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Abstract— This work proposes a hybrid nonlinear output
feedback control methodology for a broad class of switched
nonlinear systems with input constraints. The key feature
of the proposed methodology is the integrated synthesis, via
multiple Lyapunov functions, of “lower-level” nonlinear output
feedback controllers together with “upper-level” switching
laws, based on available state estimates, that orchestrate
the transitions between the constituent modes and their
respective controllers. The output feedback controllers are
synthesized, using a combination of bounded state feedback
controllers, high-gain observers and appropriate saturation
filters, to enforce asymptotic stability for the individual closed-
loop modes and provide an explicit characterization of the
corresponding output feedback stability regions in terms of
the input constraints and the observer gain. The switching
logic tracks the evolution of the state estimates generated by
the observers and orchestrates switching between the stability
regions of the constituent modes in a way that guarantees
asymptotic stability of the overall switched closed-loop system.
The differences between the state and output feedback switch-
ing strategies are discussed and a chemical process example
is used to demonstrate the proposed approach.

I. INTRODUCTION

The study of hybrid systems in control is motivated by the

fundamentally hybrid nature of many modern-day control

systems, which are characterized by the interaction of

lower-level continuous dynamics and upper-level discrete or

logical components. It is well understood that the interaction

of discrete events with even simple continuous dynamical

systems can lead to complex dynamics and, potentially,

to undesirable outcomes, if not appropriately accounted

for in the control system design. Motivated by this, and

the abundance of situations where hybrid systems arise in

practice, significant research work has focused on hybrid

systems over the last decade, covering a broad range of

problems including, for example, modeling [25], simulation

[1], [10], optimization [11], and control [19], [16], [2].

A class of hybrid systems that has attracted significant

attention, because it can model several practical control

problems that involve the integration of supervisory logic-

based control schemes and feedback control algorithms, is

the class of switched systems. For this class, results have

been developed for stability analysis using the tools of

multiple Lyapunov functions, for linear [21] and nonlinear
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systems [22], [3], [26], and the concept of dwell-time [12];

the reader may refer to [17], [5] for a survey of results in

this area. These results have motivated the development of

methods for control of various classes of switched systems

(e.g., [24], [27], [13], [6]).

In a previous work [7], we developed a hybrid nonlinear

control method for a broad class of switched nonlinear

systems with input constraints. These are systems that

consist of a finite family of continuous nonlinear dynamical

modes, subject to hard constraints on their manipulated

inputs, together with a higher-level supervisor that governs

the transitions between the constituent modes. The key

feature of the proposed control method was the integrated

synthesis, via multiple Lyapunov functions (MLFs), of:

(1) lower-level feedback controllers that stabilize the con-

stituent constrained modes and provide, simultaneously, an

explicit characterization of the stability region for each

mode, and (2) upper-level switching laws that orchestrate,

on the basis of the stability regions, the transitions between

the continuous modes and their respective controllers, in

a way that ensures stability of the overall switched closed-

loop system. The method was extended to switched systems

with uncertainty and constraints in [9].

In addition to input constraints, another important issue

that must be accounted for in the control system design is

the lack of complete state measurements. For switched sys-

tems, this issue affects both the design and implementation

of the lower-level controllers and the upper-level switching

laws which both have to be based on state estimates.

Motivated by these considerations, we present in this work

a nonlinear output feedback control method for a class of

switched nonlinear systems with input constraints. The key

idea is the coupling between the switching logic and the sta-

bility regions arising from the limitations imposed by both

input constraints and the lack of full state measurements

on the dynamics of the constituent modes of the switched

system. Using MLFs, the proposed method involves the

integrated synthesis of bounded nonlinear controllers, high-

gain observers and switching laws based on available state

estimates, that orchestrate stabilizing mode transitions. The

remainder of the manuscript is organized as follows. In sec-

tion II, we present the class of switched systems considered

and briefly review MLF stability analysis. In section III, we

address the state feedback problem to provide the necessary

background for the output feedback control problem which

is addressed in section IV. The differences between the
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state and output feedback switching strategies are discussed.

Finally, in section V, the proposed methodology is demon-

strated using a chemical process example.

II. PRELIMINARIES

A. Class of systems

We consider the class of switched nonlinear systems

represented by the following state-space description:

ẋ(t) = fσ(t)(x(t)) + Gσ(t)(x(t))uσ(t)

ym = hm(x)
‖uσ‖ ≤ umax

σ , σ(t) ∈ I = {1, · · · , N}
(1)

where x(t) ∈ IRn denotes the vector of continuous-time

state variables, uσ(t) = [u1
σ(t) · · ·um

σ (t)]T denotes the

vector of manipulated inputs taking values in the nonempty

compact subset U := {uσ ∈ IRm : ‖uσ‖ ≤ umax
σ },

ym ∈ IRm denotes the vector of measured variables, hm(x)
is a sufficiently smooth function on IRm , σ : [0,∞) → I
is the switching signal which is assumed to be a piecewise

continuous (from the right) function of time, implying that

only a finite number of switches is allowed on any finite

interval of time. Without loss of generality, we assume that

fi(0) = 0 for all i ∈ I. We also assume that the state x
does not jump at the switching instants.

B. Stability analysis via multiple Lyapunov functions
Preparatory for its use in control, we will briefly review

in this section the main idea of multiple Lyapunov functions

(MLFs) as a tool for stability analysis of switched systems.

To this end, consider the switched system of Eq.1, with

ui(t) ≡ 0, i ∈ I, and suppose that we can find a family

of Lyapunov-like functions {Vi : i ∈ I}, each associated

with the vector field fi(x). A Lyapunov-like function for

the system ẋ = fi(x), with equilibrium point xeq = 0 ∈
Ωi ⊂ IRn, is a real-valued function Vi(x), with continuous

partial derivatives, defined over the region Ωi, satisfying the

conditions: (1) Vi(0) = 0 and Vi(x) > 0 for x �= 0, x ∈ Ωi,

and (2) V̇i =
∂Vi(x)

∂x
fi(x) ≤ 0, for x ∈ Ωi. The following

theorem provides sufficient conditions for stability.

Theorem 1 [5] (see also [3]): Given the N -switched
nonlinear system of Eq.1, with ui(t) ≡ 0, i ∈ I, suppose
that each vector field fi has an associated Lyapunov-like
function Vi in the region Ωi, each with equilibrium point
xeq = 0, and suppose

⋃
i Ωi = IRn. Let σ(t) be a given

switching sequence such that σ(t) can take on the value of
i only if x(t) ∈ Ωi, and in addition

Vi(x(tik
)) ≤ Vi(x(tik−1)) (2)

where tik
denotes the k-th time that the vector field fi is

switched in, i.e., σ(t−ik
) �= σ(t+ik

) = i. Then, the equilibrium
point, xeq = 0, of the system of Eq.1, with ui(t) ≡ 0, i ∈ I,
is Lyapunov stable.

A generalization of the MLF concept, in the context of

control of switched systems, is that of multiple control

Lyapunov functions (MCLFs) [7]. The idea is to use a

family of CLFs to design both a family of stabilizing

nonlinear controllers and a set of switching laws that ensure

stability of the overall closed-loop system. For a clear

presentation of the main results of this paper, we will start

in the next section by reviewing the state feedback control

problem (i.e., ym = x) which will provides the necessary

foundation for formulating and solving the output feedback

control problem in section IV.

III. STATE FEEDBACK CONTROL OF SWITCHED

NONLINEAR SYSTEMS

Consider the switched nonlinear system of Eq.1. Given

that switching is controlled by some higher-level supervisor,

the problem we focus on is how to orchestrate switching

between the various subsystems in a way that respects the

constraints and guarantees asymptotic closed-loop stability.

To this end, we formulate the following control objec-

tives. The first is to synthesize a family of N bounded

nonlinear state feedback controllers of the form, ui =
−ki(x, umax

i )(LGi
Vi)T , i = 1, · · · , N , where Vi is a CLF

for the i-th mode and LGi
Vi is a row vector of the form

[Lgi,1Vi · · ·Lgi,m
Vi], that: (1) satisfy the constraints, (2)

enforce asymptotic stability for the individual closed-loop

subsystems, and (3) provide an explicit characterization of

the set of admissible initial conditions starting from where

each mode is guaranteed to be stable. The second objective

is to identify a set of switching laws, σ(t) = ψ(x(t)),
that orchestrate the transition between the constituent modes

and their respective controllers in a way that respects the

input constraints and guarantees asymptotic stability of the

constrained switched closed-loop system.

Theorem 2 below describes the controller switching

strategy under full state feedback, based on the idea of

integrating, via MCLFs, feedback and supervisory control,

introduced in [7]. The proof of this theorem is similar to

the one given in [7] and will be omitted for brevity.

Theorem 2: Consider the switched nonlinear system of
Eq.1, for which a family of CLFs Vi, i = 1, · · · , N exist,
under the following family of bounded nonlinear feedback
controllers:

ui = −ki(x, umax
i )(LGi

Vi)T , i = 1, · · · , N (3)

where k(x, umax
i ) =⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αi(x) +
√

α2
i (x) + (umax

i ‖βT
i (x)‖)4

‖βT
i (x)‖2

[
1 +

√
1 + (umax

i ‖βT
i (x)‖)2

] , βT
i (x) �= 0

0, βT
i (x) = 0

(4)

with αi(x) = Lfi
Vi(x) + ρiVi(x), ρi > 0 and βi(x) =

LGi
Vi(x). Let Φi(umax

i ) be the largest set of x, containing
the origin, such that:

Lfi
Vi(x) + ρiVi(x) ≤ umax

i ‖(LGi
Vi(x))T ‖ (5)

Also, let Ω∗
i (u

max
i ) := {x ∈ IRn : Vi(x) ≤ δx,i} be a level

set of Vi completely contained in Φi for some δx,i, and
assume, without loss of generality, that x(0) ∈ Ω∗

i (u
max
i )

for some i ∈ I. If, at any given time, T , the following
conditions hold:
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x(T ) ∈ Ω∗
j (u

max
j ) (6)

Vj(x(T )) < Vj(x(tj∗)) (7)

for some j ∈ I, j �= i, where tj∗ < T is the time when the j-
th subsystem was last switched in, i.e. σ(t−j∗) �= σ(t+j∗) = j,
then setting σ(T+) = j guarantees that the origin of the
switched closed-loop system is asymptotically stable.
Remark 1: Note that asymptotic stability of each mode of

the closed–loop system implies that there exists a family of

class KL functions βi, i = 1, · · · , N such that a bound of

the following form holds for each closed-loop mode:

‖x(t)‖ ≤ βi(‖x(0)‖, t) (8)

This property will be used later in the design of the output

feedback controllers.

Remark 2: The controllers of Eqs.3-4 are synthesized, via

multiple CLFs, by reshaping the nonlinear gain k(·) of the

bounded LGV controller design originally proposed in [18].

In particular, the addition of the term −ρiVi is done to

enforce (local) exponential stability which will be needed

in designing the appropriate output feedback controllers.

Remark 3: The use of CLF-based controllers of the form of

Eqs.3-4 is motivated by the fact that this class of controllers

account explicitly for input constraints and provide an

explicit characterization of the constrained stability region.

Specifically, the i-th inequality in Eq.5 describes a state-

space region, Φi(umax
i ), where the i-th control law satisfies

the constraints and forces Vi to decrease monotonically

along the trajectories of the i-th closed-loop subsystem. To

guarantee that V̇i remains negative for all the times that the

i-th mode is active, we compute an invariant set, Ω∗
i (u

max
i ),

within Φi(umax
i ). This set is an estimate of the stability

region associated with each mode.

Remark 4: The switching rules of Eqs.6-7 determine,

implicitly, the times when switching from mode i to mode

j is permissible. The first rule, which tracks the temporal

evolution of the continuous state, x, requires that, at the

desired switching time, the continuous state reside within

the stability region of the subsystem to be activated. This

ensures that, once this subsystem is activated, its constraints

are satisfied and its Lyapunov function continues to decay

for as long as that mode remains active. Note that this

condition applies at every time that the supervisor considers

switching from one mode to another. In contrast, the second

switching rule, which tracks the evolution of the Lyapunov

functions, applies only when the target mode j has been

previously activated. In this case, Eq.7 requires that Vj at

the current “switch in” be less than its value at the previous

“switch in.” This requirement is less conservative than the

one proposed in Theorem 2 in [7] and may allow switching

to take place earlier. To implement these switching rules,

the supervisor needs to monitor (on-line) how x evolves

in time to determine if and when the switching conditions

are satisfied. If the conditions are satisfied for the desired

target mode at some given time, then switching can take

place safely; otherwise, the current mode is kept active.

IV. OUTPUT FEEDBACK CONTROL OF SWITCHED

NONLINEAR SYSTEMS
In this section, we consider the system of Eq.1 for

the case when some of the states are not available for

measurement. We highlight the implications of the lack of

full state measurements for the design and implementation

of the switching logic.

A. Control problem formulation
Referring to the switched nonlinear system of Eq.1, our

objectives for the output feedback control problem include:

(a) the synthesis a family of N bounded nonlinear dynamic

output feedback controller of the general form:

ω̇ = Fi(ω, ym)
ui = −pi(ω, ym, umax

i ), i = 1, · · · , N (9)

where ω ∈ IRs is a state, Fi(·) is a vector function, pi(·)
is a bounded nonlinear function, that enforce asymptotic

(and local exponential) stability, for the individual closed-

loop subsystems, and provide, for each mode, an explicit

characterization of the constrained stability region under

output feedback, and (b) the design a set of switching laws,

σ(t) = ψ′(ω, ym), that orchestrate, based on state estimates,

stabilizing transitions between the constituent closed-loop

modes.
In the remainder of this section, we first review an output

feedback controller design, based on a combination of high-

gain observers, saturation filters and the state feedback con-

trollers of Eqs.3-4 and characterize the stability properties

of the closed–loop system under output feedback control

(see also [14], [23], [4], [8] for results on output feedback

control of nonlinear systems). We then present switching

laws based on available state estimates that guarantee

closed-loop stability for the overall switched system.

B. Output feedback controller synthesis

In order to synthesize an output feedback controller

that enforces the requested closed-loop properties for each

mode, we will need to impose the following assumption

on the system of Eq.1. To simplify the notation, we will

focus on the case of a single measured output. The results,

however, can be readily generalized to the case of multiple

outputs.
Assumption 1: For each i ∈ I, there exists a set of
coordinates:

[
ξi

]
=

⎡
⎢⎢⎢⎢⎣

ξ
(1)
i

ξ
(2)
i
...

ξ
(n)
i

⎤
⎥⎥⎥⎥⎦ = χi(x) =

⎡
⎢⎢⎢⎣

hm(x)
Lfi

hm(x)
...

Ln−1
fi

hm(x)

⎤
⎥⎥⎥⎦

(10)

such that the system of Eq.1 takes the form:

ξ̇
(1)
i = ξ

(2)
i

...

ξ̇
(n−1)
i = ξ

(n)
i

ξ̇
(n)
i = Ln

fi
hm(χ−1

i (ξi)) + Lgi
Ln−1

fi
hm(χ−1

i (ξi))ui

(11)
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where Lgi
Ln−1

fi
hm(x) �= 0 for all x ∈ IRn. Also, ξi −→ 0

if and only if x −→ 0.
We note that the change of variables is invertible since,

for every x, the variable ξ is uniquely determined by the

transformation ξi = χi(x). This implies that if one can

estimate the values of ξi for all times, using an appropriate

state observer, then we automatically obtain estimates of

x for all times, which can be used to implement the state

feedback controller. The existence of such a transformation

will facilitate the design of the high-gain observers which

will be instrumental in preserving the same closed-loop

stability properties achieved under full state feedback.
Proposition 1 below presents the output feedback con-

troller used for each mode and characterizes its stability

properties. The proof of the proposition, which relies on

singular perturbation arguments, is a special case of the

proof of Theorem 2 in [8], and is omitted for brevity. To

simplify the statement of the proposition, we first introduce

the following notation: we define ᾱi(·) as a class K function

that satisfies ᾱi(‖x‖) ≤ Vi(x). We also define the set

Ωb,i := {x ∈ IRn : Vi(x) ≤ δb,i}, where δb,i < δs,i

is chosen such that βi(ᾱi
−1(δb,i), 0) < ᾱ−1

i (δx,i), where

βi(·, ·) is a class KL function defined in Eq.8 and δx,i is a

positive real number defined in Theorem 1.
Proposition 1: Consider the nonlinear system of Eq.1, for a
fixed mode, σ(t) = i, under the output feedback controller:

˙̃y =

⎡
⎢⎢⎢⎢⎣

−Lia
(i)
1 1 0 · · · 0

−L2
i a

(i)
2 0 1 · · · 0

...
...

...
. . .

...

−Ln
i a

(i)
n 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ỹ +

⎡
⎢⎢⎢⎢⎣

Lia
(i)
1

L2
i a

(i)
2

...

Ln
i a

(i)
n

⎤
⎥⎥⎥⎥⎦ym

ui = −ki(x̂, umax
i )(LGi

Vi(x̂))T

(12)

where the parameters, a
(i)
1 , · · · , a

(i)
n are chosen such

that the polynomial sn + a
(i)
1 sn−1 + a

(i)
2 sn−2 + · · · +

a
(i)
n = 0 is Hurwitz, x̂ = χ−1

i (sat(ỹ)), sat(·) =
min{1, ζmax,i/| · |}(·), with ζmax,i = βζ(δζ,i, 0) where βζ

is a class KL function and δζ,i is the maximum value of
the norm of the vector [hm(x) Lfi

hm(x) · · · Ln−1
fi

hm(x)]
for Vi(x) ≤ δx,i and let εi = 1/Li. Then, given Ωb,i,
there exists ε∗i > 0 such that if εi ∈ (0, ε∗i ], x(0) ∈
Ωb,i, and ‖ỹ(0)‖ ≤ δζ,i, the origin of the closed–loop
system is asymptotically (and locally exponentially) stable.
Furthermore, given εi ∈ (0, ε∗i ] and some real number
em,i > 0, there exists a real number T b

i > 0 such that
‖x(t) − x̂(t)‖ ≤ em,i for all t ≥ T b

i .
Remark 5: The output feedback controller of Eq.12 con-

sists of a high-gain observer which provides estimates

of the derivatives of the output ym up to order n − 1,

denoted as ỹ0, ỹ1, · · · , ỹn−1, and thus estimates of the

variables ξ
(1)
i , · · · , ξ(n)

i (note from Assumption 1 that ξ
(k)
i =

dk−1ym

dtk−1
, k = 1, · · · , n), and a static state feedback con-

troller that enforces closed-loop stability. To eliminate

the peaking phenomenon associated with the high-gain

observer, we use a standard saturation function, sat, to

eliminate wrong estimates of the output derivatives for

short times. The use of a high-gain observer (together with

the saturation filter) allows us to practically preserve the

closed-loop stability region obtained under state feedback.

Specifically, starting from any compact subset of initial

conditions within the state feedback region (Ωb,i ⊂ Ω∗
i ), the

output feedback controller of Eqs.12 continues to enforce

asymptotic stability in the closed-loop system provided that

the observer gain is chosen sufficiently large. As expected,

the nature of this semi-regional result is consistent with the

semi-global result obtained for the unconstrained case. It

should be noted, however, that while the output feedback

stability region can, in principle, be chosen as close as

desired to its state feedback counterpart by increasing the

observer gain Li, it is well known that large observer gains

can amplify measurement noise and induce poor perfor-

mance. This points to a fundamental trade-off that cannot

be resolved by simply changing the estimation scheme. For

example, although one could replace the high-gain observer

design with other observer designs (for example, a moving

horizon estimator) to gain a better handle on measurement

noise, it is difficult in such schemes to obtain an explicit

relationship between the observer tuning parameters and the

output feedback stability region.

Remark 6: Owing to the presence of the fast (high-gain)

observer in the dynamical system of Eq.12, the closed-

loop system for the i-th mode can be cast as a two time-

scale system and, therefore, represented in the following

singularly perturbed form, where εi = 1/Li is the singular

perturbation parameter:

εiėo = Aeo + εib∆i(x, x̂)
ẋ = fi(x) + gi(x)pi(x̂, umax

i )
(13)

where eo is a vector of the auxiliary error variables êk =
Ln−k(y(k−1) − ỹk), A is an n×n matrix, b = [0 · · · 0 1]T

is a n × 1 vector, and ∆i is a Lipschitz function of its

argument. It is clear from the above representation that,

within the singular perturbation formulation, the observer

error states, eo, which are directly related to the estimates

of the output and its derivatives up to order n−1, constitute

the fast states of the singularly perturbed system of Eq.13,

while the states of the original system of Eq.1 under the

static component of the controller represent the slow states.

Remark 7: Note that asymptotic stability of each mode of

the closed–loop system under the output feedback controller

of Eq.12 implies that there exists a Lyapunov function

V c
i , i = 1, · · · , N , for each mode of the closed–loop

system (the existence of which is ascertained via a converse

Lyapunov theorem argument; see, for example, Theorem

3.14 in [15]), such that V̇ c
i (xf ) < 0, where xf = [xT eT

o ]T

is the state of the full closed-loop system of Eq.13. We will

use these Lyapunov functions in the next section to design

the appropriate switching rules under output feedback.

C. Output feedback switching logic

Owing to the lack of full state measurements, the su-

pervisor can rely only on the available state estimates to
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decide whether switching at any given time is permissible,

and, therefore, needs to make reliable inferences regarding

the position of the states based upon the available state

estimates. Proposition 2 below establishes the existence of a

set, Ωs,i, such that once the state estimation error has fallen

below a certain value (note that decay rate can be controlled

by adjusting Li), the presence of the state trajectory in the

output feedback stability region, Ωb,i, can be guaranteed

by verifying the presence of the state estimates in the set

Ωs,i. The proof of this proposition follows directly from the

continuity of Vi with respect to its argument, and is omitted

due to space limitations (see [20] for a similar proof in the

linear case).

Proposition 2:Given any positive real number δb,i, there
exists a positive real number e∗m,i, and a set Ωs,i := {x ∈
IRn : Vi(x) ≤ δs,i} such that if ‖x − x̂‖ ≤ em,i, where
em,i ∈ (0, e∗m,i] then x̂ ∈ Ωs,i =⇒ x ∈ Ωb,i.

We are now ready to proceed with the design of the

switching logic. To this end, consider the switched nonlinear

system of Eq.1, for which Assumption 1 holds and, for

each mode, an output feedback controller of the form of

Eq.12 has been designed and a Lyapunov function V c
i

has been determined. Given the desired output feedback

stability regions Ωb,i ⊂ Ω∗
i , i = 1, · · · , N , we choose, for

simplicity, ε1 = ε2 = · · · = εn ≤ min{ε∗i } (i.e., the same

observer gain is used for all modes). Also assume that, for

each mode, and for choices of em,i ≤ e∗m,i, the sets Ωs,i (see

Proposition 2) and the times Tb,i (see Proposition 1) have

been determined, and let T max
b = max

i=1,···,N
{Tb,i}. Theorem

3 below presents the output feedback switching rules. The

proof is sketched in the appendix.

Theorem 3: Assume, without loss of generality, that x(0) ∈
Ω∗

b,i(u
max
i ) for some i ∈ I and choose ỹ(0) such that

‖ỹ(0)‖ ≤ δζ,i, where δζ,i was defined in Proposition 1. Let
Told be the time that the previous switch took place. Let Mi

be such that ‖z1−z2‖ ≤ em,i =⇒ |V c
i (z1)−V c

i (z2)| ≤ Mi.
If, at any given time, T , the following conditions hold:

T ≥ Told + Tmax
b , x̂(T ) ∈ Ωs,j(umax

j ) (14)

for some j ∈ I, j �= i, and

V c
i (x̂f (T )) + 2Mi < V c

i (x̂f (ti∗)) (15)

where x̂f = [x̂T eT
o ]T , eo = [ê1 ê2 · · · ên]T êk =

Ln−k(y(k−1) − ỹk) and ti∗ < T is the time when the i-th
subsystem was last switched out, i.e. σ(t+i∗) �= σ(t−i∗) = i,
then setting σ(T+) = j and

ỹ(T+) =

⎧⎨
⎩

ỹ(T ) , ‖ỹ(T )‖ ≤ δξ,j

ỹ(T )
δξ,j

‖ỹ(T )‖ , ‖ỹ(T )‖ > δξ,j

⎫⎬
⎭

(16)

guarantees that the origin of the switched closed-loop
system of Eqs.1,12, 14-15 is asymptotically stable.
Remark 8: The fact that the switching rules are based on

the state estimates has several important implications that

distinguish the output feedback switching logic from its

state feedback counterpart. First, note that the switching

rules dictate that there be a time interval of at least T max
b

between two consecutive switches. This is done to ensure

that for the given choice of the observer gain, and once a

given mode is switched in, the estimation error has enough

time to decrease to a sufficiently small value, such that, for

all future times, the position of the state can be inferred by

looking at the state estimate. Recall from Proposition 2 that

the relation x̂ ∈ Ωs,j =⇒ x ∈ Ωb,j holds only when the

estimation error is sufficiently small. Second, the decision to

switch is not based on x̂ entering Ωb,j (under state feedback

it was based on x entering Ω∗
j ); rather it is based on x̂

entering Ωs,j . The inference that x̂ ∈ Ωs,j =⇒ x ∈ Ωb,j ,

however, can only be made once the error has sufficiently

decreased, and this is guaranteed to happen after the closed–

loop system has evolved in mode i for a time T max
b ≥ Tb,i.

Therefore, a switch is not executed before an interval of

length T max
b elapses (from the last switching instance)

even if x̂ enters Ωs,j at some earlier time. Furthermore,

in contrast to the switching rules under state feedback,

the MLF condition of Eq.15 is checked for switch-out

rather than switch-in times (once again, this is to ensure

that the error has decreased sufficiently). Also, in contrast

to Theorem 2, the MLF condition of Eq.15 is checked

using the Lyapunov function, V c
i (xf ), for the full closed-

loop system of Eq.13, instead of the CLF, Vi(x), used in

the controller design. Finally, since the MLF condition is

checked using the state estimate, Eq.15 requires that the

value of V c
i based on x̂ decay by a margin (2Mi) sufficient

to guarantee the decay of V c
i based on x.

Remark 9: Note that even though the estimation error de-

creases while a certain mode is active, right after the switch,

the transformation χi(·) of Eq.11 changes (because the

vector field, fi, changes), while both ξ (if not re-initialized)

and x evolve continuously. Therefore, unless the high-gain

observer is re-initialized appropriately upon switching into

the new mode, the estimate x̂ = χ−1(sat(ỹ)) will evolve

discontinuously, which implies that right after a switch to

mode j, there is no guarantee that ‖ỹ(T )‖ ≤ δξ,j . To

circumvent this problem, the values of the state estimates,

generated through ỹ, are re-initialized using Eq.16 to ensure

that ‖ỹ(T )‖ ≤ δξ,j which, from Proposition 1, is necessary

for Ωb,j to continue to be the output feedback stability

region for mode j.

V. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

Consider a continuous stirred tank reactor where three

parallel, irreversible, first-order exothermic reactions of the

form A
k1→ D, A

k2→ U and A
k3→ R take place, where A

is the reactant species and D, U , R denote three product

species. The reactor has two inlet streams: the first con-

tinuously feeds pure A at flow rate F = 83.33 L/min,

concentration CA0 = 4.0 mol/L and temperature TA0 =
300 K, while the second can be turned on or off (by

means of an on/off valve) during reactor operation. When

turned on, the second stream feeds pure A at flow rate

F ∗ = 200 L/min, concentration C∗
A0 = 5.0 mol/L

and temperature T ∗
A0 = 500 K. Under standard modeling
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assumptions, the mathematical model for the process takes

the form:

ĊA =
F

V
(CA0 − CA) + (σ(t) − 1)

F ∗

V
(C∗

A0 − CA)

−
3∑

i=1

Ri(CA, T )

Ṫ =
F

V
(TA0 − T ) + (σ(t) − 1)

F ∗

V
(T ∗

A0 − T )

+
3∑

i=1

Gi(CA, T ) +
Q

ρmcpmV
(17)

where Ri(CA, T ) = k0i exp
(−Ei

RT

)
CA, Gi(CA, T ) =

(−∆Hi)
ρmcpm

Ri(CA, T ), CA denotes the concentration of species

A, T denotes the temperature of the reactor, Q denotes the

rate of heat input to the reactor, V denotes the volume

of the reactor, k0i, Ei, ∆Hi denote the pre-exponential

constants, the activation energies, and the enthalpies of the

three reactions, respectively, cpm and ρm, denote the heat

capacity and density of the fluid in the reactor. The values

of these process parameters can be found in Table 1 in [8].

σ(t) = 1 when the second inlet stream is turned off and

σ(t) = 2 when it is turned on. Initially, it is assumed that

σ = 1. During reactor operation, however, it is desired to

enhance the product concentration by feeding more reactant

material through the second inlet stream (σ = 2). It was

verified that for σ = 1, the open-loop system (with Q = 0)

has three equilibrium points, one of which unstable at

Ts = 388.58 K.

The control objectives are to: (1) stabilize the reactor

temperature at the open-loop unstable steady-state of mode

1 (Ts = 388.58 K), and (2) maintain the temperature

at this steady-state when the reactor switches to mode 2.

Note that, with this requirement, both closed-loop modes

share the same steady-state temperature but have different

steady-state reactant concentrations (see Figure 1 for the

different equilibrium points). The control objective is to be

accomplished by manipulating Q, subject to the constraint

|Q| ≤ 1 × 104 KJ/min. Two quadratic, positive-definite

functions of the form V̄1 = V̄2 = 1
2cδ(T − Ts)2, where

cδ = 1/T 2
s , were used to synthesize, on the basis of the T -

subsystems, two bounded controllers of the form of Eqs.3-

4 (note that the V̄i’s are CLFs for the T -subsystem only

and not for the full system of Eq.17). We will skip the

details of controller synthesis due to space limitations. To

estimate the stability region for each mode, the following

Lyapunov functions, based on the full system, were used:

V1 = 1
2c1x

2
1+

1
2c2x

2
2 (for mode 1), where x1 = (T−Ts)/Ts,

x2 = (CA − CAs)/CAs, c1 = 38.8, c2 = 1.0, and

V2 = 1
2c3x

2
1 + 1

2c4x
2
2 (for mode 2) where c3 = 19.4,

c4 = 1.0. The invariant regions, denoted in Figure 1 by Ω∗
1,

Ω∗
2, respectively, represent estimates of the stability regions

for each mode.

We first present the case when both T and CA are

available for measurement. The solid lines in Figures

1 and 2 depict the temperature, concentration and heat

input profiles when the reactor is initialized at x0 =
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Ω
2
*

T
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T
1

Fig. 1. A phase plot showing the stability region estimates Ω∗
1, Ω∗

2 .

[435 K, 4.2 mol/L]T ∈ Ω∗
1 and operated in mode 1 for all

times (with no switching). We observe that the controller

for this mode successfully stabilizes the reactor temperature

at the desired steady-state. The dashed lines in Figures 1-2

depict the result when the reactor (initialized at x0 within

Ω∗
1) switches to mode 2 (with its corresponding controller)

at a randomly chosen time of t = T1 = 0.1 min. It is

clear that in this case the controller is unable to stabilize

the temperature at the desired steady-state. The reason is the

fact that at t = 0.1 min, the state of the system lies outside

the stability region of mode 2 and, therefore, the available

control action is insufficient to achieve stabilization as can

be seen from the input profile in Figure 2 (dashed lines). To

avoid this instability, we use the switching scheme proposed

in Theorem 2. To this end, the reactor is initialized in

mode 1 at x0 and the closed-loop state is monitored (dotted

trajectory in Figure 1). At t = T2 = 1.0 min, the state

is observed to belong to Ω∗
2 (i.e., the condition in Eq.6

is satisfied) and, consequently, the supervisor switches to

mode 2 (note that the condition of Eq.7 is not needed

here since mode 1 is never reactivated). The temperature,

concentration and heat input profiles for this case are given

in Figure 2 (dotted lines) which show that the controllers

successfully drive the reactor temperature to the desired

steady-state and maintain it there with the available control

action (note that the concentration settles at a higher steady-

state value than that of mode 1 thus achieving our switching

objective of enhancing reactant concentration).
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Fig. 2. Closed-loop state and input profiles when reactor is initialized
within Ω∗

1 and operated in mode 1 for all times (solid), when reactor
switches to mode 2 at t = 0.1 min (dashed), and when the switch is
executed at t = 1.0 min (dotted).

We now consider the case when only CA is measured.

For this choice of the measured output, Assumption 1 is
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satisfied and, therefore, an output feedback controller of

the form of Eq.12 is designed for each mode. The values

of the observer parameters in the state estimator design of

Eq.12 are chosen as L1 = L2 = 100, a
(1)
1 = a

(2)
1 = 10 and

a
(1)
2 = a

(2)
2 = 20. We fist demonstrate the implementation

of the switching rule of Eq.14. As shown in Figure 3,

starting from the same initial condition considered under

state feedback, x(0) = [435 K, 4.2 mol/L]T , and with

x̂(0) = [411.3 K, 4.2 mol/L]T (the state and state esti-

mate trajectories are shown by the solid and dashed lines,

respectively), implementing the output feedback controller

of Eq.12 for mode 1 and switching to mode 2 (and its

associated output feedback controller) at t = 1.0 (upon

observing that the state estimates are within Ω∗
2) results

in closed–loop stability. Included in Figures 3-4 also are

the corresponding state (dotted lines in Figure 4) and

manipulated input (dotted lines in Figure 4) trajectories

under state feedback control. Notice that the manipulated

input profile under output feedback control differs from that

under state feedback control for a brief period of time, due

to the initial error in the state estimates, but converges to that

under state feedback very quickly as the estimates converge

to the true state values.
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Fig. 3. Closed-loop state trajectories under state (dotted) and output
(solid) feedback, and the state estimate trajectory (dashed) under output
feedback are shown for the case when the reactor is initialized within Ω∗

1
and the switch is executed at t = 1.0 min := T2.
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Fig. 4. Closed-loop state profiles under state (dotted) and output (solid)
feedback; state estimate profiles under output feedback (dashed), and the
manipulated input profiles are shown for the case when the reactor is
initialized within Ω∗

1 and the switch is executed at t = 1.0 min.

To demonstrate the importance of using an observer gain

consistent with the choice of the output feedback stability

region, we present in Figures 5-6 (solid lines) a scenario,

where starting from the same initial conditions in Ω∗
1, the

reactor is operated in mode 1 for all times but with a lower

value of the observer gain, L = 0.1. In this case, the error

in the control action, resulting from the error in the value

of the state estimates, leads to instability, demonstrating the

need for appropriate choice of the observer parameters.
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T (K)

C
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* Ω
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Fig. 5. The solid line shows the closed-loop state trajectory when the
reactor is initialized within Ω∗

1 and operated in mode 1 for all times with
L = 0.1. The dotted and dash-dotted lines show, respectively, the closed-
loop state and state estimate trajectories for L = 100.0 when the reactor
switches to mode 2 at t = 0.002 min := T3.

Finally, we illustrate the importance of waiting for a

small period of time before a decision regarding switching

is made even if a sufficiently large value of the observer

gain is being used (i.e., a value for which Ω∗
1 and Ω∗

2

closely estimate the output feedback stability region). To

this end, we use L1 = L2 = 100, as in the first scenario.

Starting from the same initial conditions, it is observed that

at t = 0.002 min := T3 the state estimates reside in

Ω∗
2 (see dotted (which coincides with the solid line) and

dash-dotted lines in Figure 5). Notice that while the state

estimates belong to Ω∗
2, the true states are outside of Ω∗

2 at

this time. If the switch is executed immediately (as done

under state feedback; see Theorem 2), then the closed–

loop system becomes unstable. In contrast, if the decision

regarding a switch is made after waiting for a sufficiently

long period of time (as required by the switching rule of

Eq.14) after which the state estimates have converged to

their true values, closed–loop stability is achieved (see solid

lines in Figures 3-4).
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VI. APPENDIX

Proof of Theorem 3:
Step 1: Consider the switched closed-loop system where

x(0) ∈ Ωb,i, ‖ỹ(0)‖ ≤ δζ,i and εi ∈ (0, ε∗i ], for some

i ∈ I. Then it follows from the result of Proposition

1 that the Lyapunov function for this mode, V c
i , decays

monotonically, along the trajectories of the closed-loop

system, for as long as mode i is to remain active, i.e., for all

times such that σ(t) = i. Consider now the scenario where

at some given time T , we have x̂(T ) ∈ Ωs,j and the system

switches from mode i to mode j. Since we set ε1 = ε2 =
· · · = εn ≤ min{ε∗i }, i = 1, · · · , N , we have εj ≤ ε∗j . Since

the closed–loop system has been evolving in mode i for a

time greater than or equal to T max
b > Tb,i (from Eq.14),

it follows from Proposition 1 that ‖x(T ) − x̂(T )‖ ≤ em,i.

This, together with the fact that x̂(T ) ∈ Ωs,j , implies (using

Proposition 2) that x(T ) ∈ Ωb,j . Also, once mode j is

switched in, the switching rule of Eq.16 sets ‖ỹ(T )‖ ≤ δζ,j .

All the conditions in Proposition 1 are, therefore, satisfied

(x(T ) ∈ Ωb,j , ‖ỹ(T )‖ ≤ δζ,j and εj ≤ ε∗j ), which implies

that the corresponding Lyapunov function for this mode,

V c
j , will also decay monotonically for t > T , and as long

as we keep σ(t) = j. In this manner, we have that for all

jk ∈ I, k ∈ Z+:

V̇ c
σ(tjk

) < 0 ∀ t ∈ [tjk
, tj′

k
) (18)

where tjk
and tj′

k
refer, respectively, to the times that the

j-th mode is switched in and out for the k-th time, by the

supervisor.

Step 2: The first part of Eq.14 ensures that the system

has stayed in mode i for at least a time T max
b ≥ Tb,i

before switching to mode j. It follows from Proposition 1,

therefore, that ‖x(T )− x̂(T )‖ ≤ em,i. From the continuity

of the function V c(·), we get that for a given em,i, there

exists a positive real number Mi(em,i) such that if ‖xf −
x̂f‖ ≤ em,i, |V c

i (xf ) − V c
i (x̂f )| ≤ Mi. Therefore, we can

write, for xf (ti′
k−1

) and xf (ti′
k
):

V c
i (x̂f (ti′

k−1
)) − Mi ≤ V c

i (xf (ti′
k−1

)) (19)

V c
i (x̂f (ti′

k
)) + Mi ≥ V c

i (xf (ti′
k
)) (20)

From Eq.15, we have for any admissible switching time

T = ti′
k

V c
i (x̂f (ti′

k−1
)) − Mi > V c

i (x̂f (ti′
k
)) + Mi (21)

which, together with Eqs.19-20, implies

V c
i (xf (ti′

k
)) < V c

i (xf (ti′
k−1

)) (22)

Using Eqs.18-22, one can finally show, with calculations

similar to those used in the proof of Theorem 2 in [7], that

the origin of the switched closed-loop system, under the

switching laws of Eqs.14-15, is asymptotically stable.
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