
ISS CONTROL LAWS FOR STABILIZABLE RETARDED SYSTEMS

BY MEANS OF THE LIAPUNOV-RAZUMIKHIN METHODOLOGY
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Abstract A disturbance adding to the control law is a
typical situation in practice because of actuator errors.
In this paper, state feedback control laws which pro-
vide input-to-state stability of the closed loop system
with respect to a disturbance adding to the control law
are investigated for state feedback stabilizable (in the
case of disturbance equal to zero) retarded nonlinear
systems. The formulas for the input-to-state stabilizing
state feedback control law are provided by employing
the Liapunov-Razumikhin methodology. An example
taken from the past literature is investigated in details,
showing the e®ectiveness and the applicability of the
proposed control design.

Keywords: Input-to-State Stabilizability, Retarded
Nonlinear Systems, Liapunov-Krasovskii Methodology,
Liapunov-Razumikhin Methodology.

INTRODUCTION

In 1989 Sontag showed in the paper [23] that nonlin-
ear systems which are (smooth) feedback stabilizable,
are also (smooth) input-to-state stabilizable with re-
spect to disturbances adding to the control input. As
well known, those disturbances are very frequent in
practice, because of actuator errors. Many contribu-
tions concerning the state feedback stabilization and the
input-output state feedback linearization of nonlinear
retarded systems can be found in the literature (see,
for instance, [3,6,8,12,14,15,17,18,26,30]). Liapunov-
Razumikhin and Liapunov-Krasovskii methodologies for
the input-to-state stability of retarded nonlinear sys-
tems have been studied in [25] and in [10,19,28], re-
spectively. As far as the input-to-state stabilizability of
stabilizable retarded nonlinear systems is concerned, a
contribution is given in [27], where, besides the main
results dealing with the relationship between the input-
to-state stability and the exponential stability in the un-
forced case, the input-to-state stabilizability of retarded
nonlinear systems which are transformable by a state
feedback control law into a linear, delay-free, exponen-
tially stable system is considered, and the formula for
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the input-to-state stabilizing state feedback control law
is provided.

In this paper a general theory for the input-to-state
stabilizability of state feedback stabilizable retarded
nonlinear systems is provided. It is proved that a state
feedback stabilizable (in the case of disturbance equal
to zero) retarded nonlinear system admits an input-to-
state stabilizable state feedback control law (i.e. admits
a state feedback control law such that the closed loop
system is input-to-state stable with respect to a dis-
turbance adding to the control law), provided that the
control system obtained by closing the loop with the sta-
bilizing (in the case of disturbance equal to zero) state
feedback control law admits a Liapunov-Razumikhin
function, with a suitable property, by which its global
asymptotic stability can be proved. The formula for
such input-to-state stabilizing state feedback control law
is provided. The delays are arbitrary but it is assumed
that they are known.

The e®ectiveness of the methodology here proposed
is shown in details on an example of stabilizable (in the
case of disturbance equal to zero) retarded nonlinear
system taken from the past literature.

Notations

R denotes the set of real numbers, R? denotes the ex-
tended real line [¡1;+1], R+ denotes the set of non
negative reals [0;+1). The symbol j ¢ j stands for the
Euclidean norm of a real vector, or the induced Eu-
clidean norm of a matrix. The essential supremum
norm of an essentially bounded function is indicated
with the symbol k ¢ k1. A function v : R+ ! Rm,
m positive integer, is said to be essentially bounded if
ess supt¸0 jv(t)j < 1. For given times 0 · T1 < T2, we
indicate with v[T1;T2) : R+ ! Rm the function given by
v[T1;T2)(t) = v(t) for all t 2 [T1; T2) and = 0 elsewhere.
An input v is said to be locally essentially bounded if,
for any T > 0, v[0;T ) is essentially bounded. For a pos-
itive real ¢, C([¡¢; 0];Rn) denotes the space of the
continuous functions mapping [¡¢; 0] into Rn, n posi-
tive integer. For positive integers m, n; Im denotes the
identity matrix in Rm£m, 0m;n denotes a matrix of ze-
ros in Rm£n. A functional F : C([¡¢; 0];Rn) ! Rm£p,
m;n; p positive integers, is said to be completely contin-
uous if it is continuous and maps closed bounded sets of
C([¡¢; 0];Rn) into bounded sets of Rm£p. Let us here
recall that a function ° : R+ ! R+ is: positive de¯nite
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if it is continuous, zero at zero and °(s) > 0 for all s > 0;
of class G if it is continuous, zero at zero, and nonde-
creasing; of class K if it is of class G and strictly increas-
ing; of class K1 if it is of class K and it is unbounded; of
class L if it monotonically decreases to zero as its argu-
ment tends to +1. A function ¯ : R+£R+ ! R+ is of
class KL if ¯(¢; t) is of class K for each t ¸ 0 and ¯(s; ¢)
is of class L for each s ¸ 0. As usual, ISS stands for
both input-to-state stable and input-to-state stability.

PRELIMINARIES

In this section, for the reader's convenience, some pre-
viously published results which are fundamental for the
understanding of the novel results which will be pro-
vided in next sections are brie°y reported, with some
slight modi¯cations for the purposes of this paper. Let
us consider the following retarded nonlinear system

_x(t) = f(xt) + g(xt)v(t); t ¸ 0; a:e:;

x(¿ ) = »0(¿ ); ¿ 2 [¡¢; 0];
(1)

where x(t) 2 Rn, v(t) 2 Rm is the input function,
measurable and locally essentially bounded, for t ¸ 0
xt : [¡¢; 0] ! Rn is the standard function (see Section
2.1, pp. 38 in [5]) given by xt(¿ ) = x(t + ¿), ¢ is the
maximum involved delay, f is a locally Lipschitz, com-
pletely continuous functional mapping C([¡¢; 0];Rn)
into Rn, g is a locally Lipschitz, completely contin-
uous functional mapping C([¡¢; 0];Rn) into Rn£m,
»0 2 C([¡¢; 0];Rn). It is here supposed that f(0) = 0,
thus ensuring that x(t) = 0 is the trivial solution for
the unforced system _x(t) = f(xt) with zero initial con-
ditions. Multiple discrete non-commensurate as well as
distributed delays can appear in (1). In the following,
the continuity of a functional V : C([¡¢; 0];Rn) !
R+ is intended with respect to the supremum norm.
Given a locally Lipschitz continuous functional V :
C([¡¢; 0];Rn) ! R+, the upper right-hand derivative
D+V of the functional V is given by (see [1], De¯nition
4.2.4, pp. 258, see comments before Theorem 2 in [20])

D+V (Á; v) = lim sup
h!0+

1

h
(V (Áh)¡ V (Á)) ; (2)

where Áh 2 C([¡¢; 0];Rn) is given by

Áh(µ) =

½
Á(µ + h); µ 2 [¡¢;¡h);

Á(0) + (f(Á) + g(Á)v)(µ + h); µ 2 [¡h; 0]
(3)

De¯nition 1: ([23,19]) The system (1) is said to be
input-to-state stable (ISS) with respect to v, if there exist
a KL function ¯ and a K function ° such that, for any
initial state »0 and any measurable, locally essentially

bounded input v, the solution exists for all t ¸ 0 and
furthermore it satis¯es

jx(t)j · ¯ (k»0k1; t) + °
¡
kv[0;t)k1

¢
(4)

Theorem 2: ([25]) If there exist a locally Lipschitz
function ¹V : Rn ! R+, functions ®1, ®2 of class K1,
a function ®3 of class K, functions ®4, ½ of class G,
®4(s) < s for s > 0; such that:

H1) ®1(jxj) · ¹V (x) · ®2(jxj); 8x 2 R
n;

H2) D
+V (Á; v) · ¡®3(jÁ(0)j),

8Á 2 C([¡¢; 0];Rn); v 2 Rm :

¹V (Á(0)) ¸ maxf®4(sup¿2[¡¢;0] ¹V (Á(¿))); ½(v)g,

where V (Á) = ¹V (Á(0)) and D+V is computed as in
(2);

then, the system (1) is input-to-state stable with ° =
®¡11 ± ½.

Remark 3: With respect to the published literature:
the hypotheses in Theorem 2 are given on the state space
domain by using the De¯nition (2) and the results in
[20,21], while in the original version are given on the
time domain. ²

MAIN RESULTS

Let us consider now the following retarded nonlinear
system, corresponding to (1) when the input v is given
as the sum of the control input and of the disturbance:

_x(t) = f(xt) + g(xt)(u(t) + d(t)); t ¸ 0; a:e:;

x(¿) = »0(¿ ); ¿ 2 [¡¢; 0];
(5)

where u(t) 2 Rm is the control input, d(t) 2 Rm

is the disturbance, measurable and locally essentially
bounded.

Theorem 4: Let there exists a locally Lipschitz, com-
pletely continuous functional k : C([¡¢; 0];Rn) ! Rm,
such that the closed loop system (5) with u(t) = k(xt),
and no disturbance, described by the equations

_x(t) = f(xt) + g(xt)k(xt); (6)

is globally asymptotically stable. Let, for Á 2
C([¡¢; 0];Rn), h 2 (0;¢);

Áah(µ) =
½

Á(µ + h); µ 2 [¡¢;¡h);
Á(0) + (µ + h) (f(Á) + g(Á)k(Á)) ; µ 2 [¡h; 0];

±
g
h(µ) =

½
0n£m; µ 2 [¡¢;¡h);

(µ + h)g(Á); µ 2 [¡h; 0]
(7)
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Let there exist a locally Lipschitz continuous function
¹V0 : Rn ! R+, functions ®1, ®2, ®3 of class K1,
functions ®4, ½ of class G, ®4(s) < s for s > 0,
a locally Lipschitz, completely continuous functional
r : C([¡¢; 0];Rn) ! Rm such that, de¯ning V0(Á) =
¹V0(Á(0)), Á 2 C([¡¢; 0];Rn):

i) ®1(jxj) · ¹V0(x) · ®2(jxj), 8x 2 Rn;

ii) the functional D+a V0 : C([¡¢; 0];Rn) ! R?, de¯ned
as

D+a V0(Á) = lim sup
h!0+

V0(Á
a
h)¡ V0(Á)

h
; (8)

is locally Lipschitz, completely continuous and,
moreover,

D+a V0(Á) · ¡®3(jÁ(0)j);

8Á 2 C([¡¢; 0];Rn) :

¹V0(Á(0)) ¸ ®4

Ã

sup
¿2[¡¢;0]

¹V0(Á(¿ ))

!

;

(9)

iii)

lim sup
h!0+

V0(Á
a
h + ±ghM)¡ V0(Á

a
h)

h
= rT (Á)M;

8Á 2 C([¡¢; 0];Rn); M 2 Rm:

(10)

Then, the feedback control law

u(t) = k(xt) + p(xt); (11)

with p : C([¡¢; 0];Rn)! Rm de¯ned as

p(Á) =
1

2
D+a V0(Á)r(Á); (12)

is such that the closed loop system (5), (11), described
by the following equations

_x(t) = f(xt)+g(xt)k(xt)+g(xt)p(xt)+g(xt)d(t); (13)

is input-to-state stable with respect to the measurable
and locally essentially bounded disturbance d(t).

Proof. Let us apply Theorem 2 with ¹V0 as Razumikhin
function. For all Á 2 C([¡¢; 0];Rn); d 2 Rm such that

¹V0(Á(0)) ¸

max

(

®4

Ã

sup
¿2[¡¢;0]

¹V0(Á(¿ ))

!

; ®2 ± ®
¡1
3 (jdj)

)

;
(14)

the following equalities/inequalities hold

D+V0(Á; d) = lim sup
h!0+

V0(Á
a
h + ±gh(p(Á) + d))¡ V0(Á)

h
=

lim sup
h!0+

V0(Á
a
h + ±gh(p(Á) + d))¡ V0(Á

a
h) + V0(Á

a
h)¡ V0(Á)

h

· lim sup
h!0+

V0(Á
a
h + ±gh(p(Á) + d))¡ V0(Á

a
h)

h

+ lim sup
h!0+

V0(Á
a
h)¡ V0(Á)

h
·

¡ ®3(jÁ(0)j) + rT (Á)(p(Á) + d) =

¡ ®3(jÁ(0)j) +
1

2
rT (Á)D+a V0(Á)r(Á) + rT (Á)d

(15)

Taking into account, by condition i), that ¹V0(Á(0)) ¸
®2 ± ®

¡1
3 (jdj)) jdj · ®3(jÁ(0)j), the following inequali-

ties follow

D+V0(Á; d) · ¡®3(jÁ(0)j)¡
1

2
®3(jÁ(0)j)r

T (Á)r(Á)+

1

2
jr(Á)j2®3(jÁ(0)j) +

1

2
®3(jÁ(0)j) · ¡

1

2
®3(jÁ(0)j)

(16)

Therefore, from Theorem 2, the input-to-state sta-
bility of the closed loop system (13) with respect to the
disturbance d(t) adding to the control law is proved. ut

Remark 5: Note that Áah is equivalent to Áh in (3)
related to the closed loop asymptotically stable system
(with no disturbance) described by the equations

_x(t) = f(xt) + g(xt)k(xt) (17)

and Áah + ±ghM is equivalent to Áh in (3) related to the
closed loop system with disturbance equal to M , de-
scribed by the equations

_x(t) = f(xt) + g(xt)k(xt) + g(xt)M (18)

Therefore the term V (Áah + ±ghM) ¡ V (Áah) describes a
di®erence between the estimations of the functional V
evaluated at the solution of system (17) and at the so-
lution of system (18), respectively. The limit for h! 0
of such di®erence divided by h turns to be a key point
for the stated results (see other papers of the author
in this conference concerning the Liapunov-Krasovskii
methodology). ²

Remark 6: Conditions i), ii) in Theorem 4 are al-
most standard in the Liapunov-Razumikhin methodol-
ogy (the main di®erence is that here ®3 is required to be
a class K1 function instead of a positive de¯nite one,
see Theorem 1.4, pp. 14 in [4]) for studying the global
asymptotic stability of retarded unforced systems (in
this case, of the unforced closed loop system (6)). The
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new, key point is given by condition iii) (see (10)). The
existence of the locally Lipschitz, completely continu-
ous functional r(Á) is guaranteed for a very large class
of Liapunov-Razumikhin functions. For instance, r(Á)
exists for all functions ¹V0 : Rn ! R+ such that, for any
given x; y 2 Rn,

¹V0(x+ y) = ¹V0(x) + ¹V T1 (x)y + o(jyj); (19)

where ¹V1 : Rn ! Rn is a suitable locally Lipschitz con-
tinuous function. In this case

rT (Á) = ¹V T1 (Á(0))g(Á) (20)

For, the following equalities hold for (10)

lim sup
h!0+

V0(Á
a
h + ±ghM)¡ V0(Á

a
h)

h
=

lim sup
h!0+

1

h
¹V0(Á(0) + h(f(Á) + g(Á)k(Á)) + hg(Á)M)¡

1

h
¹V0(Á(0) + h(f(Á) + g(Á)k(Á)) =

lim sup
h!0+

1

h
¹V0(Á(0))+

+
1

h
¹V T1 (Á(0))(h(f(Á) + g(Á)k(Á)) + hg(Á)M)+

+
o (jh(f(Á) + g(Á)k(Á)) + hg(Á)M j)

h
¡

¡
1

h

¡
¹V0(Á(0)) + ¹V T1 (Á(0))h(f(Á) + g(Á)k(Á))

¢
¡

1

h
o(jh(f(Á) + g(Á)k(Á))j)

= ¹V T1 (Á(0))g(Á)M
(21)
²

ILLUSTRATIVE EXAMPLE

Let us consider the following system, which is a time-
invariant case with no uncertainties of the example (34)
in [12]

_x(t) =
·
¡2x1(t) + 2x1(t)x

2
2(t) + 2x1(t)x2(t)

p
jx1(t)x2(t)j

¡2x2(t)¡ x
2
1(t)x2(t)¡ x

2
1(t)

p
jx1(t)x2(t)j

¸
+

+

·
x2(t¡¢)
¡x21(t)

¸
(4 + jx1(t¡¢)j)(u(t) + d(t))

(22)

d(t) is a measurable locally essentially bounded dis-
turbance adding to the control law. Such disturbance is
not considered in [12]. The following state feedback con-
trol law (a version of (35) in [12] for the time invariant
case here considered)

u(t) = k(xt) = ¡2¢

4x1(t)x2(t¡¢)¡ 8x21(t)x2(t)

(4 + jx1(t¡¢)j)(j4x1(t)x2(t¡¢)¡ 8x21(t)x2(t)j+ 3)
(23)

is such that the closed loop system (22), (23) is glob-
ally asymptotically stable. This fact is proven in
[12] for a larger class of systems which includes sys-
tem (22). Let us apply Theorem 4 in order to ¯nd
out an input-to-state stabilizing state feedback con-
trol law. The quadratic functional proposed in [12]

¹V0(x) = xT
·
2 0
0 4

¸
x can be used here too. The follow-

ing equality holds (V0(Á) = ¹V0(Á(0))), for Á =

·
Á1
Á2

¸
2

C([¡¢; 0];R2),

D+a V0(Á) = 2Á(0)T
·
2 0
0 4

¸
¢

·
¡2Á1(0) + 2Á1(0)Á

2
2(0) + 2Á1(0)Á2(0)

p
jÁ1(0)Á2(0)j

¡2Á2(0)¡ Á
2
1(0)Á2(0)¡ Á

2
1(0)

p
jÁ1(0)Á2(0)j

¸

+ 2ÁT (0)

·
2 0
0 4

¸
¢

2

4
¡2Á2(¡¢)

4Á1(0)Á2(¡¢)¡8Á
2
1(0)Á2(0)

(j4Á1(0)Á2(¡¢)¡8Á21(0)Á2(0)j+3)

2Á21(0)
4Á1(0)Á2(¡¢)¡8Á

2
1(0)Á2(0)

(j4Á1(0)Á2(¡¢)¡8Á
2
1
(0)Á2(0)j+3)

3

5

(24)

and, from computations in [12],

D+a V0(Á) · ¡8jÁ(0)j2¡

¡ 2
(4Á1(0)Á2(¡¢)¡ 8Á21(0)Á2(0))

2

(j4Á1(0)Á2(¡¢)¡ 8Á21(0)Á2(0)j+ 3)
· ¡8jÁ(0)j2

(25)
Let's now consider the adding term p(xt) in the new
feedback control law proposed in Theorem 4. The

term lim suph!0+
V0(Á

a
h+±

g

h
M)¡V0(Á

a
h)

h
has to be com-

puted. The following equality holds, for any given
Á 2 C([¡¢; 0];Rn);M 2 R,

lim sup
h!0+

V0(Á
a
h + ±ghM)¡ V0(Á

a
h)

h
=

lim sup
h!0+

1

h
¹V0((Á

T (0) + h(f(Á) + g(Á)k(Á)) + hg(Á)M))¡

¡
1

h
¹V0((Á

T (0) + h(f(Á) + g(Á)k(Á))));

(26)
where

f(Á) =
·
¡2Á1(0) + 2Á1(0)Á

2
2(0) + 2Á1(0)Á2(0)

p
jÁ1(0)Á2(0)j

¡2Á2(0)¡ Á
2
1(0)Á2(0)¡ Á

2
1(0)

p
jÁ1(0)Á2(0)j

¸
;

(27)
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g(Á) =

·
Á2(¡¢)(4 + jÁ1(¡¢)j)
¡Á21(0)(4 + jÁ1(¡¢)j)

¸
; (28)

k(Á) = ¡2¢

4Á1(0)Á2(¡¢)¡ 8Á21(0)Á2(0)

(4 + jÁ1(¡¢)j)(j4Á1(0)Á2(¡¢)¡ 8Á21(0)Á2(0)j+ 3)
:

(29)

The following equalities hold

lim sup
h!0+

V0(Á
a
h + ±ghM)¡ V0(Á

a
h)

h
= lim sup

h!0+

1

h
¢

2(Á(0) + h(f(Á) + g(Á)k(Á))T
·
2 0
0 4

¸
hg(Á)M)+

1

h
(hg(Á)M)T

·
2 0
0 4

¸
hg(Á)M) =

2ÁT (0)

·
2 0
0 4

¸
g(Á)M

(30)
Therefore, the term r(Á) in (10) is equal to

2gT (Á)

·
2 0
0 4

¸
Á(0) (31)

The new feedback control law

u(t) = k(xt) + p(xt) (32)

where the functional p is given by

p(Á) = D+a V0(Á)g
T (Á)

·
2 0
0 4

¸
Á(0) (33)

(D+a V0 computed in (24)), is such that the closed loop
system (22), (32) is (globally) input-to-state stable with
respect to the disturbance d(t) adding to the control
law. The performed simulations validate the theoretical
results. In ¯gs. 1, 2 the behavior of the state variables
in the case of feedback control law given by (23) and
in the case of feedback control law given by (32) are
reported, respectively. The disturbance d(t) is chosen
equal to 2 + 2sin(¼t). The initial state variables are
chosen constant in [¡¢; 0] and equal to [ 1 ¡1 ]T . The
delay ¢ is chosen equal to 0:1. In the ¯rst case the
state variables diverge to 1, while in the second case
the state variables are kept bounded.

CONCLUSIONS

In this paper, it is proved that retarded systems which
are stabilizable by means of a state feedback control

law, are also input-to-state stabilizable, by a state feed-
back control law, with respect to measurable and locally
essentially bounded disturbances adding to the control
input, provided that a suitable Liapunov-Razumikhin
function exists such that the asymptotic stability of the
closed loop unforced system can be proved. An example
taken from the past literature is investigated in details,
showing the e®ectiveness and the applicability of the
methodology here proposed.

¯g. 1: x1(t); x2(t) (control law 23)

¯g. 2: x1(t); x2(t) (control law 32)

REFERENCES

[1] T.A. Burton, Stability and Periodic Solutions of Or-
dinary and Functional Di®erential Equations, Math-
ematics in Science and Engineering, Vol. 178, Aca-
demic Press, 1985.

[2] M. C. Delfour, Status of the State Space Theory
of Linear Hereditary Di®erential Systems with De-
lays in State and Control Variables, Lecture Notes
in Control and Information Sciences, 28, Springer,
Berlin-New York, 1980.

[3] A. Germani, C. Manes, P. Pepe, Input-Output Lin-
earization with Delay Cancellation for Nonlinear De-
lay Systems: the Problem of the Internal Stability,
International Journal of Robust and Nonlinear Con-

5280



trol, (Special Issue on Time Delay Systems), Vol. 13,
No. 9, pp. 909{937, July 2003.

[4] K. Gu, V. L. Kharitonov, J. Chen, Stability of Time
Delay Systems, Birkhauser, 2003.

[5] J. K. Hale and S. M. Verduyn Lunel, Introduction to
Functional Di®erential Equations, Springer Verlag,
1993.

[6] C. Hua, X. Guan, P. Shi, Robust stabilization of a
class of nonlinear time-delay systems, Applied Math-
ematics and Computation, Vol. 155, pp. 737{752,
2004.

[7] A. Isidori, Nonlinear Control Systems, Springer Ver-
lag, 1995.

[8] M. Jankovic, Control Lyapunov-Razumikhin Func-
tions and Robust Stabilization of Time Delay Sys-
tems, IEEE Transactions on Automatic Control,
Vol. 46, No. 7, pp. 1048{1060, July 2001

[9] I. Karafyllis, Lyapunov Theorems for Systems De-
scribed by Retarded Functional Di®erential Equa-
tions, Nonlinear Analysis: Theory, Methods & Ap-
plications, 64 (3), pp. 590-617, 2006.

[10] I. Karafyllis, P. Pepe, Z.-P. Jiang, Stability Results
for Systems Described by Retarded Functional Dif-
ferential Equations, 9th European Control Confer-
ence, Kos, Greece, 2007, submitted to SIAM Journal
on Control and Optimization.

[11] H. K. Khalil, Nonlinear Systems , Prentice Hall,
1996.

[12] C.-H. Lien, Global Exponential Stabilization for Sev-
eral Classes of Uncertain Nonlinear Systems with
Time-Varying Delay, Nonlinear Dynamics and Sys-
tems Theory, Vol. 4, No. 1, pp. 15{30, 2004.

[13] V. Kolmanovskii and A. Myshkis, Introduction to the
Theory and Applications of Functional Di®erential
Equations, Kluwer Academic Publishers, 1999.

[14] L.A. Marquez-Martinez, C.H. Moog, Input-output
feedback linearization of time-delay systems, IEEE
Transactions on Automatic Control, Vol. 49, No. 5,
pp. 781-785, 2004.

[15] C.H. Moog, R. Castro-Linares, M. Velasco-Villa,
L.A. Marquez-Martinez, The Disturbance Decou-
pling Problem for Time Delay Nonlinear Systems,
IEEE Transactions on Automatic Control, Vol. 45,
No. 2, pp. 305-309, 2000.

[16] S.-I. Niculescu, Delay E®ects on Stability, a Robust
Control Approach, Lecture Notes in Control and In-
formation Sciences, Springer, 2001.

[17] T. Oguchi and A. Watanabe, Input-Output Lin-
earization of Non-linear Systems With Time Delays
in State Variables, International Journal of Systems
Science, Vol. 29, 573{578, 1998.

[18] T. Oguchi, A. Watanabe and T. Nakamizo, Input-
Output Linearization of Retarded Non-linear Sys-
tems by Using an Extension of Lie Derivative, Int.
J. Control, Vol. 75, No. 8, 582{590, 2002

[19] P. Pepe, Z.-P. Jiang, A Lyapunov-Krasovskii
Methodology for ISS and iISS of Time-Delay Sys-
tems, Systems & Control Letters, Vol. 55, No. 12,
pp. 1006{1014, 2006.

[20] P. Pepe, On Liapunov-Krasovskii Functionals un-
der Carath¶eodory Conditions, Automatica, Vol. 43,
No. 4, pp. 701{706, 2007.

[21] P. Pepe, The Problem of the Absolute Continuity
for Lyapunov-Krasovskii Functionals, IEEE Trans-
actions on Automatic Control, Vol. 52, No. 5, 2007.

[22] N. Rouche, P. Habets, M. Laloy, Stability Theory by
Liapunov's Direct Method, Springer Verlag, Berlin,
1977.

[23] E.D. Sontag, Smooth Stabilization Implies Coprime
Factorization, IEEE Transactions on Automatic
Control, Vol. 34, pp. 435{443, 1989.

[24] E.D. Sontag, Y. Wang, New Characterizations of In-
put to State Stability, IEEE Transactions on Auto-
matic Control, Vol. 41, pp. 1283{1294, 1996.

[25] A.R. Teel, Connections between Razumikhin-Type
Theorems and the ISS Nonlinear Small Gain Theo-
rem, IEEE Transactions on Automatic Control, Vol.
43, No. 7, pp. 960{964, July 1998.

[26] H. S. Wu, Decentralized Stabilizing State Feedback
Controllers for a Class of Large-Scale Systems In-
cluding State Delays in the Interconnections, Journal
of Optimization Theory and Applications, Vol. 100,
No. 1, pp. 59{87, 1999.

[27] N. Yeganefar, P. Pepe, M. Dambrine, Input-to-State
Stability of Time-Delay Systems: a Link with Expo-
nential Stability, 46th IEEE Conference on Decision
and Control, New Orleans, Louisiana, 2007.

[28] N. Yeganefar, De¯nitions and Analysis of Stabilities
for Nonlinear Time-Delay Systems, Ph.D. Disserta-
tion (in French), Ecole Centrale de Lille, France,
November 2006.

[29] T. Yoshizawa, Stability Theory by Liapunov's Second
Method, Publications of the Mathematical Society of
Japan, 1966.

[30] X. Zhang, Z. Cheng, Global stabilization of a class of
time-delay nonlinear systems, International Journal
of Systems Science, Vol. 36, No. 8, pp. 461{468, 2005.

5281


