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Abstract—1This research investigates the development of a 
stable adaptive model predictive control approach for a 
constrained nonlinear system. The method is well- known as 
multistep Newton-type control strategies however, the 
formulation here differs from the original one. The nonlinear 
physical equations of the system are extracted considering all 
possible effective forces. The nonlinear model is adaptively 
linearized during prediction procedure. The linearization not 
only takes place at each sampling instant of the control system, 
but also at each instant of the prediction horizon. The first step 
of this research is devoted to develop linearized models in the 
operating points, which are unknown and desired. Developing 
the equations to form a linear quadratic objective function with 
constraints is then carried out. Finally, the stability of the 
control system is provided using terminal equality constraints. 
To show the effectiveness of the proposed method, it is applied 
on a constrained highly nonlinear aerodynamic test bed, twin 
rotor MIMO system (TRMS). 
 

I.   INTRODUCTION 
ODEL predictive control (MPC) was introduced in the 
late seventies and early eighties [1-2] and has 

considerably been developed since then. It is a class of 
control approach that uses an explicit model of the plant and 
tries to calculate the manipulated variables through an 
optimization method. Linear MPC has become popular with 
the publication of some papers on model predictive heuristic 
control [1] and dynamics matrix control (DMC) [2].  
In recent years MPC, as one of the modern computer 
optimization control techniques, has achieved a significant 
level of acceptability and great development in control 
theory and applications. Despite most of the practical 
processes being nonlinear, the majority of the MPC 
techniques implemented on the industrial processes are 
based on linear models. One of the main reasons for this is 
that a linear model is easy and fast to develop compared to a 
nonlinear one. Another reason refers to the stability, and 
more generally robustness problem that is really difficult to 
be provided in a nonlinear case. Some of the nonlinear 
models and/or constraints lead to non-convex nonlinear 
optimization problems that are relatively complex to solve. 
Last but not least, in some cases a linear model provides 
satisfactory results. Due to the mentioned difficulties related 
to nonlinear model predictive control the application of this 
method in the practical situations is still very limited but its 
potential is really great [3].  
Note that in the case of a severe nonlinear system a single 
linear model cannot provide acceptable results in all 
operating regions. In other words, a highly nonlinear system 
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cannot be linearly modelled to be adequate in all operating 
regions, unless the process always works in the 
neighbourhood of the point of interest. In the case of the 
TRMS a linear model predictive control is insufficient to 
obtain satisfactory performance in all operating regions. As 
mentioned before depending on the degrees of nonlinearity 
of a system it is sometimes possible to find a linear model to 
be valid in some specific operating points, but generally for 
a highly nonlinear system such as the TRMS, it is hardly 
possible to find a linear model to be adequate in all operating 
regions. Note that a nonlinear plant can be modelled using 
multiple linear modelling [4-5] or adaptive linear modelling 
[6-7] approaches. In the case of multiple-modelling approach 
the operating region of a nonlinear system is divided into 
several sub-regions and for each of sub-regions a linear 
model is developed. Therefore, according to the current 
operating point of the system the appropriate linear model is 
used to predict the output of the process. Note that in 
relatively high order systems with multiple inputs, it is a 
cumbersome task to find these linear models to cover all 
operating regions. Also, multiple-model MPC uses a linear 
model during the prediction horizon that cannot be adequate 
in highly nonlinear systems with large prediction horizon. 
On the other hand, adaptive linear modelling method updates 
the linear model according to measurement data or 
linearization of a nonlinear plant model. For example, 
adaptive linear model predictive control has been presented 
to update linear model online based on measurement data to 
handle model uncertainties [6]. Zhang et al. [7] have 
proposed a method that uses pseudo-partial derivative to 
dynamically linearize a nonlinear system at each step of 
predictive functional control in order to have the benefits of 
linear quadratic optimization methods. Li and Biegler [8] 
have proposed multistep Newton-type control strategies for 
constrained nonlinear processes in which the nonlinear 
model is linearized around a nominal trajectory and solve a 
quadratic problem over the horizon. The extension of the 
mentioned approach can be found in [9] that put the 
performance index into augmented form and performed 
some modifications such as extending the output prediction 
horizon to infinity. 
Note that the closed loop stability of a generic MPC with 
finite-horizon cost function cannot be guaranteed [10] and 
therefore further action should be carried out, e.g. modifying 
the cost function and/or constraints. Terminal equality 
constraints have been widely proposed to stabilize 
linear/nonlinear and discrete/continuous model predictive 
control systems [11-14]. Rawlings et al. [15] have proposed 
an infinite horizon controller to guarantee the stability of 
both stable and unstable linear plants. A quasi-infinite 
horizon scheme has been proposed to stabilize stable and 
unstable nonlinear model predictive controllers with input 
constraints [16]. Scokaert et al. [17] have investigated 
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conditions under which suboptimal model predictive 
controllers are stabilizing. Robustness properties of 
nonlinear receding horizon controller with terminal equality 
constraints have been investigated with respect to gain and 
additive perturbations [18]. Michalska et al. [19] have 
proposed a robust dual mode, receding horizon controller for 
a wide class of nonlinear systems with state and control 
constraints and model error. A complete survey on both 
linear and nonlinear MPC with focusing on sufficient 
conditions to guarantee stability and robustness can be found 
in [20]. Comprehensive review on stability and robustness of 
nonlinear MPC can be found in [21]. 
In this work it is assumed that all state variables of the 
system are accessible, and therefore state feedback MPC is 
taken into consideration. However, an output feedback 
nonlinear MPC can be obtained using a combination of state 
feedback nonlinear MPC and a state observer [22].  
In this investigation a multistep Newton-type MPC is used to 
control a constrained nonlinear MIMO system, TRMS. As 
mentioned before, the idea has been originated from the 
work of Li and Biegler [8]. The main difference between the 
present research and the original one is related to the way of 
formulation. In the original one, the objective function 
variables have been considered the difference between the 
current and the nominal input trajectories however, here they 
are input changes during the control horizon as it is more 
common [23].  
 

II.   ADAPTIVE MPC METHOD 
Conventional adaptive MPC is a linear MPC method that 
uses a nonlinear model to update the linear model only at 
each sample time, k . This method has no satisfactory 
performance for a severe nonlinear system, since the method 
uses only a single linear model at each iteration and then 
updates it in the new step according to the current operating 
point. Specially, if the prediction horizon is assumed to be 
large, the error between the linearized model and nonlinear 
model gradually increases as approaches to the end of the 
prediction horizon. This research is originated from the work 
of Li and Biegler [8] in which the linear model is updated 
during the prediction horizon as well. The main problem for 
updating the linear model during the prediction horizon is 
that, the operating points during the prediction horizon are 
unknown and the linearization can be carried out only on the 
basis of known operating points. In this situation one 
approach is using all the control efforts from previous 
optimization to linearize during the prediction horizon.  
 
A.  Methodology 
A nonlinear system with  inputs,  outputs and  
states can be adaptively linearized at each real sample time, 

, as the following discrete state space equations: 
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where, 

)(kx : State vector at instant k  

)(ku : Input vector at instant  k
)(ky : Output vector at instant  k

Note that the state variables and inputs related to the 
previous instant are used as initial conditions to linearize the 
nonlinear system at each time. Now we need to linearize the 
nonlinear system  times at each sampling instant 
according to the previous optimization results. 
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In order to solve the optimization problem of an MPC, one 
needs to obtain the relationship between the internal model 
outputs during the prediction horizon interval, PNi ≤≤1 , 
and the internal model inputs during the control horizon 
interval, 10 −≤≤ CNi , where  and  are the 
prediction and control horizons, respectively, see Fig. 1. If 
this relationship is linear and the constraints are also linear 
then the optimization problem is a linear quadratic problem.  

PN CN

Assume that all state variables of the system are available. 
The model state variables in the prediction horizon interval 
with respect to the current state variables and future inputs 
can be expressed as, 
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Fig. 1.  The MPC approach of a single-input-single-output plant  
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It is common to use the change of input, )(ˆ kik +u∆ , instead 
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of input itself, )(ˆ kik +u , where ˆ ( )k i k+ =∆u  

ˆ ˆ( ) ( 1k i k k i k+ − + −u u )  [23]. Note that the inputs only 
change during the control horizon interval and remain 
constant after that, i.e. )1(ˆ)(ˆ kNkkik C −+=+ uu  or 

0)(ˆ =+ kiku∆  for . The relationship 
between inputs and changes of inputs are as follows, 
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By substituting equation (6) into equations (3) to (5) the 
following equation can be written, 
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Note that in equation (7) the first two terms are related to the 
past variables that are known and the last term is associated 
with the future signals that should be optimally calculated 
using an optimization technique. The output predictions can 
be obtained as, 
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where )(ˆ kik +d  is the disturbance that can be considered as 

constant value for all i  or can be estimated as the difference 
between real and estimated output. Substitution (7) into (8) 
leads to following equation, 
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B.   Objective Function  
Assume that the following objective function should be 
minimized according to the mentioned constraints, 
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where, 
r : Reference trajectory  
δ : Weighting matrix of tracking error  
λ : Weighting matrix of control effort  
The indices min and max highlight the lower and upper 
bounds respectively. 
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The objective function can be rewritten as follows, 
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[ ]blockdiag (1) (2) ( )CN=R λ λ λ  
By substituting equation (9) into (14) the following linear 
quadratic function is obtained, 
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Note that all the constraints should be transferred in the 
standard form of .  )()()( kkk bUΛ ≤∆
 
C.   Stability 
Terminal equality constraints method is a way to provide 
stability [11]. The aim is to add a set of terminal state 
constraints to force the state variables to take particular 
equilibrium values at the end of prediction horizon. The 
stability can be proved using Lyapunov function even in a 
general case [11].  
As the proposed adaptive MPC is based on discrete model, a 
continuous model can be approximately transferred into a 
discrete counterpart using, 
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hand sides of continuous and discrete nonlinear state space 
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 the following equations can be written in the case 
of continuous and discrete, respectively, 
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As mentioned before, a set of following terminal equality 
constraints is added to the inequality constrained objective 
function to guarantee the stability, 
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where  is an equilibrium point that satisfies the reference 
signals as well. The equality state constraints in (19), can be 
transferred into the equality control signals using (7) as 
follows, 
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III.   TRMS 

This work is focused on an aerodynamic test rig, twin rotor 
multiple-input-multiple-output system (TRMS), shown in 
Fig. 2. The TRMS is a laboratory platform designed for 
control experiments by Feedback Instruments Ltd [24]. It is 
a highly nonlinear system which can be considered as an 
experimental model of a complex air vehicle. The control 

objective is to make the beam of the TRMS move quickly 
and accurately to the desired positions, i.e., the pitch and the 
yaw angles. Developing controller for this type of system is 
challenging due to the coupling effects between two axes 
and also due to its highly nonlinear characteristics. In the 
case of the TRMS, state variables, inputs and outputs are as 
follows: 
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where, 

hω  : Rotational speed of the tail rotor 

hS : Angular velocity of TRMS beam in the horizontal plane 
without the effect of the main rotor [rad/s] 

hα  : Horizontal position of the TRMS beam 

vω  : Rotational speed of the main rotor 

vS  : Angular velocity of TRMS beam in the vertical plane 
without the effect of the tail rotor [rad/s] 

vα  : Vertical position of TRMS beam 

hU : Input voltage signal of the tail motor 

vU : Input voltage signal of the main motor 
 

hα  

vα−  

Tail rotor 

Main rotor 
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balance 
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Free beam 

 
Fig. 2.  The twin rotor MIMO system 

 
The nonlinear continuous state space equations of the TRMS 
can be summarized as, 
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where, 
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and , ahR hahk ϕ , , , , , , , trJ trB nthpk / tl nfhpk / D E , F , , mk
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avR , vavk ϕ , , , , , , , mrJ mrB ntvpk / nfvpk / ml gk g , A , B , , C

H , , and  are positive constant values, and angular 
velocities of the TRMS beam in horizontal and vertical 
planes,  and , are defined as, 

vJ tk

hΩ vΩ

FED
k

S
vv

vvm
hh ++
+=Ω

αα
αω

22 sincos
cos  (27) 

v v t h vS k JωΩ = +    (28) 
also , , ( )hUf1 ( )hf Ω2 ( )hf α3 , , and ( )vUf 4 ( )vf Ω5  are 
nonlinear functions. For more details on TRMS see [25].  
 
In the case of the TRMS  is defined as, )(0 kx

[ T
vvvhhh SSk 0000000 )( αωαω=x ]          (29) 

where each element is found according to the current 
reference signals,  and , and equations (17) 
and (26),  

)(krefhα )(krefvα

)(0 krefhh αα = ,  )(0 krefvv αα =   (30) 

( )

( )

3 0 0 0

0

3 0 0 0

( cos ) for 0

( cos ) for 0

h fhp t v h

h

h fhn t v h

f k l

f k l

α α α
ω

α α α

⎧ ≥⎪= ⎨
⎪−⎩ <

     (31) 

FED
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2
0

2
00
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cos

αα
αω   (32) 

0
0

0 0

for 0

for 0

v fvp v
v

v fvn v

F k F

F k F
ω

⎧ ≥⎪= ⎨
⎪− <⎩

0            (33) 

where, 
[ ]0 0( )cos sinv v 0v mF g A B C lα α= − − −  

0 0v t hS k Jvω= −     (34) 
 

IV.   RESULTS 
Based on the nonlinear model, 

PN  linear models have been 
developed to model the nonlinear system during the 
prediction horizon at each instant, . The objective function 
and constraints have been formed based on these linear 
models to have a constrained linear quadratic optimization 

k

problem. A set of terminal equality state constraints is 
formed to force the state to an equilibrium point at the end of 
prediction horizon in order to guarantee the stability of the 
closed loop system. At each iteration the first set of optimum 
input vector, )|(ˆ kku∆ , is added to the previous control 
signal, )1( −ku , and the result is sent to the plant and also 
the linear model at  instant. The others optimum values 
are kept for the next sample time, , calculations. The 
block diagram of the adaptive MPC is shown in Fig. 3. Note 
that the nonlinear model and linearization operator have not 
been shown in Fig. 3. Although it is assumed that all state 
variables are measurable in this research, a state observer is 
shown in Fig. 3 for the case of output feedback MPC 
methods. It is noted that the proposed adaptive MPC has 
been able to produce very fast and precise response to 
various reference signals for highly nonlinear systems. As 
mentioned before, the plant has 2 inputs, 2 outputs and 6 
states. Note that the sampling time of the model predictive 
controller is set to be 0.2 seconds and the optimization 
approach is chosen to be an active set method. The adaptive 
MPC developed for the TRMS has been tested with a variety 
of reference signals and the results obtained demonstrates 
that the controller has a high performance and reliability in 
the various operating regions. The controller has been 
proven to be reliable under disturbances and various 
reference signals used. Figs. 4 and 5 show the results with 
square references as horizontal (yaw) and vertical (pitch) 
angles of the beam, respectively. It is clear from Figs. 4 and 
5 that two channels have significant effect on each other. For 
instance, at time 25 seconds the yaw angle reference signal 
has been changed from 0.6 to -0.6 rad and subsequently, yaw 
angle has followed the reference signal. On the other hand 
the pitch angle, due to the mentioned coupling, has been 
affected by yaw angle however the controller has regained 
the control and forced the pitch angle to follow the reference 
trajectory. The overshoots at instants 50 and 150 seconds of 
yaw angle response have been caused by the step change of 
pitch angle reference signal at those instants. Figs. 6 and 7 
illustrate the responses of the controller according to another 
reference signals. 
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Fig. 3.  Block diagram of the proposed adaptive MPC approach 
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V.   CONCLUSION 
In this investigation an efficient adaptive MPC has been 
presented for a highly nonlinear system, TRMS. The 
proposed method has used a nonlinear model to adaptively 
find a set of  linear models at each instant. These linear 
models have been utilized to form a linear quadratic 
objective function according to MPC approach. Terminal 
equality constraints have been imposed to the problem to 
guarantee the closed loop stability. A TRMS has been 
selected as a test bed to validate the control technique. The 
results of the controller have proved the effectiveness and 
reliability of the control system in following the trajectories 
of the yaw and pitch angles of the beam.  
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Fig. 4.  Square wave response of the horizontal angle (case 1) 
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Fig. 5.  Square wave response of the vertical angle (case 1) 
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Fig. 6.  Square wave response of the horizontal angle (case 2) 
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Fig. 7.  Square wave response of the vertical angle (case 2) 
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