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Abstract— We consider dynamic output feedback practi-
cal stabilization of uniformly observable nonlinear systems,
based on high-gain observers with saturation. We assume
that uncertain parameters and initial conditions belong to
known but comparably large compact sets. In this situation,
designs based on traditional robust or adaptive techniques,
if applicable, would lead to high controller, observer, and
adaptation gains. High gains may excite unmodeled dynamics
and significantly amplify measurement noise. Moreover, they
could be impossible or too costly to implement. In order
to reduce the control efforts and improve robustness of
a continuous high-gain-observer-based sliding mode control
with respect to these non-ideal operational conditions, we
have recently proposed a new logic-based switching design
strategy. In this paper, we generalize our technique and apply
it to a wider class of nonlinear systems and more general
Lyapunov-function-based state and output feedback designs.
It is important to notice, in particular, that we require neither
the sign of the high-frequency gain to be known nor the
system to be minimum-phase. The key idea is to split the
set of parameters into smaller subsets, design a controller for
each of them, and switch the controller if the derivative of the
Lyapunov function does not satisfy a certain inequality, after
a dwell-time period. We do not order the candidate controllers
in advance, as in our earlier work. Instead, we use estimates
of the derivatives of the states, provided by an extended order
high-gain observer, to calculate instantaneous performance
indices. When the controller is falsified, we switch to a new
controller that corresponds to the smallest index among the
controllers that have not been falsified yet. This modification
is important when the number of candidate controllers is high
and pre-routed search may lead to an unacceptable transient
performance.

I. INTRODUCTION

Stabilization of nonlinear parametrically uncertain sys-

tems is an undoubtedly important problem that have at-

tracted attention of numerous researches and obviously

cannot be solved in general. Therefore, typically, it is

assumed that the system belongs to a certain class with

a fixed structure. Depending on the description of the

class, it is often possible to apply one of the classical

adaptive or robust control design techniques. In particular,

the two approaches, enhanced by a high-gain observer with

saturation [3], can be applied to solve the output tracking

problem for the class of minimum-phase nonlinear systems

in the case when uncertain parameters and initial conditions
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belong to given compact sets. However, when the set of

parameters is large, high controller, observer, and adaptation

gains are needed. High gains may excite hidden dynamics

and amplify measurement noise. Moreover, they could be

unimplementable in practice. In order to avoid unnecessarily

high gains we have recently proposed an alternative solution

[7], inspired by the logic-based switching control design

[15]. The key idea of [7] is to check whether a certain

inequality for the derivative of the Lyapunov function is

satisfied. The inequality can be verified using the estimates

of the states and their derivatives, as soon as the peaking

time of the high-gain observer is over. If it is satisfied, then

the current controller ensures converges of the trajectories

to a set where the tracking error is small. If not, then

switching is necessary. It is clear from our analysis in [7]

that the sliding-mode design for the candidate controllers

is not essential and any Lyapunov function-based design

could have been used instead. Moreover, for the problem

of state feedback control design, similar switching logic,

with a high-gain observer providing derivatives of the states,

could be used in order to improve robustness and transient

performance of the closed-loop system. We present this

generalization below with an important improvement in the

switching logic. We avoid following pre-routed search, that

may result in an unacceptable transient performance when

the number of candidate controllers is high. We use the

available on-line information to identify the set to which

parameters belong and to choose a candidate controller to

be put into the loop when the inequality for the derivative of

the Lyapunov function fails. However, the most important

extension of our previous result is the class of systems that

can be handled with our approach. This class contains now

not only minimum-phase nonlinear systems with a known

sign of the high-frequency gain of [7] but also uniformly

observable nonlinear systems with possibly unstable zero-

dynamics and the sign of high-frequency gain depending

on the values of the uncertain parameters. The motivation

for the class of nonlinear systems, introduced below, is

the well-known procedure of dynamic extension [18], [17]

for output feedback control. The idea is to augment the

system with additional dynamics, typically by adding a

chain of integrators at the input. The original system can

be parametrically uncertain, non-minimum phase, and even

with unknown high-frequency gain. The dynamic exten-

sion yields a system with additional outputs and no zero-

dynamics. As was noticed by Tornambé [18], implementing

a high-gain observer to estimate derivatives of the output,

we end-up with a state feedback control problem for the
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extended system. However, in the nonlinear case, designing

state feedback law and then implementing it employing the

estimates of a high-gain observer could lead to a shrinking

region of attraction and unacceptable transient behavior due

to the peaking phenomenon. This difficulty can be overcome

if the control law is saturated outside of the region of

interest as suggested by Esfandiari and Khalil [5]. These

ideas, combined, in particular, with backstepping and robust

high-gain feedback design, were used by Teel and Praly

[17] to develop a powerful tool for semiglobal feedback

stabilization of the class of uniformly observable systems.

Their results were extended by many researchers, see e.g.

[3], [11]. The available techniques apply to parametrically

uncertain systems. However, when the parameters of the

model belong to a known but comparably large compact

set, it is typically assumed that all the systems in the

family are minimum-phase and that at least the sign of

high-frequency gain is fixed and known. The stability of

the zero dynamics (often in the form of input-to-state

stability) is essential when high-gain feedback is used to

overcome uncertainty. Knowledge of the control direction

is important in the problem of smooth stabilization [16] and

discontinuous switching control seems to be the most effi-

cient way to avoid it [13]. Recently, logic-based switching

feedback design was developed by Morse [15] and others

[9], [10], [8], [1], [4] as an alternative to the classical

adaptive control. It promises superior and, to some extent,

provable guaranteed performance. Moreover, advantage of

allowing discontinuity in control is well-known [14] and,

in many cases, there is no need to impose either one

of the structural assumptions, mentioned above, provided

switching in control is allowed. Our goal in what follows is

to develop a procedure of achieving stability via switching

between several candidate controllers, designed along the

lines of [17], [3] to achieve satisfactory performance for

a small subset of parameter uncertainty. We continue with

a precise description of the class of systems. After that,

we discuss the design of extended high-gain observers and

the switching strategy. The formulation of the main result

conclude the theoretical part of the paper. The last part of

the paper presents an illustrative example of a nonlinear

systems with an unknown sign of high-frequency gain that

can be stabilized using scale-independent hysteresis-based

logic [8]. We present some simulation results and compare

the performance under our design and the alternative one.

II. CLASS OF SYSTEMS

We consider the regulation problem for a nonlinear

system that could be represented in the form

ẋ = Ax + Bφ(p, x, ζ, u), ζ̇ = ψ(p, x, ζ, u), y = Cx,
(1)

where the triple (A, B,C) ∈ R
n×n × R

n×1 × R
1×n

represents a chain of n integrators, i.e.

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1

. . . 0 0
...

...
. . .

. . .
. . .

...

0 0
. . .

. . . 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

;

φ(·) and ψ(·) are known continuously differentiable func-

tions; x = [x1, · · · , xn]T ∈ R
n and ζ ∈ R

s are vectors of

state variables; y ∈ R and ζ are measured outputs; p ∈ R
r

is a vector of unknown parameters; and u ∈ R is the control

input.

We restrict ourselves to the single-input case only for

simplicity of presentation. Extension to the multi-input case

is straightforward and can be done along the lines of [3]. We

assume that the differential equation for the x-subsystem is

dropped if n = 0 and that n ≥ 2 otherwise (since x could

be incorporated into ζ if n = 1). Similarly, there is no ζ -

subsystem if s = 0. We do not assume any special structure

of ψ(·) and therefore we consider a class of parametrically

uncertain nonlinear systems that contains in particular the

following important subclasses.

• Feedback linearizable systems with no zero-dynamics.

• Uniformly observable parametrically uncertain sys-

tems. Specifically, the model (1) includes the case of

an uncertain system representable by an n-th order

input-output model, augmented with a series of inte-

grators at the input side (as in [3], [18], [12]),

• General nonlinear systems with all state variables

available for feedback.

In each case we assume that the vector p belongs to a

known, relatively large, compact set P. In order to simplify

the control design, this set is partitioned into smaller subsets

as suggested in [15] (see also [13] and references therein)

p ∈ P =
N⋃

i=1

P(i).

Our main assumption is as follows. For a given compact

set Ω ⊂ R
n+s of possible initial conditions and every

i ∈ I = {1, · · · , N}
there exists a family of continuously differentiable, bounded

in x (saturated outside of the region of interest), state

feedback control laws with all partial derivatives bounded

in x as well,

u = u(i) ≡ g(i)(x, ζ) (2)

such that for every p ∈ P(i) all the trajectories of the

closed-loop system (1), (2) initiated inside Ω are bounded

and y(t) → 0 as t → ∞. Moreover, we assume that a

corresponding family of Lyapunov functions V (i)(x, ζ) and
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auxiliary K∞ functions α
(i)
1 (·), α

(i)
2 (·), and α

(i)
3 (·) are

known such that

α
(i)
1

(∥∥∥∥
[

x
ζ

]∥∥∥∥
)

≤ V (i)(x, ζ) ≤ α
(i)
2

(∥∥∥∥
[

x
ζ

]∥∥∥∥
)

;

∂V (i)(x, ζ)
∂x

[
Ax + Bφ

(
p̄, x, ζ, g(i)(x, ζ)

)]

+
∂V (i)(x, ζ)

∂ζ
ψ

(
p̄, x, ζ, g(i)(x, ζ)

)
≤ −α

(i)
3

(∥∥∥∥
[

x
ζ

]∥∥∥∥
)

(3)

∀p̄ ∈ P(i) and ∀(x, ζ) ∈ U (i)(R) with

U (i)(R) =
{

(x, ζ) : V (i) (x, ζ)) ≤ R
}

,

where R>0 is chosen so that Ω is in the interior of U (i)(R).
Our goal is to design an output feedback control law

to guarantee practical regulation. The family of the control

laws (2) cannot be implemented because

• the vector x is not available for feedback and

• the value i∗ ∈ I, for which p ∈ P(i∗), is not known.

The first problem could be resolved with the help of an

appropriate high-gain observer (HGO). To deal with the

second one we suggest to use ‘discontinuous adaptation’

in the form of logic-based switching.

III. SWITCHING LOGIC

First of all, we need to obtain a robust estimate x̂ of the

vector x or, equivalently, of n − 1 derivatives of the main

output y, in order to apply the control law

u = û(i) = g(i)(x̂, ζ), (4)

which is close to (2), provided ‖x− x̂‖ is small. However,

it is also useful to obtain estimates of y(n) and ζ̇ as

well, to be used for parameter identification. Estimating

‘extra’ derivatives is an alternative to the filter design of

classical adaptive control theory [2, Sec. 2.3] aiming to

obtain a quasi-static regression model suitable for parameter

identification. In what follows we also use these extra

derivatives in order to check whether (3), which could be

rewritten as

∂V (i)

∂x
(x, ζ) ẋ +

∂V (i)

∂ζ
(x, ζ) ζ̇ ≤ −α

(i)
3

(∥∥∥∥
[

x
ζ

]∥∥∥∥
)

, (5)

is satisfied in order to decide whether or not to switch.

Differentiating the equations of the closed-loop system

(1), (4) with a fixed i we obtain

y(n) = φ
(i)
1 (p, x, ζ, x̂, ˙̂x), ζ̈ = ψ

(i)
1 (p, x, ζ, x̂, ˙̂x), (6)

where φ
(i)
1 (p, x, ζ, x̂, ˙̂x) and ψ

(i)
1 (p, x, ζ, x̂, ˙̂x) are certain

functions, depending nonlinearly on û(i) ≡ g(i)(x̂, ζ) and

linearly on its partial derivatives. It is crucial to notice that,

since the functions g(i)(x̂, ζ),
∂g(i)(x̂, ζ)

∂x̂
, and

∂g(i)(x̂, ζ)
∂ζ

are globally bounded in x̂, the functions φ
(i)
1 (·) and ψ

(i)
1 (·)

satisfy a linear growth bound in ˙̂x.

We are ready now to design a high-gain observer for

the extended closed-loop system, following the standard

procedure [3].

The variables x and y(n) are estimated by x̂ and x̂n+1,
provided by

˙̂x = Ax̂ + Bx̂n+1 + H(εi)(y − Cx̂),
˙̂xn+1 = φ̂

(i)
1 (y, ζ, x̂, ˙̂x) + (αn+1/εn+1

i )(y − Cx̂),
(7)

where φ̂
(i)
1 (y, ζ, x̂, ˙̂x) is a nominal model of φ

(i)
1 (·), which

can be taken as zero, H(εi) =
[
α1

εi
,
α2

ε2
i

, · · · , αn

εn
i

]T

,

α1, α2, · · · , αn+1 are chosen such that the polynomial

ξn+1 + α1ξ
n + . . . + αnξ + αn+1 is Hurwitz, and εi > 0

is a small parameter to be specified.

Similarly, ζ̇ is estimated by ζ̂2, provided by the fol-

lowing observer (see [6] for some simpler alternatives that

are more suitable for special classes mentioned in the

introduction):

˙̂
ζ = ζ̂2 +

2(ζ − ζ̂)
εi

,
˙̂
ζ2 = ψ̂

(i)
1 (y, ζ, x̂, ˙̂x) +

ζ − ζ̂

ε2
i

, (8)

where ψ̂
(i)
1 (y, ζ, x̂, ˙̂x) is a nominal model for ψ

(i)
1 (·), which

can be taken as zero.

We assume that the initial conditions for (7) and (8)

belong to a given (arbitrary) compact set Ω̂ ∈ R
n+1+2s.

Using high-gain observers to estimate additional deriv-

atives brings up a new challenge in the analysis that has

not been encountered before in high-gain-observer-based

controllers as exemplified by [3]. In such controllers, when

the closed-loop system is represented in a singularly per-

turbed form, the fast subsystem is an O(ε) perturbation

of a Hurwitz linear system and the perturbation term is

bounded by a function that is independent of the fast

variables. In the current problem, the O(ε) perturbation

term will not be bounded uniformly in the fast variables.

However, it will satisfy a linear growth bound in those

variables. It is interesting that singular perturbation analysis

in the presence of peaking fast variables can handle a linear

growth bound on the fast variables. In fact, the singular

perturbation result in the very first paper on peaking in

high-gain observers [5] does allow the perturbation term

on the right-hand side of the fast subsystem to be bounded

by a function that grows linearly in the fast variables.

While Theorem 1 of [5] cannot be applied directly to our

current problem (even if all εi are chosen equal to each

other), since switching between several control laws results

in discontinuous right-hand sides of the slow subsystem, its

technique is used in the analysis.

The next issue we are going to address is how to

choose the correct candidate control law or, equivalently,

the appropriate index i ∈ I . It is intuitively clear that if

i = i∗
(
p ∈ P(i∗)

)
and the high-gain observers above are

capable of providing good estimates, then the inequality (3)

is satisfied up to a small error, the trajectories of the closed-

loop system cannot leave the compact set U (i∗)(R), and
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y(t) approaches an invariant set where it is small, provided

εi∗ is sufficiently small. It is crucial to notice that if (3) is

satisfied for a value of i 
= i∗, we can still show ultimate

boundedness (practical regulation). Obviously, we cannot

check the inequality (5) on-line because it depends on the

derivatives ẋ and ζ̇. However, using the estimates provided

by (7) and (8), the following inequality is easy to verify:

∂V (i)

∂x
(x̂, ζ) ˙̂x+

∂V (i)

∂ζ
(x̂, ζ) ζ̂2 ≤ a0−α

(i)
3

(∥∥∥∥
[

x̂
ζ

]∥∥∥∥
)

, (9)

where a0 > 0 is a small constant introduced to deal with an

O(εi) estimation errors induced by the high-gain observers.

After a short peaking period, we can find out whether

inequality (9) is satisfied. As long as it is satisfied, we

maintain the controller that is currently in the loop. When

it is violated, we switch to another controller and exclude

the previous one from the list of candidate controllers.

How to choose the next controller is a crucial decision

that affects the performance of the system. We can switch

systematically according to a pre-sorted list, as in our

earlier work [7]. The performance, however, might not be

acceptable if we have to switch through a long sequence of

controllers before we settle at one for which the inequality

(9) is satisfied. A more intelligent way is to use on-line

information to decide on the next controller. Noting that,

after the peaking period, the estimates x̂n+1 and ζ̂2 satisfy

the equations

x̂n+1 − φ (p, ·) = O(εi), ζ̂2 − ψ (p, ·) = O(εi),

for the true parameter p, we can use

J(p) =
∣∣∣x̂n+1 − φ

(
p, x̂, ζ, û(i)

)∣∣∣+
∥∥∥ζ̂2 − ψ

(
p, x̂, ζ, û(i)

)∥∥∥
as a performance index to be minimized over all possible

values of p. Invoking additional assumptions on how the

functions φ(·) and ψ(·) depend on p, we may use gradi-

ent, normalized gradient, least square, or another standard

estimation algorithm [2]. Naturally, the algorithm choice

will impact the performance, as discussed in [14] for a

similar problem. For computational simplicity, we adopt the

following approach. For each set P(j), we choose a nominal

parameter p(j). Assuming that the sets P(j) are small, it

is reasonable to expect
∣∣J(p) − J

(
p(j)

)∣∣ to be small for

all p ∈ P(j). Hence we use J
(
p(j)

)
as an index for the

set P(j). If I is the set of indices to choose from at some

switching time, the next index is taken as

i = arg min
j∈I

{
J
(
p(j)

)}
. (10)

Finally, we pick a small positive dwell-time constant τ,
which is greater then peaking time, and proceed according

to the following algorithm.

Step 1. Define initial time, say t0 := 0, the set of indices

I := {1, 2, · · · , N}, and an arbitrary initial value

for i ∈ I, say i := 1.
Step 2. Put the controller u = û(i), defined by (4) and (7),

into the loop for t ∈ [t0, t0 + τ).
Step 3. For t ≥ t0 +τ we continuously check the inequal-

ity (9) using current estimates from (7) and (8). We

keep the controller u = û(i) in the loop until the

moment of time ti ≥ t0 + τ when the inequality

fails.

Step 4. At t = ti we redefine I := I \ {i} and choose a

new value for i using (10).

Step 5. Set t0 := ti and go back to Step 2.

IV. MAIN RESULT

Theorem. Consider the closed loop-system (1), (4), (7),
(8) under the switching logic described above and with
initial states in the compact set Ω× Ω̂. There exist positive
numbers τmin and τmax, with τmin < τmax, and for every
τ ∈ (τmin, τmax) there exists ε̄ ∈ (0, 1) such that if
εi ∈ (0, ε̄), for i = 1, · · · , N, then the trajectories will be
bounded and |y(t)| will be ultimately bounded by a bound
that can be made arbitrary small, provided a0 in (9) and
εi are chosen sufficiently small.

Proof is omitted due to space limitations. It is available in

[6].

V. EXAMPLE

To demonstrate our design procedure we consider a non-

linear system with an unknown high-frequency gain in the

strict-feedback form. Our goal is to compare performance

achieved via our design and via a recently proposed logic-

based switching strategy [15], [9], [10], [13].

The following system has been investigated in [8, pp. 76–

82] (see also [10])

ż1 = p1z
3
1 + p2z2, ż2 = u, y = z1 − r, (11)

where z1 and z2 are the state variables, p = [ p1, p2 ]T

is a vector of unknown parameters that belong to the set

P =
42⋃

i=1

{
p(i)

}
= {−1,−0.9, . . . , 0.9, 1} × {−1, 1} ⊂ R

2,

u is the control input, r is a constant reference, and y is

the output error.

Our design procedure is applicable for solving both

output and state feedback regulation problems.

We start with the case when only y is available. To

transform (11) into the form (1) let

x1 = z1 − r, x2 = p1z
3
1 + p2z2, x =

[
x1

x2

]
,

so that

ẋ =
[

ẋ1

ẋ2

]
=

[
x2

3p1(x1 + r)2x2 + p2u

]
. (12)
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We use feedback linearization and pole-placement to derive

the control law

u = −[ω2x1 + 2ηωx̂2 + 3q1(x1 + r)2x̂2]/q2, (13)

where q = [ q1, q2 ] ∈ P is the nominal value for p, x̂2

is an estimate for x2, provided by the high-gain observer

˙̂x1 = x̂2+
3(y − x̂1)

ε
, ˙̂x2 = x̂3+

3(y − x̂1)
ε2

, ˙̂x3 =
y − x̂1

ε3
,

(14)

and ω > 0 and η > 0.25 are chosen to ensure acceptable

transient performance of the closed-loop system (12), (13)

with q = p, i.e.,

ẋ1 = x2, ẋ2 = −ω2x1 − 2ηωx2. (15)

The Lyapunov function candidate can be taken as

V (x1, x2) = ω(1 + η)x2
1 + x1x2 + x2

2/ω,

so that along the trajectories of (15)

V̇ = −W (x1, x2) = −ω2x2
1 − (4η − 1)x2

2.

Therefore, we start with i = 1, put the first candidate

controller (13) with q = p(i), i.e.

u = −Sat
([

ω2x1 +
(
2ηω + 3p

(i)
1 (x1 + r)2

)
x̂2

]
/p

(i)
2

)
,

where Sat(·) is a smooth saturation function, into the loop

and switch to another one as soon as the dwell-time period

is over and the inequality

∂V

∂x1
(x1, x̂2) x̂2 +

∂V

∂x2
(x1, x̂2) x̂3 + W (x1, x̂2) ≤ a0,

fails, where the output of the high-gain observer (14) is

used. The performance index for (10) can be taken as

J
(
p(j)

)
=

∣∣∣x̂3 − 3p
(j)
1 (x1 + r)2x̂2 − p

(j)
2 u

∣∣∣ .

In the state feedback case we let

ζ1 = z1 − r, ζ2 = z2 +
q1r

3

q2
, ζ =

[
ζ1

ζ2

]
,

so that

ζ̇ =
[

ζ̇1

ζ̇2

]
=

[
p1(ζ1 + r)3 + p2(ζ2 − q1r

3/q2)
u

]
. (16)

Following the idea of [8], we use the regulator

u = −[ω2ζ1 + 2ηωϕ(q, ζ) + 3q1(ζ1 + r)2ϕ(q, ζ)]/q2,
ϕ(q, ζ) = q1(ζ1 + r)3 + q2(ζ2 − q1r

3/q2),
(17)

such that the closed-loop system (16), (17) with q = p is

equivalent to (15). We use the family of Lyapunov functions

V (i)(ζ1, ζ2) = V
(
ζ1, ϕ(p(i), ζ)

)
,

that are obtained from the Lyapunov function used for the

output feedback, and, correspondingly, the inequalities

∂V (i)

∂ζ1
(ζ1, ζ2) ζ̂2+

∂V (i)

∂ζ2
(ζ1, ζ2) u+W

(
ζ1, ϕ(p(i), ζ)

)
≤ a0,

with the high-gain observer

˙̂
ζ1 = ζ̂2 +

2(ζ1 − ζ̂1)
εi

,
˙̂
ζ2 =

ζ1 − ζ̂1

ε2
i

, (18)

and the performance index

J
(
p(j)

)
=

∣∣∣ζ̂2 − ϕ(p(j), ζ)
∣∣∣ .

When all the state variables are available for feedback,

the controller of [8] is an alternative approach. It uses scale-

independent hysteresis-based switching logic design. The

first step of that approach is to design a multi-estimator for

the closed-loop system (16), (17) [8] and the hardest part is

to verify that the so-called “ij -injected system” is strongly

detectable with a known gain function. The second step, is

to use this gain function in order to define “performance

indices” µ(j), j ∈ {1, · · · , 42}. Switching is organized as

follows. Starting with i := 1, we check the inequality

µ(i)(t) ≤ (1 + h) min
j∈{1,···,42}

{µ(j)(t)},

where h > 0 is a fixed hysteresis constant. As soon as the

inequality fails, we redefine

i := argmin
j∈{1,···,42}

{µ(j)(t)}

and switch to the corresponding candidate controller.

It is shown in [8] that the solutions of the closed-loop

hybrid system are well-defined, switching has to stop in

finite time (with some value i = i0 ∈ {1, · · · , 42} and it

is possible but not necessary that i0 = i∗ ), all signals are

bounded, and limt→∞ |y(t)| = 0.

The simulation results for r = 1.0, ω = 1.0 and η = 0.7
are shown in Fig. 1 and Fig. 2. In each figure, the first

and the second rows show results for the Lyapunov-based

switching logic for the case of output and state feedback

(τ = 0.03, ε = 0.001, and a0 = 0.01) correspondingly,

and the third row shows results for the scale-independent

hysteresis-based logic (h = 0.01 and λ = 0.5). We show

the system’s regulated state x1(t) = ζ1(t) (column 1), the

generated control input u(t) (column 2), and the index,

i(t), of the controller put in the loop (column 3).

In the case when i∗ = 20, real system parameter is

identified perfectly. However, the output feedback regulator

outperforms both state feedback regulators. It is worth to

notice at this point that the output feedback design in this

case is not observer-based and so it is not surprising.

In the case when i∗ = 40 both regulators based on our

logic deliver similar performance though parameters are not

identified perfectly for one of them. The regulator based on

[8] suffers from the fact that during a short transient period

identification is not possible and the first controller is kept

in the loop even if it drives the systems states away from

the desired equilibrium due to the fact that it is based on a

wrong sigh of the high-frequency gain.
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Fig. 1. (i∗ = 20)
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Fig. 2. (i∗ = 40)

VI. CONCLUSION

Extending our previous result [7] for minimum-phase

nonlinear systems, we have proposed new design technique

for output and state feedback control to practically stabilize

a class of parametrically uncertain uniformly observable

nonlinear systems. We do not impose any kind of minimum-

phase assumption neither do we assume that the sigh of

the high-frequency gain is parameter independent. The

following is the summary of our approach:

• split the large set of parameters into a finite number

of smaller subsets,

• use any Lyapunov function-based technique to design

a smooth partial state feedback candidate controller

for each subset,

• design an extended order HGO, providing the esti-

mates for the states, needed to implement the candi-

date controllers, and for the derivatives of the states,

• obtain the performance indices for the subsets, based

on the algebraic equations that must be instanta-

neously satisfied by the parameters, states and the

derivatives of the states,

• use the estimates, provided by the observer, to check

whether the inequality for the derivative of the Lya-

punov function, corresponding to the current con-

troller, is satisfied and if it fails switch to the controller

that corresponds to the smallest performance index.

Application of the developed procedure has been demon-

strated on an example of uncertain non-linear system, previ-

ously reported in the literature. Main direction of our future

research is to investigate robustness of this approach with

respect to measurement noise and unmodeled dynamics (see

[6] for some preliminary results).
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