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Abstract— Static stabilization of a decentralized discrete-
time single-integrator network that is subject to Markovian
variation in the communication/sensing topology is consid-
ered. In particular, we develop conditions on the Markovian
topology that are sufficient for mean-square stabilization using
a decentralized static controller that has no knowledge of
the underlying Markov state. Our analysis exposes a deep
connection between decentralized control of single-integrator
networks with Markovian topology and those with fixed
topology: static stabilization of the network with Markovian
topology is possible whenever the steady-state time-average of
the Markovian topology is amenable to static (fixed-topology-
based) decentralized control.

I. INTRODUCTION

Groups of coordinating autonomous agents are of-
ten subject to stochastic fluctuations in their sens-
ing/communication capabilities, that may significantly im-
pact their ability to complete required tasks. Our aim in this
article is to explore static decentralized control of a network
of agents with single-integrator dynamics that is subject to
Markovian fluctuations in its sensing topology.

Stochastic failures in communication and/or sensing ca-
pabilities are significant in a range of distributed-control
applications, including autonomous-vehicle control [1], dis-
tributed protocol design [2], and infrastructure-network
(e.g., electric power system and air traffic system) man-
agement (see, e.g., [3] for a discussion of communications
in power system control). In the vehicle-control context, the
article [1] considers a packet-loss model for communication,
and notes that the vehicle dynamics with communication
can then be viewed as a Markovian jump-linear system
(MJLS). The article then develops a linear matrix inequal-
ity (LMI) condition for centralized dynamic mean-square
stabilization (that further assumes knowledge of whether a
packet loss has occurred). In designing distributed protocols
for computing (e.g., agreement protocols), the possibility for
stochastic and/or deterministic communication losses has
been widely considered (see [2] for a synopsis). Queue-
ing models for communication in electric power-system
control (in particular, third-party load frequency control)
have recently been developed in [4], and the ability to
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achieve control goals has been tied with the communication
system’s behavior using simulations.

We also consider the role of stochastic communication
and/or sensing in the control of networks, but approach this
problem specifically from a graph-theoretic and decentral-
ized perspective. In particular, in the context of a model with
simple and autonomous agent dynamics, we expose in a
quite general manner the connection between the stochastic
communication/sensing topology and decentralized stabiliz-
ability. The following are two specific contributions of our
work:

a): For networks of agents with single-integrator dy-
namics (which are pertinent in, e.g., autonomous-vehicle
and protocol-design applications [5], [6], [7]) and a
stochastically-fluctuating communication topology, we de-
velop graph-theoretic conditions for distributed static sta-
bilization in a mean-square sense. As far as we know,
our work constitutes a first study of distributed controller
design for networks whose communications fluctuate in
a stochastic (in particular, Markovian) manner. We stress
that our stabilization study of uncertain autonomous-agent
systems constitutes a novel, design-based viewpoint: in
contrast to previous work (e.g., [1]), our results indicate
whether any controller can stabilize the system instead of
focusing on whether a particular controller suffices. Hence,
our study determines whether or not a stabilizing controller
can be designed.

b): Our conditions for stabilization elucidate the es-
sential role played by the communication graphs (topolo-
gies), and the stochastic fluctuations among them, in the
distributed control of the system. In this sense, our re-
sults here build on those described in [8], in which we
considered stabilization for (double)-integrator networks
with fixed communication topology. A connection between
distributed-agent control and dynamically-varying graphs
has also been established in [11], but there the focus is on
controlling the agents to achieve the desired graph rather
than using the varying graph in the control of the agents.

While our primary focus in this work is the control of au-
tonomous agents with Markovian communication topology,
we also mean for it to serve as a springboard toward more
general study of distributed control of Markovian jump-
linear systems (MJLS). Such a study of distributed control
of MJLS would be valuable for characterization of hard-
interconnected networks with communication (e.g., electric
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power systems) and for systems with Markovian fluctu-
ations in the state-update or actuation processes. Several
articles have been concerned with centralized stabilization
of MJLS; the article [12] presents some relevant results and
provides a good review of relevant literature. To the best of
our knowledge, our work is the first study of distributed
control of MJLS. Although we consider a model with very
simple agent dynamics in this article, we believe that the
strategies here can be extended to pursue both static and
dynamic control of general MJLS.

The article is organized as follows. Section II contains
introductory material, including formulation of our model,
expression of the model as an MJLS, and review of stabi-
lization concepts for MJLS. In Section III, we derive the
central result of this article—namely, an explicit condition
on the network’s graph topology for stabilization—using a
perturbation-based argument. Finally, Section IV contains
discussion of our results and an example.

II. MODEL AND PROBLEM FORMULATION

A. Model Formulation

We consider distributed stabilization of a network
of single-integrator agents, whose communication/sensing
topology is subject to Markovian fluctuation. Velocity
control in autonomous-vehicle applications can often be
phrased as control of a network of single-integrator agents
(see, e.g., [7], [8], [15]). Single-integrator models have also
been proposed for agreement protocols, in [5], [6], [9]. In
these and other distributed applications, uncertainties in the
communication topology (e.g., random loss of communi-
cation channels or faulty transmissions) are observed [1],
[2]. Hence, we are motivated to pursue distributed control
of networks of single-integrator networks with randomly-
varying sensing topology.

Our model, which we call a Markovian single-integrator
network (MSIN) comprises a network of n agents. Each
agent i has scalar state xi that evolves in discrete time as
a single integrator, i.e., as

xi [k + 1] = xi [k] + ui [k], (1)

where ui [k] is a control input that is determined from
agent i ’s concurrent observation (specified below). For
convenience, we define a state vector

x′[k] �= [
x1[k] . . . xn[k]]

and an input vector

u′[k] �= [
u1[k] . . . un[k]] . (2)

The observations made by each agent in the MSIN
are governed by a stochastically-varying sensing topology1

1From here on, we refer to the observation structure of our model as
a sensing rather than communication topology. We believe that the results
discussed here can apply to both to systems with sensing capability and
ones with communication capability. However, we feel that our model is a
bit more realistic for sensing dynamics, since no delay is assumed in the
observations.

In particular, each agent’s observations constitute a time-
varying linear function of the concurrent state vector, with
the time-dependence governed by an underlying Markov
chain. Formally, the observations made by agent i at time
k are given by

yi [k] = Gi (σ [k])x[k],
where σ [k] represents the time-k status (state) of an under-
lying Markov chain and the graph matrix Gi (σ [k]) is a
matrix of dimension mi ×n. We assume that the underlying
Markov chain takes on b statuses (i.e., σ [k] ∈ 1, . . . , b) and
is governed by the b × b stochastic matrix P . We find it
convenient to define a full observation vector

y′[k] �= [
y1[k] . . . yn[k]]

and full graph matrices

G(σ ) =
⎡
⎢⎣

G1(σ )
...

Gn(σ )

⎤
⎥⎦

σ ∈ 1, . . . , b. In this notation, y[k] = G(σ [k])x[k].
We assume a static decentralized linear time-invariant

(LTI) controller is used in the MSIN. That is, each agent’s
input is computed from its concurrent state as

ui [k] = k′
i yi [k], (3)

where the mi -component vector ki is denoted as agent i ’s
control gain. For convenience, we define a control matrix

K =
⎡
⎢⎣

k1
. . .

kn

⎤
⎥⎦

In this notation, u[k] = K y[k]. We stress that the controller
used in the MSIN has no knowledge of the underlying status
of the Markov chain, and hence uses a gain that is not
dependent on this status.

In summary, an MSIN is a network of single-integrator
agents with Markovian sensing topology and static dis-
tributed control. We note that an MSIN is defined com-
pletely by the transition matrix P , sensing topologies [G] �=
G(1), . . . , G(b), and controller K .

We note that an MSIN can be viewed as a particular
example of an MJLS, since the input-to-output dynamics
constitute a linear system whose parameters (in this case,
the observation topology) are governed by an underlying
Markov chain. We are interested in the static decentralized
control of this MJLS.

MSIN models are applicable in such contexts as
autonomous-vehicle control and agreement-protocol de-
sign. Due to space constraints, we are unable to provide
application-oriented examples here. We refer the reader to
an extended version of this paper [10] for several examples;
a small illustrative example is given in Section IV.
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B. Notions of Stabilization

In this article, we are concerned with stabilization of an
MSIN using the described static decentralized controller.
We assume in our development that the control matrix K
is constant in time, or in other words that the controller
has no knowledge of the underlying Markov chain’s state.
Stabilization of MJLS with a static controller that has no
dependence on the underlying state has been considered in,
e.g., [12], [13]; in this literature, stabilization with such a
controller is known as simultaneous stabilization.

Stabilization of MJLS (and other stochastic systems)
is often phrased in terms of moment-convergence of the
closed-loop systems, or alternately according to probabilis-
tic convergence of the system state sequence (see, e.g., [12],
[13], [14], [16], [17] for studies of stabilization and control
of MJLS). We also seek conditions for stabilization under
uncertainty, so it is worthwhile for us to review relevant
definitions for stabilization of stochastic systems, in the
context of MSIN.

Definition 1: An MSIN is said to be stabilizable in a
mean-square sense if there exists a static decentralized
control matrix K such that, for any initial state x[0] and any
initial probability distribution for the underlying Markov
chain, limk→∞ E(||x[k]||22) = 0.

A couple notes are in order about this definition:

• The articles [12], [13], [14] distinguish among sev-
eral notions of mean-square stability and stabilization,
including among asymptotic mean-square stabilization
(the notion presented here), exponential mean-square
stabilization, and stochastic mean-square stabilization
(which is concerned with the time-integrated square
error). These have been shown to be identical for
MJLS, so we only consider one notion here.

• Mean-square stabilization can be generalized to δ-
moment stabilization, which is concerned with conver-
gence of limk→∞ E(||x[k]||δ2). We do not pursue this
generalization here.

We also consider a second notion of stabilization:
Definition 2: An MSIN is said to be almost surely sta-

bilizable if there exists a static decentralized control matrix
K such that, for any initial state x[0] and any initial
probability distribution for the underlying Markov chain,
P

{
limk→∞ ||x[k]||2 = 0

} = 1.
It is well known (see [13]) that, for MJLS (and hence
MSIN), mean-square stabilizability implies almost-sure sta-
bilizability. In this article, we will develop conditions on
the network graph for which the MSIN is mean-square
stabilizable (as always, using a distributed controller), and
hence also almost-sure stabilizable.

C. Phrasing Stabilization Conditions in Terms of Moment
Recursions

In order to develop network-theoretic conditions for the
decentralized mean-squared stabilization of an MSIN, we
must characterize the limiting values of second moments

of state variables. It is well known that moments and
cross-moments of MJLS—and hence MSIN—state vari-
ables satisfy certain linear recursions (see, e.g., [14], [18]),
and hence mean-square stabilizabilion of an MSIN can
be phrased as a simultaneous stabilization problem for
a deterministic linear system. In this section, we present
the recursions for the first and second moments of state
variables (without proof) for an MSIN2. We then present
conditions for mean-square stabilization of the MSIN in
terms of the spectrum of the moment recursion matrices.

We first note that the state update, observation process,
and control law can be combined as follows:

x[k + 1] = (I + K G(σ [k]))x[k]. (4)

Equation 4 is a form for the state dynamics from which
convenient expressions for the first and second moments
can be found.

To find these recursions, it is necessary to define a 0 −
−1 indicator vector q[k] for the state of the underlying
Markov chain. That is, we define q[k] to be a t-component
vector that is all zeros, except for a single unity entry at
location σ [k]. The analyses of, e.g., [18] provide recursions
for E(q[k] ⊗ x[k]) and E(q[k] ⊗ (x[k]⊗2) for the MSIN,
which can straightforwardly be used to develop expressions
for first and second moments and cross-moments of state
variables at each time. We present these recursions here,
without proof:

E(q[k + 1] ⊗ x[k + 1]) = H E(q[k] ⊗ x[k]) (5)

and

E(q[k + 1] ⊗ x[k + 1]⊗2) = H2 E(q[k] ⊗ x[k]⊗2), (6)

where

H =
⎡
⎢⎣

p11(I + K G(1)) . . . pt1(I + K G(t))
...

...

p1t(I + K G(1)) . . . ptt(I + K G(t))

⎤
⎥⎦

and

H2 =
⎡
⎢⎣

p11(I + K G(1))⊗2 . . . pt1(I + K G(t))⊗2

...
...

p1t (I + K G(1))⊗2 . . . ptt (I + K G(t))⊗2

⎤
⎥⎦ .

We refer to Equation 5 as the mean recursion and call H
the mean recursion matrix. Similarly, we refer to Equation
6 as the second-moment recursion and call H2 the second-
moment recursion matrix.

We note that the first- and second-moments of state
variables can be found in terms of the entries of E(q[k] ⊗
x[k]) and E(q[k] ⊗ (x[k]⊗2), and hence it is not surprisng
that mean-square stabilizability of an MSIN can be phrased
in terms of the eigenvalues of the mean recursion matrix

2Formally, we only need consider the second-moment recursion to
develop conditions for stabilization, but we consider the fi rst moment
recursion because it is used in our proof in the next section and because
the fi rst-moment recursion provides necessary conditions for stabilization.
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and second-moment recursion matrix. In the following two
theorems, we provide a necessary condition for stabilization
in terms of the mean recursion matrix, and a necessary and
sufficient condition for stabilization in terms of the second-
moment recursion matrix. We note that the concepts behind
these theorems are well-known (see, e.g., [14], [17]), and
so we omit the proofs.

Theorem 1: An MSIN is mean-square stabilizable only
if there exists a (distributed) control matrix K such that
the eigenvalues of the mean recursion matrix H fall strictly
within the unit circle.

Theorem 2: An MSIN is stabilizable if and only if there
exists a control matrix K such that the eigenvalues of H2
lie strictly within the unit circle.

III. OUR MAIN RESULT: A NETWORK-THEORETIC

CONDITION FOR MEAN-SQUARE STABILIZATION

We develop an explicit sufficient condition on the the
sensing topology for mean-square stabilization, by design-
ing K so that the eigenvalues of the mean recursion matrix
and the second-moment recursion matrix fall within the
unit circle. In particular, we use perturbation (eigenvalue
sensitivity) arguments to find rather general conditions on
an MSIN for which a stabilizing control matrix can be
designed. That is, we give conditions on an MSIN such
that the eigenvalues of the mean recursion matrix and sec-
ond moment recursion matrix, respectively, can be placed
strictly within the unit circle using some controller. These
conditions provide an explicit means for checking whether
decentralized stabilization of an MSIN can be achieved.

Our ensuing result will clarify that stabilizability of an
MSIN is deeply connected with the structure of the steady-
state time-average of the graph matrix. Therefore, it is
useful for us to introduce some terminology that permits
us to characterize the time-averaged graph matrix, and in
turn present the main theorem of this article:

• We denote the steady-state probability vector for the
underlying Markov chain by π . That is, π ′ is the
(unique) left eigenvector of P with unity eigenvalue:
π ′ P = π ′. We also define the b-component vector λ

to contain the b eigenvalues of P .
• We define a set of b square matrices (L1, . . . , Lb) of

equal dimension to be π-full-rank, if π1L1 + . . . +
πb Lb has full rank.

We also require the following notation to present the theo-
rem:

• We use the notation {L}q to denote that qth principal
minor of the square matrix L.

We are now ready to present the main result. For ease
of presentation, we restrict ourselves to the case where
agents make scalar observations, and consider the multi-
observation case (which is not much different) in the
following discussion section.

Theorem 3: If there exists a permutation matrix
P such that, for the "rearranged" graph matrices

Ĝ(1) = PG(1)P−1, . . . , Ĝ(b) = PG(b)P−1, the
sets ({Ĝ(1)}q, . . . , {Ĝ(b)(q)}q) are π-full-rank for
q ∈ 1, . . . , n, then a static decentralized controller can
be designed such that the eigenvalues first- and second-
moment recursion matrices of the M SI N are strictly
within the unit circle.

Hence, by invoking Theorem 2 in addition to Theorem
3, we can find explicit sufficient condition for stabilization
of an MSIN:

Theorem 4: If there exists a permutation matrix
P such that, for the "rearranged" graph matrices
Ĝ(1) = PG(1)P−1, . . . , Ĝ(b) = PG(b)P−1, the
sets ({Ĝ(1)}q, . . . , {Ĝ(b)(q)}q) are π-full-rank for
q ∈ 1, . . . , n, then a static decentralized controller that
stabilizes the MSIN (in a mean-square sense) can be
designed.

We shall prove Theorem 3 in several steps. Without loss
of generality, we assume throughout the proof that the the
permutation matrix P in Theorem 3 is the identity matrix:
if it is not, we have only to permute the full graph matrices
according to P and apply the ensuing argument.

Step 1: Lots of notation: Before detailing the proof, it is
useful for us to define some more notation that is used in
the proof:

• We shall often consider the spectrum of the first- and
second-moment recursion matrices when a particular
controller K is used (for a fixed [G] and P). Hence,
we find it useful to parametrize H and H2 by K , using
the notation H (K ) and H2(K ), respectively.

• We use the notation K (q) to describe a controller for
which only the first q diagonal entries are non-zero.

• We use the notation {L}q for the qth leading principal
minor of the square matrix L.

• We use the notation {L}q,r for the matrix comprising
the first q rows and first r columns of L.

• We find it valuable to analyze certain sub-matrices
of H , that capture interactions among subsets of the
agents. (These are equivalent to principal minors.)
Hence, we consider the matrices

{H (K )}q =

⎡
⎢⎢⎣

p11(Iq + {K }q {G1}q ) . . . pb1(Iq + {K }q {Gb}q )

.

.

.

.

.

.

p1b(Iq + {K }q {G1}q ) . . . pbb(Iq + {K }q {Gb}q )

⎤
⎥⎥⎦ (7)

• Consider the matrices π1{G1}q + . . . + πb{Gb}q , q ∈
1, . . . , n. By assumption, each of these matrices is full
rank. Hence, for any unit vector x, (π1{G1}q + . . . +
πb{Gb}q)x is non-zero. We define ε as the smallest 2-
norm of any vector (π1{G1}q + . . . + πb{Gb}q)x (for
any q in 1, . . . , n.

• We define δ1 = 1 − λ(max), where λ(max) is the
magnitude of the subdominant eigenvalue of P .

• We define ρ as the induced norm of the matrix⎡
⎢⎣

p11G(1) . . . pb1G(b)
...

...

p1bG(1) . . . pbbG(b)

⎤
⎥⎦.
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Step 2: Eigenanalysis of the open-loop system: Consider
an open-loop MSIN (i.e., an MSIN for which K = 0). The
eigenvalues of the first-moment recursion matrix H are the
entries of the vector λ⊗1n . Hence, exactly n eigenvalues of
H are 1, while the remaining eigenvalues have magnitude
strictly less than 1. The n repeated unity eigenvalues are
simple. Any vector of the form π ⊗ v, where v has n
components, is a right eigenvector of H corresponding to
the repeated unity eigenvalue.

To see why the above eigenanalysis is correct, we note
that the first-moment recursion matrix for the open-loop
system is given by P ′ ⊗ In . The results in the lemma above
then follow directly from basic properties of the Kronecker
product (see, e.g., [19]).

Step 3: Characterization of Unity Eigenvector of
{H (K (q))}q+1: In Step 4, we will use a sequential con-
troller design to move the eigenvalues of H into the
unit circle. It turns out that this design process requires
characterization of a particular eigenvector of each matrix
{H (K (q))}q+1, 1 ≤ q ≤ n − 1 for small control gains K ,
and so we first characterize these eigenvectors.

In particular, notice that {H (K (q))}q+1 has at least
one unity eigenvalue, with corresponding left eigenvector
1′ ⊗ e′(k + 1) (where e(k + 1) refers to a k + 1-component
indicator vector with the final entry non-zero. Also, let us
assume that we have chosen K (q) so that the remaining
eigenvalues of {H (K (q))}q+1 are non-unity. (It will become
clear that we can do so, from our sequential design process.)
Let us attempt to characterize the right eigenvector of
{H (K (q))}q+1 corresponding to the single unity eigenvalue.
To do so, first note that, since {H (K (q))}q+1 is a perturba-
tion of {H (0)}q+1, the right eigenvector of {H (K (q))}q+1

corresponding to the unity eigenvector is close to a vector in
the unity right eigenspace of of {H (0)}q+1. That is, the right
eigenvector of interest is close to a vector of the form π ⊗v,
where v is some non-zero q+1-component vector. To figure
out the particular vector π ⊗ v that the right eigenvector of
interest is close to, let us again view {H (K (q))}q+1 as a
perturbation of {H (0)}q+1, and note that one of the q + 1
unity eigenvalues of {H (0)}q+1 does not change when the
controller is implemented: that is, the sensitivity of this
eigenvalue to the perturbation is zero. Thus, for any small
enough K (q), the unity right eigenvector of {H (K (q))}q+1

is arbitrarily close to the vector of the form π ⊗ v for

which

⎡
⎢⎣

p11{G(1)}q,q+1 . . . pb1{G(b)}q,q+1
...

...

p1b{G(1)}q,q+1 . . . pbb{G(b)}q,q+1

⎤
⎥⎦π ⊗ v is

orthogonal to the unity left eigenspace of {H (0)}q+1.
That is, we wish to identify the vector of the form π ⊗
v such that (1′ ⊗ w′)

⎡
⎢⎢⎣

p11{G(1)}q,q+1 . . . pb1{G(b)}q,q+1
.
.
.

.

.

.

p1b{G(1)}q,q+1 . . . pbb{G(b)}q,q+1

⎤
⎥⎥⎦π ⊗ v

equals 0. With just a bit of algebra, we then obtain that
|| ∑b

i=1 πi {G(i)}q,q+1̂vi ||2, where v̂i is the part of the unity
right eigenvector corresponding to underlying state i scaled
by πi , becomes arbitrarily close to zero for small enough

K (q). Furthermore, since each v̂i becomes arbitrarily close
to a constant v, and since || ∑b

i=1 πi {G(i)}q+1,q+1v||2 ≥ ε

for any v, we find that || ∑b
i=1 πi E(i){G(i)}q+1,q+1̂vi ||2,

where E(i) is a square matrix with a single unity entry
in the bottom right corner and zeros elsewhere, must be
strictly greater than zero for small enough K (q). Concep-
tually, what we have shown is that the right eigenvector
corresponding to the unity entry cannot be perpendicular
to the perturbation vector that is added when feedback at
agent q + 1 is implemented. This comes about because of
the characteristics of the unity right eigenvector, as well as
π-full-rank requirement.

We find it convenient to define a notation for
K (q) being small enough to guarantee this non-
orthogonality. In particular, we define k as the maxi-
mum allowed magnitude for any element in K (q), such
that || ∑b

i=1 πi E(i){G(i)}q+1,q+1̂vi ||2 is guaranteed to be
greater than or equal to ε

2 .
Step 4: Stabilization Proof, First-Moment Recursion: We

are now ready to design a control matrix K such that the
eigenvalues of the first-moment recursion lie strictly within
the unit circle, given that the premises of Theorem 3 hold.
In particular, we shall prove that there exists a controller
K ∗ with diagonal entries that satisfy |kn| << |kn−1| <<

. . . << |k1| such that closed-loop system is stable. (Our
justification will clarify exactly how each ki+1 must be
chosen with respect to ki , to achieve stability). Our choice of
controller turns out to be prescient, in that it also guarantees
stability of the second moment-recursion matrix, as we will
show in the next section.

We prove the result using a recursive and perturbation-
based approach. We shall recursively design the entries of
K ∗, so that all but n − q eigenvalues of H (K ∗(q)) are
strictly within the unit circle, for each q ∈ 1, . . . , n.

First, consider use of the controller K ∗(1). Let us choose
k1 = −min( δ1

α1ρ
, k)sign((π1{G(1)}1 + . . . + πb{G(b)}1)),

where α1 is a scaling constant that will be shown to be
finite shortly. Viewing the control action as a perturbation
on H (0), we note that the subdominant eigenvalue moves
by at most a distance of k1ρ, plus terms that are second-
or higher order in k1. Hence, there clearly is a constant
α1 that guarantees that none of the non-unity eigenvalues
of H (0) moves outside the unit circle, when the controller
K ∗(1) is used. Thus, we need only consider the impact of
the controller on the unity eigenvalues of H (0).

It is easy to see (by constructing the appropriate left
eigenvectors) that n − 1 of the unity eigenvalues of H (0)

remain at the origin upon control by K ∗(1). The perturbed
version of the remaining eigenvalue is the largest eigenvalue
of {H (K ∗(1))}1. However, the eigenvalues of {H (K ∗(1))}1

can be viewed as perturbations of the eigenvalues of P ′

by k1

⎡
⎢⎣

p11{G(1)}1 . . . pb1{G(b)}1
...

...

p1b{G(1)}1 . . . pbb{G(b)}1

⎤
⎥⎦. Hence, the largest

eigenvalue of {H (K ∗(1))}1 is, for small enough k1, arbi-
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trarily close to

1 + k11′

⎡
⎢⎣

p11{G(1)}1 . . . pb1{G(b)}1
...

...

p1b{G(1)}1 . . . pbb{G(b)}1

⎤
⎥⎦π (8)

= 1 + k1(π1{G(1)}1 + . . . + πb{G(b)}1).

From the π-full-rank assumption, (π1{G(1)}1 + . . . +
πb{G(b)}1) is non-zero (and real), and so we can choose k1
to place this eigenvalue is strictly within the unit circle. In
particular, the eigenvalue will be negative, real, and bounded
away from unity by at least εk1, minus second- and higher-
order terms. Thus, there clearly exists a non-zero constant
α1a such that this eigenvalue is bounded away from unity
by at least δ2 = α1aεk1. Also, note that {H (K ∗(1))}2 has
the same eigenvalues as {H (K ∗(1))}1, except for having b
more eigenvalues that are the eigenvalues of P (including
an eigenvalue at the origin). This concludes the first step in
the recursion.

Now assume that we have designed a controller K ∗(q)

such that n − q eigenvalues of the closed-loop system are
strictly within the unit circle, |k2|, . . . , |kn| ≤ |k1|, and
the subdominant eigenvalue of H (K ∗(q)) is bounded away
from unity by δq+1. Let us consider design of the controller
K ∗(q + 1). To do so, first note that {H (K ∗(q))}q+1 has
a single eigenvalue at unity, remaining eigenvalues within
the unit circle, and subdominant eigenvalue bounded away
from unity by δq+1. Next, choose kq+1 = ± δq+1

αq+1ρ
, where

αq+1 is an appropriately-chosen constant and the sign
of kq+1 will also also be decided shortly. Now consider
{H (K ∗(q + 1))}q+1 as a perturbation of {H (K ∗(q))}q+1.
Notice that the subdominant eigenvalue of {H (K ∗(q))}q+1
moves by at most kq+1ρ (plus perhaps higher-order terms)
upon perturbation, so there exists a finite αq+1 such that
this and smaller eigenvalues cannot move outside the unit
circle. Now let’s think about how the perturbation affects
the unity eigenvalue of {H (K ∗(q))}q+1. As before, let’s
use the notation v̂′ = [̂

v′
1 . . . v̂′

b

]
for the unity right

eigenvector of {H (K ∗(q))}q+1. In this notation, the unity
eigenvalue can be seen (using eigenvalue sensitivity argu-
ments) to move to 1 + kq+1(π1e′(q + 1){G(1)}q+1v1 +
. . . + πbe′(q + 1){G(b)}q+1vb). Because we have chosen
|k1|, . . . , |kq+1| ≤ k, it is guaranteed that the unity eigen-
value moves by at least kq+1

ε
2 , minus some higher order

terms. Thus, there clearly exists and α(q+1)a > 0 such that
the eigenvalue of interest of {H (K ∗(q +1))}q+1 is bounded
away from unity by a distance of δq+2 = kq+1α(q+1)a

ε
2 .

Finally, we can choose the sign of kq+1 so that this
subdominant eigenvalue is real and within the unit circle.
Thus, {H (K ∗(q +1))}q+1 has all eigenvalues strictly within
the unit circle, and so H (K ∗(q +1)) has all but n − (q +1)

eigenvalues within the unit circle. Hence, we have proved
by induction that a controller can be designed so that all
eigenvalues of H are strictly within the unit circle.

Step 5: Stabilization Proof, Second-Moment Recursion:
We now show that the static gain matrix K can be designed

so that the eigenvalues of H2 fall in the unit circle. Our ap-
proach builds on the analysis of the first-moment recursion
from Step 4, so we begin with several claims regarding
the closed-loop first-moment recursion. We only give brief
explanations of these claims, since their justifications can be
obtained easily from (or in similar fashion to) our analysis
in Step 4.

In particular, we claim that we can choose k1, . . . , kn

such that
1) all eigenvalues of H fall strictly in the unit circle,
2) k2

1 << kn ,
3) for any given set of arbitrarily small open balls in the

complex plane around the eigenvalues of P , exactly
n of the eigenvalues of H lie in each ball.

4) each left eigenvector of H can be made arbitrarily
close to a vector of the form µ′ ⊗ w′, where µ′ is
a left eigenvector of P ′ and w′ is a length-n vector.
Similarly, each right eigenvector of H can be made
arbitrarily close to a vector of the form ν ⊗ v, where
ν is a right eigenvector of of P ′.

Let us briefly discuss why the claims are true. Claim 1 is
the main result proved in Step 4. To justify Claim 2, notice
from Step 4 that, in order to guarantee that the eigenvalues
of H fall in the unit circle, we require the magnitude of
k1 to be small enough and that the magnitude ki+1 to be
less than fixed fraction of ki (and then we correctly choose
the signs of these gains). Hence, by choosing k1 to be small
compared to the required fraction kn

k1
, we can guarantee that

k2
1 << kn . Claims 3 and 4 are direct consequences of the

interpretation of the control action as a perturbation on the
patrix P ′ ⊗ I . (Notice, again, that we can choose K to be
arbitrarily small and still guarantee that the eigenvalues of
H fall strictly within the unit circle, so the perturbation
analysis is germane.)

Now let us consider the the second-moment recursion
matrix H2. Recall that

H2 =

⎡
⎢⎢⎣

p11(I + K G(1))⊗2 . . . pb1(I + K G(b))⊗2

.

.

.

.

.

.

p1b(I + K G(1))⊗2 . . . pbb(I + K G(b))⊗2

⎤
⎥⎥⎦ . (9)

This expression for H2 can further be rewritten as

H2 = P ′ ⊗ I ⊗ I +
⎡
⎢⎣

p11(I ⊗ K G(1)) . . . pb1(I ⊗ K G(b))

.

.

.
.
.
.

p1b(I ⊗ K G(1)) . . . pbb(I ⊗ K G(b))

⎤
⎥⎦(10)

+
⎡
⎢⎣

p11(K G(1) ⊗ I ) . . . pb1(K G(b) ⊗ I )
.
.
.

.

.

.

p1b(K G(1) ⊗ I ) . . . pbb(K G(b) ⊗ I )

⎤
⎥⎦ (11)

+
⎡
⎢⎣

p11(K G(1) ⊗ K G(1)) . . . pb1(K G(b) ⊗ K G(b))

.

.

.
.
.
.

p1b(K G(1) ⊗ K G(1)) . . . pbb(K G(b) ⊗ K G(b))

⎤
⎥⎦

We choose K so that the four claims above are achieved.
In this case, notice that following are true:

• The matrix H2 is a perturbation of P ′ ⊗ I ⊗ I by three
terms that depend on the control matrix K , as seen in
Equation 10.
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• The term⎡
⎢⎣

p11(K G(1) ⊗ K G(1)) . . . pb1(K G(b) ⊗ K G(b))

.

.

.
.
.
.

p1b(K G(1) ⊗ K G(1)) . . . pbb(K G(t) ⊗ K G(t))

⎤
⎥⎦

is of higher order than the other perturbation terms,
and so can be made arbitrarily small compared to the
other perturbation terms by choosing small enough K
(in particular, k2

1 << kn). Thus, for a properly-chosen
K , this term does not change the spectrum of H2 and
need not be considered further.

• We shall sequentially consider the two remaining per-
turbation terms in Equation 10. In particular, we first
characterize the spectrum of

P ′⊗I⊗I+
⎡
⎢⎣

p11(I ⊗ K G(1)) . . . pb1(I ⊗ K G(b))
...

...

p1b(I ⊗ K G(1)) . . . pbb(I ⊗ K G(b))

⎤
⎥⎦

(12)
Notice that this matrix has n2b eigenvalues. It is easy
to check that each eigenvalue is exactly equal to an
eigenvalue of H . More specifically, each eigenvalue
of H is an n-times repeated eigenvalue of P ′ ⊗

I ⊗ I +
⎡
⎢⎣

p11(I ⊗ K G(1)) . . . pb1(I ⊗ K G(b))
...

...

p1b(I ⊗ K G(1)) . . . pbb(I ⊗ K G(b)).

⎤
⎥⎦

If we choose K small enough, the corresponding left
eigenvectors can be made arbitrarily close to vectors
of the form µ′⊗w′⊗w′, where w′ is any n-component
vector (in particular, the vectors w′ for a particular
repeated eigenvalue can be any n-dimensional vector
space.) Similarly, the right eigenvector can be made
arbitrarily close to a vector of the form ν ⊗ v ⊗ v, for
any v.

• Now let us consider the further purturbation by⎡
⎢⎣

p11(K G(1) ⊗ I ) . . . pb1(K G(b) ⊗ I )
...

...

p1b(K G(1) ⊗ I ) . . . pbb(K G(b) ⊗ I )

⎤
⎥⎦ to obtain

H2. Noticing that the left and right eigenvectors before
perturbation are arbitrarily close to the form µ′ ⊗w′ ⊗
w′ and ν⊗v⊗v, where w and v span Rn , we see that the
sensitivity of the eigenvalues to the second perturbation
is (in the limit of small K ) exactly the same as the
sensitivity of the eigenvalues of H upon control by K .
To be more precise, consider the eigenvalues of P ′ ⊗
I ⊗ I . These are the eigenvalues of P ′, each repeated
n2 times. As we have discussed, the first perturbation⎡
⎢⎣

p11(I ⊗ K G(1)) . . . pb1(I ⊗ K G(b))
...

...

p1b(I ⊗ K G(1)) . . . pbb(I ⊗ K G(b))

⎤
⎥⎦

causes each set of n2 eigenvalues to be perturbed into n
sets of n eigenvalues in a ball around the original value.
The second perturbation then causes each of these
subsets of n repeated eigenvalues to be perturbed, in
exactly the same way (up to higher-order terms) as the
perturbation from sets of n2 to sets of n eigenvalues.

Because of this sensitivity structure for the eigenvalues,
we notice the following two features:

– The eigenvalues of H2 that are perturbations of
non-unity eigenvalues of P ′ remain in small balls
around their original values, and so cannot lie
outside the unit circle.

– The n2 eigenvalues of H2 that are perturbations
of the unity eigenvalue of P ′ all lie within the
unit circle. In particular, they are first perturbed
(in sets of n) by small negative real amounts.
The second perturbation moves eigenvalues from
each set again by small negative real amounts,
and hence all these eigenvalues lie strictly within
the unit circle. In particular, the distance of the
dominant eigenvalue from unity will be twice the
distance of the dominant eigenvalue of H from
unity.

Hence, the a controller can be designed so that the eigen-
values of H2 lie within the unit circle, and so Theorem 3
has been proved.

IV. DISCUSSION

We have shown that our ability to develop a static
distributed controller for an MSIN is deeply connected with
the structure of the network graph and the steady-state
probability vector for the underlying Markov chain. Our
result for MSINs builds on our previous study of single-
and double-integrator networks with fixed topology [8].
In particular, in [8], we showed stabilization of a double-
integrator network (and, implicitly, a single-integrator net-
work) using a static distributed controller is possible if there
exists a permutation of the graph matrix such that all leading
principal minors are full rank. Our analysis here shows
that an identical result holds for single-integrator networks
with Markovian switching topologies, but with the condition
phrased in terms of a weighted average of the multiple
possible topologies. In other words, distributed control of
the network with switching topology is possible whenever
distributed control of the network with the steady-state
time-averaged topology is possible. This result is sensible,
since stabilizability of the network with averaged topology
implies first-moment stabilizability of the original network,
while higher-moment stabilizability can be guaranteed by
sufficiently slowing down the system.

It is also worth discussing the generalization of our result
to the case where agents can make multiple observations.
Noticing that the agents can only control a single input, we
see that each agent’s control input is a linear combination
of its output variables in each status. Hence, the MSIN
is stabilizable whenever we can find combinations of the
outputs (i.e., of the rows of the graph matrices) such that
the resulting scalar-observation MSIN is stabilizable. The
multi-observation case has been considered in more detail
for deterministic integrator networks, in [8].
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Illustrative Example: We briefly illustrate our main
result using an example M SI N . Further discussion of
this example—in particular its possible application to
autonomous-vehicle velocity control—is given in [10].

We consider an MSIN with n = 4 agents and b = 5
underlying statuses. Nominally (i.e., in underlying status
1), the agents make sensing observations according to the
full graph matrix

G(1) =

⎡
⎢⎢⎣

1 0 0 0
− 1

2 1 − 1
2 0

0 − 1
2 1 − 1

2
0 0 −1 1

⎤
⎥⎥⎦ . (13)

We consider control of this network when the sensing
topology switches back and forth in a Markovian fashion
from the nominal topology to one of the four topologies in
which a single agent does not make its observations at each

time-step (e.g., G(i) =

⎡
⎢⎢⎣

1 0 0 0
− 1

2 1 − 1
2 0

0 0 0 0
0 0 −1 1

⎤
⎥⎥⎦). We assume

that the following Markov chain governs the switching
dynamics:

P =

⎡
⎢⎢⎢⎢⎣

0.8 0.05 0.05 0.05 0.05
0.5 0.5 0 0 0
0.3 0 0.7 0 0
0.5 0 0 0.5 0
0.4 0 0 0 0.6

⎤
⎥⎥⎥⎥⎦ (14)

(Here, the first status of the Markov chain represents the
nominal topology, and the four other statuses represent the
topologies with failures.)

For this example, it is easy to check that
∑b

i=1 πi G(i)

equals

⎡
⎢⎢⎣

0.93 0 0 0
−0.44 0.88 −0.440

0 −0.47 0.93 −0.47
0 0 −0.92 0.92

⎤
⎥⎥⎦, and conse-

quently that the network is π-full-rank. Hence, we know
that there exists a static controller K , such that the closed-
loop system is stable in a mean-square sense. In fact, we can
check that the static controller K = I suffices to stabilize
the MSIN in a mean-square sense. In Figure IV, we plot
the state of one of the agents during a sample run, along
with the expectation of this agent’s state and two-standard
deviation intervals around the expected value. These plots
illustrate that the mean value of the state approaches zero
and the variance also approaches zero, so that the state
converges to the origin.
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