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Abstract A disturbance adding to the control law is
a typical situation in practice because of actuator er-
rors. In this paper, it is proved that a retarded nonlin-
ear system which is linearizable and stabilizable, is also
input-to-state stabilizable.
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INTRODUCTION

In 1989 Sontag showed in the paper [23] that nonlin-
ear systems which are (smooth) feedback stabilizable,
are also (smooth) input-to-state stabilizable with re-
spect to disturbances adding to the control input. As
well known, those disturbances are very frequent in
practice, because of actuator errors. Many contribu-
tions concerning the state feedback stabilization and the
input-output state feedback linearization of nonlinear
retarded systems can be found in the literature (see,
for instance, [3,6,8,12,14,15,17,18,26,30]). Liapunov-
Krasovskii methodologies for the input-to-state stabil-
ity of retarded nonlinear systems have been studied in
[10,19,28]. As far as the input-to-state stabilizability of
stabilizable retarded nonlinear systems is concerned, a
contribution is given in [27], where, besides the main
results dealing with the relationship between the input-
to-state stability and the exponential stability in the un-
forced case, the input-to-state stabilizability of retarded
nonlinear systems which are transformable by a state
feedback control law into a linear, delay-free, exponen-
tially stable system is considered, and the formula for
the input-to-state stabilizing state feedback control law
is provided. In this paper, on the basis of the converse
Liapunov-Krasovskii theorem for linear retarded sys-
tems (see [4] and References therein), it is proved that
a retarded nonlinear system which is linearizable and
stabilizable (i.e., there exists a state feedback control
law such that the closed loop system, with disturbance
equal to zero, is an asymptotically stable linear system
with suitable discrete as well as distributed time de-
lays), is also input-to-state stabilizable (as well known,
input-to-state stabilizability implies stabilizability).
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Notations

R denotes the set of real numbers, R? denotes the ex-
tended real line [¡1;+1], R+ denotes the set of non
negative reals [0;+1). The symbol j ¢ j stands for the
Euclidean norm of a real vector, or the induced Eu-
clidean norm of a matrix. The essential supremum
norm of an essentially bounded function is indicated
with the symbol k ¢ k1. A function v : R+ ! Rm,
m positive integer, is said to be essentially bounded if
ess supt¸0 jv(t)j < 1. For given times 0 · T1 < T2, we
indicate with v[T1;T2) : R

+ ! Rm the function given by
v[T1;T2)(t) = v(t) for all t 2 [T1; T2) and = 0 elsewhere.
An input v is said to be locally essentially bounded if,
for any T > 0, v[0;T ) is essentially bounded. For a pos-
itive real ¢, C([¡¢; 0];Rn) denotes the space of the
continuous functions mapping [¡¢; 0] into Rn, n posi-
tive integer. For positive integers m, n; Im denotes the
identity matrix in Rm£m, 0m;n denotes a matrix of ze-
ros in Rm£n. A functional F : C([¡¢; 0];Rn)! Rm£p,
m;n; p positive integers, is said to be completely contin-
uous if it is continuous and maps closed bounded sets of
C([¡¢; 0];Rn) into bounded sets of Rm£p. Let us here
recall that a function ° : R+ ! R+ is: positive de¯nite
if it is continuous, zero at zero and °(s) > 0 for all s > 0;
of class G if it is continuous, zero at zero, and nonde-
creasing; of class K if it is of class G and strictly increas-
ing; of class K1 if it is of class K and it is unbounded; of
class L if it monotonically decreases to zero as its argu-
ment tends to +1. A function ¯ : R+£R+ ! R+ is of
class KL if ¯(¢; t) is of class K for each t ¸ 0 and ¯(s; ¢)
is of class L for each s ¸ 0. With Ma is indicated any
functional mapping C([¡¢; 0];Rn) into R+ such that,
for some K1 functions °a; ¹°a, the following inequalities
hold

°a(jÁ(0)j) ·Ma(Á) · ¹°a(kÁk1); 8Á 2 C([¡¢; 0];R
n)
(1)

For example, the k ¢ kM2
norm, given by (see [2])

kÁkM2
=
³
jÁ(0)j2 +

R 0
¡¢
jÁ(¿ )j2d¿

´ 1
2

, is a Ma func-

tional. As usual, ISS stands for both input-to-state sta-
ble and input-to-state stability.

PRELIMINARIES

In this section, for the reader's convenience, some pre-
viously published results which are fundamental for the
understanding of the novel results which will be pro-
vided in next sections are brie°y reported, with some
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slight modi¯cations for the purposes of this paper. Let
us consider the following retarded nonlinear system

_x(t) = f(xt) + g(xt)v(t); t ¸ 0; a:e:;

x(¿ ) = »0(¿ ); ¿ 2 [¡¢; 0];
(2)

where x(t) 2 Rn, v(t) 2 Rm is the input function,
measurable and locally essentially bounded, for t ¸ 0
xt : [¡¢; 0]! Rn is the standard function (see Section
2.1, pp. 38 in [5]) given by xt(¿ ) = x(t + ¿), ¢ is the
maximum involved delay, f is a locally Lipschitz, com-
pletely continuous functional mapping C([¡¢; 0];Rn)
into Rn, g is a locally Lipschitz, completely contin-
uous functional mapping C([¡¢; 0];Rn) into Rn£m,
»0 2 C([¡¢; 0];R

n). It is here supposed that f(0) = 0,
thus ensuring that x(t) = 0 is the trivial solution for
the unforced system _x(t) = f(xt) with zero initial con-
ditions. Multiple discrete non-commensurate as well as
distributed delays can appear in (2). In the following,
the continuity of a functional V : C([¡¢; 0];Rn) !
R+ is intended with respect to the supremum norm.
Given a locally Lipschitz continuous functional V :
C([¡¢; 0];Rn) ! R+, the upper right-hand derivative
D+V of the functional V is given by (see [1], De¯nition
4.2.4, pp. 258)

D+V (Á; v) = lim sup
h!0+

1

h
(V (Áh)¡ V (Á)) ; (3)

where Áh 2 C([¡¢; 0];R
n) is given by

Áh(µ) =

½
Á(µ + h); s 2 [¡¢;¡h);

Á(0) + (f(Á) + g(Á)v)(µ + h); µ 2 [¡h; 0]
(4)

De¯nition 1: ([23,19]) The system (2) is said to be
input-to-state stable (ISS) if there exist a KL function
¯ and a K function ° such that, for any initial state
»0 and any measurable, locally essentially bounded input
v, the solution exists for all t ¸ 0 and furthermore it
satis¯es

jx(t)j · ¯ (k»0k1; t) + °
¡
kv[0;t)k1

¢
(5)

Theorem 2: ([19]) If there exist a locally Lipschitz
functional V : C([¡¢; 0];Rn) ! R+, functions ®1, ®2
of class K1, and functions ®3, ½ of class K such that:

H1) ®1(jÁ(0)j) · V (Á) · ®2(Ma(Á)); 8 Á 2
C([¡¢; 0];Rn);

H2) D+V (Á; v) · ¡®3(Ma(Á)),

8 Á 2 C([¡¢; 0];Rn); v 2 Rm : Ma(Á) ¸ ½(jvj);

then, the system (2) is input-to-state stable with ° =
®¡11 ± ®2 ± ½.

Remark 3: With respect to the published literature:
Theorem 2 makes use of theMa functional instead of the

k ¢ ka norm used in [19], thus weakening the hypotheses.
²

Let us consider now the following retarded linear sys-
tem (see [2,4,5,13,16])

_x(t) = Lxt;

x(¿ ) = »0(¿); ¿ 2 [¡¢; 0];
(6)

where L : C([¡¢; 0];Rn) ! Rn is a linear operator
which is de¯ned as

LÁ = A0Á(0)+

pX

i=1

AiÁ(¡¢i)+

Z 0

¡¢

A0;1(µ)Á(µ)dµ; (7)

Aj 2 Rn£n; j = 0; 1; : : : ; p, p is a positive integer,
A0;1 is a n £ n matrix of piecewise continuous func-
tions which are de¯ned in [¡¢; 0] and take values in
R, 0 < ¢1 < ¢2 < ¢ ¢ ¢ < ¢p = ¢ are arbitrary
(non-commensurate) time delays, »0 2 C([¡¢; 0];Rn).
The following converse Liapunov-Krasovskii Theorem
(Proposition 7.4, pp. 240 in [4]) holds.

Theorem 4: If the system (6) is asymptotically stable,
then there exists a Liapunov-Krasovskii functional

V (Á) = ÁT (0)PÁ(0) + 2ÁT (0)

Z 0

¡¢

Q(»)Á(»)d»+

Z 0

¡¢

ÁT (»)S(»)Á(»)d» +

Z 0

¡¢

Z 0

¡¢

ÁT (»)R(»; ´)Á(´)d´d»;

(8)
where P = PT 2 Rn£n and the matrix functions Q(») 2
Rn£n, S(») = ST (») 2 Rn£n, R(»; ´) = RT (´; ») 2
Rn£n, such that, for all Á 2 C([¡¢; 0];Rn),

V (Á) ¸ sjÁ(0)j2 (9)

and
D+V (Á) · ¡sjÁ(0)j2 (10)

are satis¯ed for some real s > 0. Furthermore, the
matrix functions Q(»); S(») and R(»; ´) are continuous
everywhere except at pointwise delays »; ´ = ¢i; i =
1; 2; : : : ; p¡ 1:

MAIN RESULTS

Let us consider the following retarded nonlinear system,
corresponding to (2) when the input v is given as the
sum of the control input and of the disturbance:

_x(t) = f(xt) + g(xt)(u(t) + d(t)); t ¸ 0; a:e:;

x(¿) = »0(¿ ); ¿ 2 [¡¢; 0];
(11)

where u(t) 2 Rm is the control input, d(t) 2 Rm

is the disturbance, measurable and locally essentially
bounded.
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Theorem 5: Let there exist a locally Lipschitz, com-
pletely continuous functional k : C([¡¢; 0];Rn)! Rm,
such that the functional L : C([¡¢; 0];Rn) ! Rn, de-
¯ned as

LÁ = f(Á) + g(Á)k(Á) (12)

is linear (see (6),(7)), and the system

_x(t) = Lxt (13)

is asymptotically stable. Let the functional

V0;L(Á) =Á
T (0)PÁ(0) + 2ÁT (0)

Z 0

¡¢

Q(»)Á(»)d»+

Z 0

¡¢

ÁT (»)S(»)Á(»)d»+

Z 0

¡¢

Z 0

¡¢

ÁT (»)R(»; ´)Á(´)d´d»;

(14)
be the Liapunov-Krasovskii functional by which the
asymptotic stability of system (13) can be proved, as
in Theorem 4. Let D+

a V0;L : C([¡¢; 0];Rn) ! R be
the continuous derivative of the functional V0;L with re-
spect to the linear unforced system (13), according to (3)
(v = 0). Let p : C([¡¢; 0];Rn)! Rm be de¯ned as

p(Á) =
¡
D+
a V0;L(Á) + q2sjÁ(0)j

2 ¡ q1sjÁ(¡¢)j
2¡

¡
q2 ¡ q1

¢
s

Z 0

¡¢

jÁ(¿ )j2d¿

¶
¢

µ
gT (Á)PÁ(0) + gT (Á)

Z 0

¡¢

Q(»)Á(»)d»

¶
;

(15)
where s is the positive real in (9) (10) associated with
functional (14) and system (13), and q1; q2 are any pos-
itive reals satisfying 0 < q1 < q2 < 1.

Then the following feedback control law

u(t) = k(xt) + p(xt) (16)

is such that the closed loop system (11), (16), de-
scribed by the following nonlinear equations

_x(t) = Lxt + g(xt)p(xt) + g(xt)d(t); (17)

is input-to-state stable with respect to the disturbance
d(t).

Proof.

For any given Á 2 C([¡¢; 0];Rn), h 2 [0;¢], let us
de¯ne Áah 2 C([¡¢; 0];Rn) and ±gh 2 C([¡¢; 0];Rn£m)

as follows

Áah(µ) =

½
Á(µ + h); µ 2 [¡¢;¡h);

Á(0) + (µ + h)LÁ; µ 2 [¡h; 0];

±
g
h(µ) =

½
0n£m; µ 2 [¡¢;¡h);

(µ + h)g(Á); µ 2 [¡h; 0]:

(18)

Let V1 : C([¡¢; 0];R
n)! R+ be de¯ned as V1(Á) =R 0

¡¢
q(¿)sjÁ(¿ )j2d¿ , with q : [¡¢; 0]! R+ given by

q(¿ ) = ¡
¿

¢
q1 +

¿ +¢

¢
q2; ¿ 2 [¡¢; 0] (19)

Let V0(Á) = V0;L(Á) + V1(Á). The following equality
holds

lim sup
h!0+

V1(Á
a
h)¡ V1(Á)

h
= q2sjÁ(0)j

2 ¡ q1sjÁ(¡¢)j
2¡

¡
q2 ¡ q1

¢
s

Z 0

¡¢

jÁ(¿ )j2d¿;

(20)

Now, let us prove that, for any M 2 Rm, the follow-
ing equality holds

lim sup
h!0+

V0(Á
a
h + ±

g
hM)¡ V0(Á

a
h)

h
=

2ÁT (0)Pg(Á)M + 2

µZ 0

¡¢

Q(»)Á(»)d»

¶T
g(Á)M

(21)

The following equality holds

lim sup
h!0+

V0(Á
a
h + ±

g
hM)¡ V0(Á

a
h)

h
= l1 + l2 + l3 + l4 + l5;

(22)

where

l1 = lim
h!0+

(Á(0) + hLÁ+ hg(Á)M)T P (Á(0) + hLÁ+ hg(Á)M)

h

¡
(Á(0) + hLÁ)

T
P (Á(0) + hLÁ)

h
;

(23)

l2 = lim
h!0+

1

h
2 (Á(0) + hLÁ+ hg(Á)M)

T
¢

¢

Z 0

¡¢

Q(»)(Áah(») + ±
g
h(»)M)d»

¡
2 (Á(0) + hLÁ)

T R 0
¡¢

Q(»)Áah(»)d»

h
;

(24)
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l3 = lim
h!0+

Z 0

¡¢

(Áah(») + ±
g
h(»)M)

T
S(») (Áah(») + ±

g
h(»)M) d»¡

¡

R 0
¡¢

(Áah(»))
T
S(») (Áah(»)) d»

h
;

(25)

l4 = lim
h!0+

1

h

Z 0

¡¢

Z 0

¡¢

(Áah(») + ±
g
h(»)M)

T
R(»; ´) (Áah(´) + ±

g
h(´)M) d´d»

¡
1

h

Z 0

¡¢

Z 0

¡¢

Áah(»)
TR(»; ´)Áah(»)d´d»

(26)

l5 = lim
h!0+

1

h

Z 0

¡¢

q(»)s¢

¢ (Áah(») + ±
g
h(»)M)

T
(Áah(») + ±

g
h(»)M) d»¡

1

h

Z 0

¡¢

q(»)s (Áah(»))
T
(Áah(»)) d»;

(27)

As far as l1 is concerned, the following equalities hold

l1 = lim
h!0+

1

h
2(Á(0) + hLÁ)TPhg(Á)M+

1

h
h2MT gT (Á)Pg(Á)M = 2ÁT (0)Pg(Á)M

(28)

As far as l2 is concerned, the following equalities hold

l2 =

lim
h!0+

1

h
2(Á(0) + hLÁ)T

Z 0

¡h

Q(»)(» + h)g(Á)Md»+

1

h
2hMT gT (Á)

Z 0

¡¢

Q(»)(Áah(») + ±
g
h(»)M)d» =

lim
h!0+

1

h
2(Á(0) + hLÁ)T

Z 0

¡h

Q(»)»g(Á)Md»+

+
1

h
2(Á(0) + hLÁ)T

Z 0

¡h

Q(»)hg(Á)Md»+

+
2hMT gT (Á)

R 0
¡¢

Q(»)(Áah(») + ±
g
h(Á)M)d»

h
(29)

Taking into account the continuity at 0 of the matrix
of functions Q(») and the uniform convergence of Áah +
±
g
h(Á)M to Á, the following equalities hold

l2 = lim
h!0+

2MT gT (Á)

Z 0

¡¢

Q(»)(Áah(») + ±
g
h(»)M)d») =

2

µZ 0

¡¢

Q(»)Á(»)d»

¶T
g(Á)M

(30)

As far as l3 is concerned, the following equalities hold

l3 = lim
h!0+

1

h

2

Z 0

¡h

(Á(0) + (» + h)LÁ)TS(»)(» + h)g(Á)Md»+

1

h

Z 0

¡h

(» + h)2MT gT (Á)S(»)g(Á)Md» =

lim
h!0+

2
R 0
¡h
(Á(0) + »LÁ)TS(»)g(Á)M»d»

h

+ 2

Z 0

¡h

(Á(0) + »LÁ)TS(»)g(Á)Md»+

2

Z 0

¡h

(LÁ)TS(»)g(Á)M»d»

+ 2h

Z 0

¡h

(LÁ)TS(»)g(Á)Md»+

R 0
¡h

»2MT gT (Á)S(»)g(Á)Md»

h
+

Z 0

¡h

2»MT gT (Á)S(»)g(Á)Md»+

h

Z 0

¡h

MT gT (Á)S(»)g(Á)Md»

(31)

The terms which are not divided by h go to zero, since
the interval of integration goes to zero (recall that S(»)
is continuous in (¡¢1; 0], see Theorem 4). The terms

2
R 0
¡h
(Á(0) + »LÁ)TS(»)g(Á)M»d»

h
;

R 0
¡h

»2MT gT (Á)S(»)g(Á)Md»

h

(32)

go to zero since the functions inside the integrals are zero
at zero. Therefore, l3 = 0. As far as l4 is concerned, the
following equality holds

l4 = lim
h!0+

1

h

µZ 0

¡¢

Áah(»)
T

Z 0

¡h

R(»; ´)±gh(´)Md´d»+

Z 0

¡h

(±gh(»)M)
T

Z 0

¡¢

R(»; ´)Áah(´)d´d»

+

Z 0

¡h

Z 0

¡h

(±gh(»)M)
T
R(»; ´) (±gh(´)M) d´d»

¶

(33)

5273



Let ¹R = sup(»;´)2[¡¢;0]2 jR(»; ´)j. Then, from the
inequalities
¯̄
¯̄
Z 0

¡¢

Áah(»)
T

Z 0

¡h

R(»; ´)±gh(´)Md´d»

¯̄
¯̄ ·

h2 ¹Rjg(Á)jjM j

Z 0

¡¢

jÁah(»)jd»;

¯̄
¯̄
Z 0

¡h

(±gh(»)M)
T

Z 0

¡¢

R(»; ´)Áah(´)d´d»

¯̄
¯̄ ·

h2 ¹Rjg(Á)jjM j

Z 0

¡¢

jÁah(´)jd´;

¯̄
¯̄
Z 0

¡h

Z 0

¡h

(±gh(»)M)
T
R(»; ´) (±gh(´)M) d´d»

¯̄
¯̄ ·

h4 ¹Rjg(Á)j2jM j2;

(34)

taking into account that Áah converges uniformly to Á as
h goes to zero, it follows that l4 = 0. As far as l5 is
concerned, by the same reasoning used for l3 it follows
that l5 = 0.

Therefore, since the term l1 + l2 + l3 + l4 + l5 in the
right hand side of (22) is equal to the right-hand side of
(21), the equality (21) is proved. Let

r(Á) =

Ã

2ÁT (0)Pg(Á) + 2

µZ 0

¡¢

Q(»)Á(»)d»

¶T
g(Á)

!T

(35)
From (20) it follows that the functional p(Á) in (15) is
equal to

1

2
D+
a V0(Á)r(Á); (36)

with

D+
a V0(Á) = lim sup

h!0+

V0(Á
a
h)¡ V0(Á)

h
(37)

Now, in order to prove the input-to-state stability of
the closed loop system (17), let us apply Theorem 2, by
using the Liapunov-Krasovskii functional V0 and theM2

norm as aMa functional. LetD
+V0(Á) be the derivative

of the functional V0 with respect to the system (17),
according to (3). Taking into account (21), (35), (36),
the following equalities hold

D+V0(Á; d) = lim sup
h!0+

V0(Á
a
h + ±

g
h(p(Á) + d))¡ V0(Á)

h
=

lim
h!0+

V0(Á
a
h + ±

g
h(p(Á) + d))¡ V0(Á

a
h)

h
+

lim
h!0+

V0(Á
a
h)¡ V0(Á)

h
=

D+
a V0(Á) + rT (Á)(p(Á) + d) =

D+
a V0(Á) + rT (Á)

1

2
D+
a V0(Á)r(Á) + rT (Á)d

(38)

For jdj · ½kÁkjM2
, ½ positive real, taking into account

(20), the following inequalities hold

D+V0(Á; d) · ¡sjÁ(0)j
2 + q2sjÁ(0)j

2 ¡ q1sjÁ(¡¢)j
2¡

¡
q2 ¡ q1

¢
s

Z 0

¡¢

jÁ(¿ )j2d¿+

1

2

¡
¡sjÁ(0)j2 + q2sjÁ(0)j

2 ¡ q1sjÁ(¡¢)j
2¡

¡
q2 ¡ q1

¢
s

Z 0

¡¢

jÁ(¿ )j2d¿

¶
jr(Á)j2+

½

2
jr(Á)j2kÁk2M2

+
½

2
kÁk2M2

·

¡ s
³
1¡ q2 ¡

½

2s

´
jÁ(0)j2¡

¡

µ
q2 ¡ q1

¢
s¡

½

2

¶Z 0

¡¢

jÁ(¿)j2d¿¡

¡
s

2

³³
1¡ q2 ¡

½

2s

´
jÁ(0)j2¡

¡

µ
q2 ¡ q1

¢
s¡

½

2

¶Z 0

¡¢

jÁ(¿ )j2d¿

¶
jr(Á)j2

(39)

Therefore, by choosing ½ su±ciently small, taking
into account that 0 < q1 < q2 < 1, the following in-
equality holds for a suitable positive real k

D+V0(Á) · ¡kkÁk
2
M2

(40)

and, by Theorem (2), the input-to-state stability of the
closed loop system (17) is proved. ut

CONCLUSIONS

In this paper, it is proved that a retarded nonlinear sys-
tem which is linearizable and stabilizable, is also input-
to-state stabilizable with respect to disturbances adding
to the control law. The converse Liapunov-Krasovskii
theorem for linear retarded functional di®erential equa-
tions is used to ¯nd the input-to-state stabilizing feed-
back. An example taken from the past literature is in-
vestigated in details, showing the e®ectiveness and the
applicability of the methodology here proposed.
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