hashtrudi Zad, Shahin, Kwong, R.H., and Wonham, W.M., “Fault
diagnosis in discrete-event systems: framework and model reduction,”
IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1199–
1212, 2003.

[4] Rivest, Ronald L. and Schapire, Robert E., “Diversity-based Infer-
ence of Finite Automata,” Journal of the ACM, vol. 41, no. 3, pp.
555–589, 1994.

[5] Gold, E. M., “Complexity of Automaton Identification from Given
Data,” Information and Control, vol. 37, pp. 302–320, 1978.

[6] Li, Ming and Vazirani, Umesh, “On the Learnability of Finite
Automata,” in Proceedings of the first annual workshop on Com-
putational learning theory (COLT ’88), 1988, pp. 359–370.

[7] Belz, Anja and Eskikaya, Berkan, “A Genetic Algorithm for Finite
State Automata Induction with an Application to Phonotactics,” in
Proceedings of the ESSLLI-98 Workshop on Automated Acquisition
of Syntax and Parsing, 1998.

[8] S. Hashtrudi Zad, “Fault Diagnosis in Discrete-Event and Hybrid
Systems,” Ph.D. dissertation, University of Toronto, 1999.

[9] Yeung, David L., “Fault Diagnosis and Learning in Discrete-Event
Systems with Incomplete Information,” Master’s thesis, University of
Toronto, 2003.

[10] Peng, Yun and Reggia, James A., Abductive Inference Models for
Diagnostic Problem-Solving. Springer-Verlag, 1990.

3332

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

