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Abstract: I n  this paper, the mapping between the de- 
sired camera feature vector and the desired camera pose 
(i.e., the position, and orientation) is investigated to 
develop a measurable image Jacobian-like matrix. An 
image-space path planner is then proposed to generate 
a desired image trajectory based on  this measurable im- 
age Jacobian-like matrix and an image space naviga- 
t ion function (NF) ( i e . ,  a special potential field func- 
tion) while satisfying rigid body constraints. An adap- 
tive, homography-based visual servo tracking controller 
is then developed to navigate the position and orienta- 
tion of a camera held by  the end-effector of a robot ma- 
nipulator to a goal position and orientation along the 
desired image-space trajecto y while ensuring the target 
points remain visible (i.e., the target points avoid self- 
occlusion and remain in the .field-of-view (FOV)) under 
certain technical restrictions. Due to the inherent non- 
linear nature of the problem and the lack of depth in- 
formation from a monocular system, a Lyapunov-based 
analysis is  used to analyze the path planner and the 
adaptive controller. 

1 Introduction 

There is significant motivation to provide improved 
autonomy for robotic systems. In part, this motiva- 
tion has led researchers to investigate the basic science 
challenges leading to the development of visual servo 
controllers as a means to provide improved robot au- 
tonomy. In general, visual servo controllers can be 
divided into position-based visual servo (PBVS) con- 
trol, image-based visual servo (IBVS), and hybrid ap- 
proaches. PBVS is based on the idea of using a vision 
system to reconstruct the Euclidean-space and then de- 
veloping the servo controller on the reconstructed in- 
formation. A well known issue with this strategy is 
that the target object may exit the camera field-of-view 
(FOV). IBVS control is based on the idea of directly 
servoing on the image-space information, with reported 
advantages of increased robustness to camera calibra- 
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tion and improved capabilities to ensure the target re- 
mains visible. Even for IBVS controllers that are for- 
mulated as regulation controllers, if the initial error is 
large, then excessive control action and transient re- 
sponse can cause the target to leave the FOV, and may 
lead to  trajectories that are not physically valid or opti- 
mal due to the nonlinearities and potential singularities 
with associated the transformation between the image 
space and the Euclidean-space [2]. For a review of IBVS 
and PBVS controllers see [20]. 

In light of the characteristics of IBVS and PBVS, several 
researchers have recently explored hybrid approaches. 
For example, homography-based visual servo control 
techniques (coined 2.5D controllers) have been recently 
developed in a series of papers by Malis and Chaumette 
(e.g., [l], [26], [27]). The homography-based approach 
exploits a combination of reconstructed Euclidean in- 
formation and image-space information in the control 
design. The Euclidean information is reconstructed by 
decoupling the interaction between translational and ro- 
tational components of a homography matrix. As stated 
in [26], some advantages of this methodology over the 
aforementioned IBVS and PBVS approaches are that an 
accurate Euclidean model of the environment (or tar- 
get object) is not required, and potential singularities 
in the image-Jacobian are eliminated (i.e., the image- 
Jacobian for homography-based visual servo controllers 
is typically triangular). Motivated by the advantages 
of the homography-based strategy, several researchers 
have recently developed various regulation controllers 
for robot manipulators (see [ 5 ] ,  [8 ] ,  and [ll]). 

While homography-based approaches exploit the advan- 
tages of IBVS and PBVS, a common problem with 
all the aforementioned approaches is the inability to 
achieve the control objective while ensuring the target 
features remain visible. To address this issue, Mezouar 
and Chaumette developed a path-following IBVS algo- 
rithm in [29] where the path to a goal point is gener- 
ated via a potential function that incorporates motion 
constraints; however, as stated in [29], local minima as- 
sociated with traditional potential functions may exist. 
Using a specialized potential function (coined a navi- 
gation function (NF)) originally proposed in [24] and 
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[34], Cowan et al. developed a hybrid position/image- 
space controller that forces a manipulator to a desired 
setpoint while ensuring the object remains visible (i.e., 
the N F  ensures no local minima) and by avoiding pit- 
falls such as self-occlusion [lo]. However, as stated in 
[as], this approach requires the complete knowledge of 
the space topology and requires an object model. In 
[18], Gans and Hutchinson developed a strategy that 
switches between an IBVS and a PBVS controller to 
ensure asymptotic stability of the position and orienta- 
tion (Le., pose) in the Euclidean and image-space. An 
image-space based follow-the-leader application for mo- 
bile robots was developed in [9] that exploits an image- 
space NF. Specifically, an input/output feedback lin- 
earization technique is applied to the mobile robot kine- 
matic model to yield a controller that yields “string sta- 
bility” [ 161. Without a feedforward component, the con- 
troller in [9] yields an approximate “input-to-formation” 
stability (i.e., a local, linear exponential system with a 
bounded disturbance). A N F  based approach to the 
follow-the-leader problem for a group of fully actuated 
holonomic mobile robots is considered in [31] where con- 
figuration based constraints are developed to ensure the 
robot edges remain in the sight of an omnidirectional 
camera. While a Lyapunov-based analysis is provided 
in [31] to ensure that the N F  decreases to the goal posi- 
tion, the stability of the overall system is not examined. 

Motivated by the image space navigation function de- 
veloped in [ lo], an off-line desired image trajectory gen- 
erator is proposed based on a new image Jacobian-like 
matrix for the monocular, camera-in-hand problem. 
This approach generates a desired camera pose trajec- 
tory that moves the camera from the initial camera pose 
to a goal camera pose while ensuring that all the feature 
points of the object remain visible under certain tech- 
nical restrictions. To develop a desired camera pose 
trajectory that ensures all feature points remain vis- 
ible, a unique relationship is formulated between the 
desired image feature vector and the desired camera 
pose. The resulting image Jacobian-like matrix is re- 
lated to the camera pose, rather than the camera ve- 
locity as in other approaches [2]. Motivation for the 
development of this relationship is that the resulting im- 
age Jacobian-like matrix is measurable, and hence, does 
not suffer from the lack of robustness associated with 
estimation based methods. Further more, the desired 
image generated with this image Jacobian-like matrix 
satisfies rigid body constraints (The terminology, rigid 
body constraints, in this paper is utilized to denote the 
image feature vector constraints in which feature points 
have a fixed relative position to each other in Euclid- 
ean space). Building on our recent research in [5], an 
adaptive homography based visual tracking controller is 
then developed to ensure that the actual camera pose 
tracks the desired camera pose trajectory (i.e., the ac- 
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Figure 1: Coordinate frame relationships 

tual features track the desired feature point trajectory) 
despite the fact that time-varying depth from the cam- 
era to the reference image plane is not measurable from 
the monocular camera system. Based on the analysis 
of the homography based controller, bounds are devel- 
oped that can be used to ensure that the actual image 
features also remain visible under certain technical re- 
strictions. A Lyapunov-based analysis is provided to 
support the claims for the path planner and to analyze 
the stability of the adaptive tracking controller. 

2 Geometric Modeling 

2.1 Euclidean Homography 
Four feature points, denoted by Oi V i  = 1, 2, 3, 4, are 
assumed to be located on a reference plane 7r (see Figure 
1), and are considered to be coplanar’ and not colinear. 
The reference plane can be related to the coordinate 
frames 3, 3 d ,  and 3’ depicted in Fig. 1 that denote 
the actual, desired, and goal pose of the camera, respec- 
tively. Specifically, the following relationships can be 
developed from the geometry between the coordinate 
frames and the feature points located on 7r 

(1) 
m i  = xf + Rmf 
m d i  = X f d + R d m f  

where m,(t), m d i ( t ) ,  and mf denote the Euclidean coor- 
dinates of oi expressed in 3, 3 d ,  and 3*, respectively. 
In (l), R ( t ) ,  R d  ( t )  E SO(3) denote the rotation be- 
tween 3 and 3* and between F d  and 3*, respectively, 
and xf ( t ) ,  x f d  ( t )  E R3 denote translation vectors from 
3 to F* and 3 d  to 3* expressed in the coordinates of 

and F d ,  respectively. Since the Euclidean position 
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of 3, F d ,  and F* cannot be directly measured, the ex- 
pressions in (1) need to be related to the measurable 
image-space coordinates. To this end, the normalized 
Euclidean coordinates of Oi expressed in terms of 3, 
Fd, and 3* as mi ( t ) ,  m d i  ( t ) ,  ml E R3, respectively, 
are defined as follows 

under the standard assumption that zi ( t ) ,  zdi(t) ,  z t  > E 

where E denotes an arbitrarily small positive constant. 
Based on (2), the expression in (1) can be rewritten as 
follows 

Q i. H 

a d i  H d  

In (3) and (4), ai ( t ) ,  Q d i  ( t )  E R denote invertible depth 
ratios, H ( t )  , H d ( t )  E IR3x3 denote Euclidean homogra- 
phies [14], and d* E R denotes the constant, unknown 
distance from the origin of F* to 7r. The following pro- 
jective relationship can also be developed from Fig. 1 

(5) d* = ,*T mi. - * 

Also from Fig. 1, the unknown, time varying distance 
from the origin of F d  to T ,  denoted by d ( t )  E R, can be 
expressed as follows 

d = n * T R z f i d i .  (6) 

2.2 Projective Homography 
Each feature point on 7r has a projected pixel coordinate 
denoted by ui ( t ) ,  zli ( t )  E R in 3, udi ( t ) ,  'ud i  ( t )  E R in 
3 d ,  and u;, w," E R in F*, that are defined as follows 

In (7), p ,  ( t ) ,  p d z  ( t ) ,  p: E R3 represent the image-space 
coordinates of the time-varying feature points, the de- 
sired time-varying feature point trajectory, and the con- 
stant reference feature points, respectively. To calculate 
the Euclidean homography given in (3) and (4) from 
pixel information, the projected pixel coordinates of the 
target points are related to m, (t), m d ,  ( t ) ,  and m: by 
the following pin-hole lens models [14] 

p ,  = A m ,  p d ,  = Amd, p: =Am: ( 8 )  

where A E R3x3 is a known, constant, and invertible 
intrinsic camera calibration matrix. After substituting 

(8) into (3) and (4), the following relationships can be 
developed 

pi = ai (AHA-') p,* p d i  = a& (AH&') - - 
G G d  

(9) 
where G ( t ) ,  G d  ( t )  E denote projective homogra- 
phies. Given the images of the 4 feature points on K 
expressed in 3, 3 d ,  and F*,  a linear system of equa- 
tions can be developed from (9). From the linear sys- 
tem of equations, a decomposition algorithm (e.g., the 
Faugeras decomposition algorithm in [14]) can be used 
to compute ai (t) ,  ardi ( t ) ,  n*, R ( t ) ,  and R d  ( t )  (see [5] 
for details)2. Hence, ai ( t ) ,  ( t ) ,  n*, R ( t ) ,  and R d  ( t )  
are known signals that can be used in the subsequent 
development. 

2.3 Kinematic Model of Vision System 
The camera pose, denoted by Y ( t )  E R6, can be ex- 
pressed in terms of a hybrid of pixel and reconstructed 
Euclidean information as follows 

Y( t )  e [ pTl QT 1' (10) 
where the extended pixel coordinate pel ( t )  E R3 is de- 
fined as follows 

(11) 
T 

pel = [ ~1 ' ~ 1  - I ~ ( Q I )  ] , 
and @(t) E R3 denotes the following axis-angle repre- 
sentation of R(t) (see [5] for details) 

0 = p( t )O( t ) .  (12) 
In (ll), In (.) denotes the natural logarithm, and al(t)  
is introduced in (3). In (12), p ( t )  E R3 represents the 
unit axis of rotation, and 0 ( t )  denotes the rotation angle 
about that axis. Based on the development in Appendix 
A, the open-loop dynamics for Y ( t )  can be expressed 
as follows 

[mllx ] [ >c ] (13) 
-L, 

Y =  

where w c ( t )  E R3 and wc( t )  E R3 denote the linear and 
angular velocity of the camera expressed in terms of F ,  
A,, (ui,zl,) E is a known, invertible matrix defined 
as follows 

0 0 ui 

A , i = A - [  0" 0" ;,I i = 1 ,2 ,3 ,4 ,  (14) 

and the invertible Jacobian-like matrix L,  (8, p )  E 
is defined as [26] 
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where 
sin6 ( t )  

sinc (e  ( t ) )  = ___ e ( t )  

3 Image-Based Path Planning 

The .path planning objective involves regulating the 
pose of a camera held by the end-effector of a ro- 
bot manipulator to a desired camera pose along an 
image-space trajectory while ensuring the target points 
remain visible. To achieve this objective, a desired 
camera pose trajectory is constructed in this section 
so that the desired image feature vector, denoted by 

R8, remains in a set, denoted by D cR', where all four 
feature points of the target remain visible for a valid 
camera pose. The constant, goal image feature vector 
p* s [ u; v; uz vz 1' E W8 is assumed be in 
the interior of D. To generate the desired camera pose 
trajectory such that p d ( t )  E V, the special artificial po- 
tential function coined a navigation function in [24], can 
be used. Specifically, the navigation functions used in 
this paper are defined as follows [34]. 

T 
p d  ( t )  ' [ u d l  ( t )  vdl ( t )  ... ud4 ( t )  vd4 ( t )  ] E 

... 

Definition 1 Let D be a compact connected analytic 
manifold with boundary, and let p* be a goal point in 
the interior of V. A map cp ( P d )  : V -lo, I / ,  is a NF if 
it is 

P 1)  analytic on  V (at least the first and second partial 
derivatives exist and are bounded on D); 

P 2) polar at p*,  ie., has a unique minimum at p*; 
P 3) admissible on  ID , Le., uniformly maximal on  the 
boundary of D; 

P 4 )  a Morse function (i.e., the matrix of second partial 
derivatives, the Hessian, evaluated at its critical points 
is nonsingular (and has bounded elements based on  the 
smoothness property in P 1)). 

3.1 Pose Space to Image Space Relationship 
To develop a desired camera pose trajectory that en- 
sures pd(t) E V, the desired image feature vector is 
related to the desired camera pose, denoted by Y'd ( t )  E 
R6, through the following relationship 

p d  = (Td) (16) 

where II (.) : R6 -+ D denotes an unknown function that 
maps the camera pose to the image feature vector3. In 
~ 

"The reason we choose four feature points to  construct the 
image feature vector is tha t  the  same image of three points can 
be seen from four different camera poses [21]. A unique camera 
pose can theoretically be obtained by using a t  least four points 
[a]. Therefore, the map  II (.) is a unique mapping with the image 
feature vector corresponding to a valid camera pose. 

(16), the desired camera pose is defined as follows 

where pedl  ( t )  E R3 denotes the desired extended pixel 
coordinates defined as follows 

Ped1 = [ W I  V ~ I  - l n ( ~ d l )  1' (18) 

where adl( t )  is introduced in (4), and @ d ( t )  E R3 de- 
notes the axis-angle representation of &(t) as follows 

@d = P d ( t ) O d ( t )  (19) 

where p d ( t )  E W3 and B d ( t )  E R are defined in the same 
manner as p ( t )  and O(t) in (12) with respect to Rd(t). 

3.2 Desired Image Trajectory Planning 
After taking the time derivative of (16), the following 
expression can be obtained 

pd= Lr, T d  (20) 

where Ly,  ( p d )  - a p d  E R8x6 denotes an image 
Jacobian-like matrix. Based on the development in A p  
pendix B, a measurable expression for L r d  ( t )  can be 
developed as follows 

aTd 

(21) Lyd = TT 

where 7 E 
defined as follows 

denotes a constant, row-delete matrix 

1 I2 o2 02 o2 02 o2 02 o2 
- 02 o2 I2 o2 02 02 0 2  o2 

02 o2 0 2  o2 I2 o2 0 2  o2 
02 o2 02 o2 0 2  o2 I2 o2 

I =  1 
where I ,  E RnX" denotes the n x n identity matrix, 
0, E Rnxn denotes an n x n matrix of zeros, 0" E R" 
denotes an n x 1 column of zeros, and T ( t )  E RlZx6 is 
a measurable auxiliary matrix defined as follows 
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4 Tracking Cont ro l  Development Based on (2), (6), and (8), pi ( t )  can be rewritten in 
terms of computed and measurable terms as follows 

1 p. = 
a nxTR:A-lp d i  ' 

Motivated by (20) and the definition of the navigation 
function in Definition 1, the desired camera pose trajec- 
tory is designed as follows 

r d  = - k lLT ,  v Cp (25) 

where IC1 E R denotes a positive constant, and 

vy (pd)  Li (w)" E IRs denotes the gradient vector 
of Cp(pd) .  The development of a particular image space 
N F  and its gradient are provided in Appendix C. After 
substituting (25) into (20), the desired image trajectory 
can be expressed as follows 

(26) T pd= -ICl L r d  L T d  v Cp 

where it is assumed that v (p (pd)  is not a member of 
the null space of LTd ( p d ) .  Based on (20) and (25), it 
is clear that the desired image trajectory generated by 
(26) will satisfy rigid body constraints. 

R e m a r k  1 Based on  comments in [2] and the current 
development, it seems that a remaining open problem is 
to develop a rigorous, theoretical and general approach 
to ensure that v p ( p d )  is  not a member of the null space 

denotes the null space operator). However, since the 
approach in this paper is developed in terms of the de- 
sired image-space trajectory (and hence, is an off-line 
approach), a particular desired image trajectory can be 
chosen (e.g., b y  trial and error) a priori to ensure that 
v p ( p d )  f NS(LTd (pd) ) .  Similar comments are pro- 
vided in [2] and [29] that indicate that in practice this 
assumption can be readily satisfied fo r  particular cases. 
Likewise, a particular desired image trajectorg is  also 
assumed to be a priori selected to ensure that r d ( t ) ,  
rd(t) E ,& if p d ( t )  E 'D. Based on the structure of 
(17) and ( la) ,  the assumption that Td(t) ,  * d ( t )  E . c ~  
if p d ( t )  E 'D is considered mild in the sense that the only 
possible alternative case is if the camera could somehow 
be positioned at an infinite distance from the target while 
all four feature points remain visible. 

of LTd ( p d )  (i.e.7 v P ( p d )  f Ns(LTd ( p d ) )  where N S ( - )  

3.3 Path Planner Analysis 

Theorem 1 Provided the desired feature points can be 
a priori selected to ensure that & ( O )  E D and that 
v y ( p d )  $! N s ( L T d  ( p d ) ) ,  then the desired image tra- 
jectory generated b y  (26) ensures that p d ( t )  E D and 
(26) has the asymptotically stable equilibrium point p* . 

Based on Theorem 1, the desired camera pose trajectory 
can be generated from (25) to ensure that the cam- 
era moves along a path generated in the image space 
such that the desired object features remain visible (i.e., 
p d ( t )  E D). The objective in this section is to de- 
velop a controller so that the actual camera pose Y ( t )  
tracks the desired camera pose Td ( t )  generated by (25), 
while also ensuring that the object features remain visi- 
ble (i.e., p ( t )  w4 ( t )  1' E 
'D). To quantify this objective, a rotational tracking er- 
ror] denoted by e,(t) E EX3, is defined as 

[ u1 ( t )  w1 ( t )  ... u4 ( t )  

(27) 
a e, = O - @ d ,  

and a translational tracking error, denoted by e,  ( t )  E 
IR3, is defined as follows 

4.1 Control Development 
After taking the time derivative of (27) and (as), the 
open-loop dynamics for e,  ( t )  and e,  ( t )  can be obtained 
as follows 

e,  = -LWwc - Od (29) 

1 
.z1 

e,  = --Aelvc + Ae1 [ml] , wc - & d l  (30) 

where (13) was utilized. Based on the open-loop error 
systems in (29) and (30), w c ( t )  and wc( t )  are designed 
as follows 

. d l  (31) 

1 
a1 a1 

( w, = A L J ~  K,e, - o 

vC = A 1  -A, 1 (K,e, - i ; $ e d l )  + - [mi], wc2T (32) 

where K,, K ,  E denote diagonal matrices of pos- 
itive constant control gains, and iT(t) E R denotes a 
parameter estimate for zT that is designed as follows 

where k2 E IR denotes a positive constant adaptation 
gain. After substituting (31) and (32) into (29) and 
(30), the following closed-loop error systems can be de- 
veloped 

e, = -K,e, (34) 

Z ; e ,  = -&e, f ( A e 1  [mi], wc - @ e d l )  2; (35) 

where the parameter estimation error signal .i.;(t) E R 
is defined as follows 

Proof: See [6] 
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4.2 Control ler  Analysis 

Theorem 2 The controller introduced in (31) and 
(32), along with the adaptive update law defined in (33), 

camera pose trajectory in the sense that 

Based on  (1 6), the following expression can be developed 

ensure that the actual camera pose tracks the desired P=IT(T) -II(Td)+pd. (43) 

L Ilew(t)ll + 0 Ilev(t)ll -+ 0 as t + 00. (37) 

Proof: Let V2(t) E R denote a non-negative function 
defined as follows 

After applying the mean-value theorem to (43), the fol- 
lowing inequality can be obtained 

(38) 1 ,  z ; T  1 -*2 VZ a -e e + -eve,  + -zl . 2 w w  2 2k2 
(44) 

After taking the time derivative of (38) and then sub- 
stituting for the closed-loop error systems developed in 
(34) and (35), the following expression can be obtained 

Since all signals are bounded, it can be shown that 
LT,(pd) E C,; hence, the following inequality can be 
developed from (42) and (44) 

V 2  = -e:K,e, - eTK,e, 
’ (39) + e: ( A d  [%I x wc - I j e d l )  2; - $; 2; 

where the time derivative of (36) was utilized. After 
substituting the adaptive update law designed in (33) 
into (39), the following expression can be obtained 

lldl 6 c b m +  llpdll (45) 

(40) V 2  = -e,K,e, T - eTK,e,. 

Standard signal chasing can be utilized to prove the 
result given in (37) (See [6] for the details). 

R e m a r k  2 Based on  the result provided in (37), i t  can 
be proven from the Euclidean reconstruction given in 
(3) and (4)  that R(t) + R d ( t ) ,  rnl(t) + r n d i ( t ) ,  and 
z l ( t )  -+ . z d l ( t )  (and hence, z f ( t )  -+ x fd ( t ) ) .  Based 
on  these results, (1) can be used to also prove that 
M i ( t )  -+ mdi(t). Since II (.) is  a unique mapping, we 
can conclude that the desired camera pose converges 
to the goal camera pose based on  the previous result 
&(t) -+ p’ from Theorem 1. Based on  the above analy- 
sis, mi(t) -+ m*. 

Remark 3 Based on  (38) and (do), the following in- 
equality can be obtained 

eze ,  + e:e, < 2max 

where 

for some positive constant c b  E E%, where p d ( t )  E V 
based on  Theorem 1. To ensure that P ( t )  E V, the 
image space needs to be sized to account for  the effects of 
CbV2 (0) .  Based on (38), 6 (0)  can be made arbitrarily 
small by increasing k2 and initializing p d  (0) close or 
equal to p (0) .  

5 Conclusions 

A path planner is developed based on an image-space 
N F  that ensures the desired image trajectory converges 
to  the goal position while also ensuring the desired im- 
age features remain in a visibility set under certain tech- 
nical restrictions. An adaptive, homography-based vi- 
sual servo tracking controller is then developed to nav- 
igate the camera-in-hand pose along the desired tra- 
jectory despite the lack of depth information from a 
monocular camera system. The path planner and the 
tracking controller are analyzed through a Lyapunov- 
based analysis. Simulation results are provided to illus- 
trate the performance of the proposed approach. 

From ( l o ) ,  (17), (27), (28), and the inequality an (41), 
the following inequality can be developed 
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