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Abstract— In this note we are concerned with PID control of
rigid robots equipped with brushless DC (BLDC) motors when
the electric dynamics of these actuators is taken into account.
We show that a PID controller suffices to achieve local stability
whereas an adaptive PD controller yields stability and global
convergence to the desired link positions. We show that the
effect of the adaptive part can be rendered arbitrarily small
and, hence, virtually the PD controller suffices to achieve the
reported global results. We present a theoretical justification
for the torque control or current control strategy commonly
used in practice to control BLDC motors.

I. INTRODUCTION

It is widely recognized at present that use of brushless DC

(BLDC) motors as actuators in robotics presents a number

of advantages with respect to use of brushed DC motors

[1],[2],[3],[4]. However, it is also known that control of

BLDC motors is more complicated because of the nonlinear

and multivariable nature of their model.

Some control schemes have been presented until now for

rigid robots actuated by BLDC motors when their electric

dynamics is taken into account [1],[2], [3], [4]. However,

the mathematical complexity of the BLDC motors model

has deviated attention of these works towards the design of

complicated nonlinear controllers. It is recognized in [5] pp.

257, 395, 403 that complex control laws increase sensibility

to numerical errors and produce input voltage saturation as

well as noise amplification in practice. On the other hand,

no result has been presented until now for the stability

analysis of PID control for robots equipped with BLDC

motors when the electric dynamics of these actuators is taken

into account, even for regulation tasks. In the present note

we are concerned with the analysis and design of this control

problem.

Our contribution is presented in two main results. In our

first result we show that controller in [6], when linear feed-

back of electric current is added, ensures local asymptotic

stability without requiring the exact knowledge of neither

robot not actuator parameters. We stress that this is the first

time that a PID controller is shown to achieve stability for

robots actuated by BLDC motors.

In our second result we succeed to ensure stability and

global convergence to the desired constant link positions

when an adaptive PD controller is used. Thanks to adap-

tation this controller only needs to know exactly the robot’s
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gravitational effects term and the motor’s torque constant.

We ensure robustness with respect to possible numerical

errors and noise amplification introduced when the nonlinear

high order terms present in the adaptation law are computed.

Further, we also find for the first time, theoretical evidence

suggesting that a linear PD controller, implemented by means

of the common industrial practice known as torque control

[7], [8], suffices to control globally robots equipped with

BLDC motors.

This note is organized as follows. In section II we present

the dynamic model of rigid robots actuated by BLDC motors.

Sections III and IV are devoted to present our main results

whereas some conclusions are given in section V.

Finally, some remarks on notation. We use λmin(A(x))
and λmax(A(x)) to represent, respectively, the smallest and

the largest eigenvalues of the symmetric positive definite

matrix A(x), for any x ∈ Rn. Given an x ∈ Rn and a matrix

A(x) the norm of x is defined as ‖x‖ =
√

xT x and the

spectral norm of A(x) is defined as ‖A‖ =
√

λmax(AT A)
which implies ‖A‖ = maxi |λi(A(x))|, where | · | stands for

the absolute value function, if A(x) is a symmetric matrix.

Symbol p = (d/dt) denotes the differential operator.

II. DYNAMIC MODEL OF ROBOTS WITH BLDC MOTORS

The dynamic model of an n degrees of freedom rigid robot

equipped with a direct-drive BLDC motor at each joint is

given as [1], [9]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + F q̇

= [KT1IB + KT2]Ia (1)

Laİa + RaIa + NpLbIB q̇ + KT2q̇ = Va (2)

Lbİb + RbIb − NpLaIAq̇ = Vb (3)

where:

KT1 = Np(Lb − La), KT2 =

√
3

2
NpKB (4)

Va = [va1, va2, . . . , van]T ∈ Rn

Vb = [vb1, vb2, . . . , vbn]T ∈ Rn

Ia = [ia1, ia2, . . . , ian]T ∈ Rn

Ib = [ib1, ib2, . . . , ibn]T ∈ Rn

IA = diag{ia1, ia2, . . . , ian} ∈ Rn×n

IB = diag{ib1, ib2, . . . , ibn} ∈ Rn×n

Link positions are represented by q ∈ Rn, M(q) is the

n × n symmetric positive definite inertia matrix, C(q, q̇)q̇

is the centripetal and Coriolis term, g(q) = ∂U(q)
∂q is the

gravity effects term, where U(q) is a scalar valued function

representing the potential energy, and F is a n× n constant
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diagonal positive definite matrix representing the viscous

friction coefficients at each joint. Throughout this note we

use q̃ = q − qd to represent the position error where qd ∈
Rn represents the constant desired link positions. We also

assume that robot under study is equipped only with revolute

joints.

Model (1)-(4) is obtained after a DQ (Park’s) transforma-

tion is applied on the original Y-connected 3-phase model

of each motor [9], [3], [10]. Thus, Va and Vb represent,

respectively, the DQ transformed phase voltages associated

with each motor. Ia and Ib are electric currents defined

correspondingly. La, Lb, Ra, Rb, Np, KB are constant,

diagonal, positive definite matrices. We refer to [1], [9]

for a complete description of these matrices. Finally, KT1

and KT2 are diagonal torque constant matrices whereas

τ = [KT1IB + KT2]Ia is torque applied at robot joints.

On the other hand, as it is by now well known, some

important properties of the mechanical part (1) when all

joints are revolute, i.e. the class of robots that we consider,

are the following.

Property 1. [11], [12] pp. 96. Matrices M(q) and C(q, q̇)
satisfy 0 < λmin(M(q)), λmax(M(q)) < β, ∀q ∈ Rn,

where β is a finite positive constant scalar, and:

q̇T

(
1

2
Ṁ(q) − C(q, q̇)

)
q̇ = 0, ∀q̇ ∈ Rn (5)

Ṁ(q) = C(q, q̇) + CT (q, q̇) (6)

Property 2. [11], [13], [12] pp. 102. There exist positive

constants kg , k′ and kc such that for all w, y, z, q ∈ Rn, we

have:

‖C(w, y)z‖ ≤ kc‖y‖‖z‖ (7)
∥∥∥

∂g(q)

∂q

∥∥∥ < kg, ‖g(q)‖ ≤ k′ (8)

‖g(w) − g(y)‖ ≤ kg‖w − y‖ (9)

Property 3. [13] For any constant vector qd ∈ Rn, the

following function is positive definite and radially unbounded

with respect to q̃ ∈ Rn:

U(qd − q̃) − U(qd) − q̃T g(qd) +
kg

2
‖q̃‖2 (10)

Finally, we list some well known properties of the spectral

norm. Let w, y ∈ Rn be two vectors and let B(x) and D(x)
be two n × n matrices, the former being symmetric and

positive definite ∀x ∈ Rn, then:

±yT D(x)w ≤ ‖y‖‖D(x)‖‖w‖ (11)

±yT B(x)w ≤ ‖y‖‖B(x)‖‖w‖
= λmax(B(x))‖y‖‖w‖ (12)

yT B(x)y ≥ λmin(B(x))‖y‖2 (13)

‖D(x)B(x)‖ ≤ ‖D(x)‖‖B(x)‖ (14)

III. A LOCAL PID CONTROLLER

In this section we present a PID controller, inspired by [6],

which achieves local asymptotic stability. However, instead

of the saturation functions introduced in that paper we prefer

to use the function introduced in [14], and refined in [13],

which, as we show below, has the same useful properties

reported in [6]. Define the following scalar potential function:

Cos(u) =






1 − cos(u), if |u| < π
2

u − (π/2 − 1), if u ≥ π
2

−u − (π/2 − 1), if u ≤ −π
2

(15)

for u ∈ R. The first derivative of Cos(u) with respect to u
can be expressed as:

s(u) =






sin(u), if |u| < π
2

1, if u ≥ π
2

−1, if u ≤ −π
2

(16)

Functions Cos(u) and s(u) in (15) and (16) have the

following properties:

Property 4. Function Cos(u) is twice continuously differen-

tiable and Cos(u) > 0, ∀u 6= 0 whereas Cos(u) = 0 for

u = 0.

Property 5. The following properties are adaptations of

properties listed in [13]:

|u| ≥ |s(u)| ≥ ka|u|, ∀u ∈ R : |u| < ξ (17)

|u| ≥ |s(u)| ≥ kaξ, ∀u ∈ R : |u| ≥ ξ (18)

1 ≥ (d/du)s(u) ≥ 0 (19)

where ξ = 1 and ka = sin(ξ) = 0.841.

Property 6. There is a constant b > 0 such that:

Cos(u) ≥ bs2(u) > 0, ∀u 6= 0 (20)

Property 7. There is a constant k > 0 such that:

u2 ≥ kCos(u) > 0, ∀u 6= 0 (21)

Property 8.

U(q) − U(qd) − q̃T g(qd) +
1

4
q̃T [2(kgI + Λ)]q̃

> a‖q̃‖2 ≥ a‖h(q̃)‖2 (22)

h(q̃) = [s(q̃1), s(q̃2), . . . , s(q̃n)]T

where a = 1
2λmin(Λ) and I , Λ are, respectively, the identity

matrix and a diagonal positive definite matrix, both of them

n × n matrices.

Property 9. The following bound holds for all q̃ ∈ Rn:

‖g(q) − g(qd)‖ ≤ kh2

ka
‖h(q̃)‖ (23)

where kh2 is any number satisfying kh2 ≥ 2k′

s(2k′/kg) .

Property 4 is obvious. Property 7 can be proven as follows.

Both functions involved in (21) are zero at u = 0. Hence,

(21) is true for u ≥ 0 if (d/du)[u2] ≥ (d/du)[kCos(u)],
∀u ≥ 0. From this condition and the facts that |u| ≥ |s(u)|
and that both functions in (21) are symmetric with respect

to u = 0 we find that (21) is true with k = 2. Property

6 is proven to hold with b = 0.5 proceeding similarly

by considering that (d/du)[Cos(u)] ≥ (d/du)[bs2(u)] for

u ≥ 0 if (d2/du2)[Cos(u)] ≥ (d2/du2)[bs2(u)] for u ≥ 0.

Property 8 is readily obtained using again the fact that
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|u| ≥ |s(u)| and (10). Property 9 is proven as follows. Using

property 5 we obtain:

‖h(q̃)‖ ≥
{

ka‖q̃‖, if ‖q̃‖ < ξ
ka, if ‖q̃‖ ≥ ξ

(24)

‖h(q̃)‖ ≤
{

‖q̃‖, if ‖q̃‖ < ξ√
n, if ‖q̃‖ ≥ ξ

(25)

s(‖q̃‖) ≤ 1

ka
‖h(q̃)‖ (26)

On the other hand, proceeding as in [12], pp. 105-107, we

obtain:

‖g(q) − g(qd)‖ ≤ kh2s(‖q̃‖) (27)

Finally, using (26) and (27) we obtain (23).

Proposition. 1: Consider the dynamic model (1), (2), (3)

together with the following PID controller:

Va = −raIa − ( KP + KI ) q̃ − KD ϑ

−KI

∫ t

0

ε0h(q̃(r)) dr (28)

Vb = −rbIb (29)

ϑ = diag

{
bip

p + ai

}
q (30)

where A = diag{ai}, B = diag{bi} are n × n diagonal

positive definite matrices and h(·) is defined in property 8.

There always exist a constant scalar ε0 > 0 and n × n
diagonal positive definite matrices KP , KD, KI , ra, rb such

that the closed loop system has a unique equilibrium point,

where q̃ = 0, which is locally asymptotically stable.

Poof. Define ρ = Ia −
R−1

(
−( KP + KI ) q̃ − KD ϑ − KI

∫ t

0
ε0h(q̃(r)) dr

)
,

where R = Ra + ra. Note that ϑ̇ = −Aϑ + Bq̇, is a

realization of filter (30). Using these expressions and

replacing (28) in (2) we can write:

Laρ̇ = −Rρ − NpLbIB q̇ − KT2q̇

+LaR−1(KP + KI + KDB)q̇ − LaR−1KDAϑ

+ε0LaR−1KIh(q̃) (31)

Now, define δa = [δa1, δa2, . . . , δan]T ∈ Rn as:

δa = −( KP + KI ) q̃ − KD ϑ − KI

∫ t

0

ε0h(q̃(r)) dr

Replacing (29) in (3) and using the definition of ρ we can

write:

Lbİb = −R̄Ib + NpLaQ̇ρ + NpLaQ̇R−1δa (32)

where we have defined Q̇ = diag{q̇1, q̇2, . . . , q̇n} ∈ Rn×n

and R̄ = Rb + rb. Note that we can write:

KT2R
−1δa = −KP q̃ − KD ϑ − KI z + g(qd) (33)

by defining:

KP = KT2R
−1KP (34)

KD = KT2R
−1KD (35)

KI = KT2R
−1KI (36)

z = q̃ +

∫ t

0

ε0h(q̃(r))dr + (KI)
−1g(qd) (37)

Thus, replacing (33) in (32):

Lbİb = −R̄Ib + NpLaQ̇ρ + NpLaQ̇K−1
T2 δ∗a (38)

where δ∗a = [−KP q̃ − KDϑ − KIz + g(qd)]. On the other

hand, (1) can be written as:

M(q)q̈ + C(q, q̇)q̇ + g(q) + F q̇

= [KT1IB + KT2]ρ + KT1IBR−1δa + KT2R
−1δa (39)

Using (33) we can write (39) as:

M(q)q̈ + C(q, q̇)q̇ + g(q) − g(qd) + F q̇

= [KT1IB + KT2]ρ − KP q̃ − KDϑ − KI z

+KT1IBK−1
T2 δ∗a (40)

Thus, the closed loop dynamics is given by (40), (31), (38)

together with:

ż = q̇ + ε0h(q̃), ϑ̇ = −Aϑ + Bq̇ (41)

Note that (q̃, q̇, z, ϑ, ρ, Ib) = (0, 0, 0, 0, 0, 0) is the unique

equilibrium point of the closed loop dynamics (40), (31),

(38), (41). Now, we proceed to study the stability of this

equilibrium point. In [6] it was proven, by means of proper-

ties 6, 7 and 8, that the following function is positive definite

and radially unbounded:

V1(q̃, q̇, z, ϑ) =
1

2
q̇T M(q)q̇ +

1

2
q̃T KP q̃ (42)

+ε0h
T (q̃)M(q)q̇ +

n∑

i=1

ε0fiCos(q̃i) +
1

2
zT KIz

+U(q) − U(qd) − q̃T g(qd) +
1

2
ϑT KDB−1ϑ

where fi stands for the diagonal entries of matrix F , if:

λmin(KP ) ≥ 4ε2
0

b k
λmax(M(q)) (43)

λmin(KP ) > 2(kg + λmin(Λ)) (44)

for b, k and Λ defined in (20)-(22). Thus, the following scalar

function qualifies as a Lyapunov function candidate:

W (q̃, q̇, z, ϑ, ρ, Ib) = V1(q̃, q̇, z, ϑ) + V2(ρ) + V3(Ib)

V2(ρ) =
1

2
ρT Laρ, V3(Ib) =

1

2
IT
b LbIb (45)

Using (4) and the diagonal nature of all the involved

matrices, we have q̇T KT1IBρ − ρT NpLbIB q̇ +
IT
b NpLaQ̇ρ = 0 and q̇T KT1IBK−1

T2 δ∗a +
IT
b NpLaQ̇K−1

T2 δ∗a =IT
b NpLbQ̇K−1

T2 δ∗a. These facts as

well as (5), (6) and g(q) = ∂U(q)
∂q allow to find the following

time derivative along the trajectories of dynamics (40), (31),
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(38), (41):

Ẇ = −q̇T

[
F − ε0

∂h(q̃)

∂q̃
M(q)

]
q̇

+ε0h
T (q̃)CT (q, q̇)q̇ + ε0h

T (q̃)(g(qd) − g(q))

+ε0h
T (q̃)KT2ρ − ε0h

T (q̃)KP q̃ (46)

−ε0h
T (q̃)KDϑ − IT

b R̄Ib − ϑT KDB−1Aϑ

−ρT Rρ + ρT LaK−1
T2 [(KP + KI + KDB)q̇

−KDAϑ + ε0KIh(q̃)] + G,

G = q̇T NpLbIBK−1
T2 δ∗a + ε0h

T (q̃)KT1IBρ

+ε0h
T (q̃)KT1IBK−1

T2 δ∗a

According to (19),
∂h(q̃)

∂q̃ is a diagonal matrix whose entries

are nonnegative and smaller than or equal to 1. On the

other hand, using property 9 and taking advantage of the

facts that KP is a diagonal matrix and that |u| ≥ |s(u)|
we can write ε0h

T (q̃)(g(q) − g(qd)) + ε0h
T (q̃)KP q̃ ≥

ε0[−kh2

ka
+ λmin(KP )]‖h(q̃)‖2. As proposed in [6], the

following condition is important for our purposes:

−kh2

ka
+ λmin(KP ) ≥ a +

1

2
λmax(KD) (47)

Also note that, according to (25), we can bound ‖h(x)‖ ≤√
n, ∀x ∈ Rn. Thus, from (7) we obtain that

ε0h(q̃)T CT (q, q̇)q̇ ≤ ε0‖h(q̃)‖‖CT (q, q̇)q̇‖ ≤ ε0
√

nkc‖q̇‖2.

Finally, from (‖h(q̃)‖ − ‖ϑ‖)2 ≥ 0 we obtain ‖h(q̃)‖2 +
‖ϑ‖2 ≥ 2‖h(q̃)‖ ‖ϑ‖. Inspired by [6] we can use these facts

as well as (11)-(14) to obtain:

Ẇ ≤ −





‖q̇‖
‖h(q̃)‖
‖ϑ‖
‖ρ‖
‖Ib‖





T

P





‖q̇‖
‖h(q̃)‖
‖ϑ‖
‖ρ‖
‖Ib‖




(48)

where entries of matrix P are:

P11 = λmin(F ) − ε0[λmax(M(q)) +
√

nkc]

P22 = aε0

P33 = λmin(KDB−1A) − ε0

2
λmax(KD)

P44 = λmin(R), P55 = λmin(R̄)

P12 = P21 = P13 = P31 = P45 = P54 = 0

P14 = P41 = −1

2
λmax(LaK−1

T2 [KP + KI + KDB])

P15 = P51 = −1

2
λmax(NpLbK

−1
T2 )‖g(qd)‖

−1

2
λmax(NpLbK

−1
T2 KI)‖z‖

−1

2
λmax(NpLbK

−1
T2 KP )‖q̃‖

P23 = P32 = −1

2
ε0λmax(K−1

T2 KD)

×max
i

|λi(KT1)| ‖Ib‖

P24 = P42 = −ε0

2
λmax(KT2)

−ε0

2
λmax(LaK−1

T2 KI)

−ε0

2
max

i
|λi(KT1)| ‖Ib‖

P25 = P52 = ε0 max
i

|λi(KT1)| ×
[
−1

2
λmax(K−1

T2 )‖g(qd)‖

−1

2
λmax(K−1

T2 KI)‖z‖

−1

2
λmax(K−1

T2 KP )‖q̃‖
]

P34 = P43 = −1

2
λmax(LaK−1

T2 KDA)

P35 = P53 = −1

2
λmax(NpLbK

−1
T2 KD)‖q̇‖

Matrix P is positive definite if and only if:

P11 > 0, P22 > 0 (49)

δ3 = P33P22P11 − P23P11P32 > 0 (50)

δ4 = P44δ3 − P14[P41(P22P33 − P23P32)]

+P24[P11(P32P43 − P42P33)]

−P34[P11(P22P43 − P42P23)] > 0 (51)

δ4P55 + P15P̄15 − P25P̄25 + P35P̄35 > 0 (52)

where P̄15, P̄25, P̄35 are factors which can be readily

obtained from matrix P . Conditions in (49) are always

satisfied by choosing a small ε0 > 0 and a positive a.

Note that P33 > 0 is ensured by selecting suitable positive

definite matrices A, B, KD and a small ε0 > 0. On the

other hand, from property 8 and (44) we realize that a large

a is obtained by means of a large positive definite KP .

Hence, this selection of gains suffices to satisfy (50) because

any of P23, P11, P32 do not grow when KP is enlarged.

However, it is important to see that this is possible only

for small values of ‖Ib‖. Condition (51) is always satisfied

by choosing a large matrix R, i.e. by means of a large ra,

because only the product P44δ3 grows as R is enlarged. Note,

however, that this also requires ‖Ib‖ to be small. Finally,

expressions for the second, third and fourth terms in (52) are

cumbersome to be written in this note. However, the reader

can compute them from matrix P in a rather easy manner

to verify that any of them do not grow as R̄ grows. Hence,

it is always possible to choose a large R̄, i.e. a large rb, to

ensure that product δ4P55 dominates all the other terms to

render (52) true. Also note that this requires ‖Ib‖ ‖q̇‖, ‖q̃‖
and ‖z‖ to be small. Hence, we conclude that Ẇ , given in

(48), can always be rendered locally negative semidefinite

by choosing a small ε0 > 0 and suitable positive definite

matrices KP , KD, KI , B, A, ra and rb. This, together

with the positive definiteness of W ensure, by means of

the LaSalle invariance principle, local asymptotic stability of

(q̃, q̇, z, ϑ, ρ, Ib) = (0, 0, 0, 0, 0, 0). This completes the proof

of proposition 1.

Remark. 1: In spite of its locality, result in proposition

1 is important because it shows that a PID controller plus

linear feedback of electric current suffices to locally regulate

position in rigid robots equipped with BLDC motors as

actuators. This is the first time that such a result is presented
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in the case when the electric dynamics of such actuators is

taken into account.

IV. AN ADAPTIVE PD CONTROLLER

In the following proposition we present an adaptive PD

controller which ensures global convergence to the desired

link positions.

Proposition. 2: Consider the dynamic model (1), (2), (3)

together with the control law:

Va = −raIa − KP q̃ − KD ϑ

+RK−1
T2 g(qd) (53)

Vb = −Q̇∆̄aθ̂1 − εQ̃IAθ̂2 (54)

d

dt

[
θ̂1

θ̂2

]
= Γ

[
IB Q̇ δ̄a

εIBQ̃ Ia

]
(55)

ε =
ε0

1 + ‖q̃‖ , R = Ra + ra

ϑ = diag

{
bip

p + ai

}
q (56)

Q̃ = diag{q̃1, q̃2, . . . , q̃n} ∈ Rn×n

∆̄a = diag{δ̄a1, δ̄a2, . . . , δ̄an} ∈ Rn×n (57)

where δ̄a = −KP q̃ − KD ϑ + RK−1
T2 g(qd) =

[δ̄a1, δ̄a2, . . . , δ̄an]T ∈ Rn, A = diag{ai} and B =
diag{bi} are n × n diagonal positive definite matrices, Γ
is an arbitrary 2n× 2n diagonal positive definite matrix, θ̂1,

θ̂2 are the estimates of parameters defined as:

θ∗1 =

[
Np1Lb1

R1
, . . . ,

NpnLbn

Rn

]T

∈ Rn (58)

θ∗2 = [KT11
, . . . ,KT1n

]
T ∈ Rn

where subindex indicates a diagonal entry of the correspond-

ing matrix. There always exist diagonal positive definite

matrices KP , KD, ra and a constant scalar ε0 > 0 such that

the closed loop system has an equilibrium point where q̃ = 0
which is stable and global convergence limt→∞ q(t) = qd is

ensured.

Proof of this proposition follows proceeding as in proof of

proposition 1 by using ̺ = Ia − R−1δ̄a, instead of ρ, θ̃ =
θ̂ − θ∗ = [(θ̂1 − θ∗1)T , (θ̂2 − θ∗2)T ]T and using the positive

definite and radially unbounded Lyapunov function:

ν(q̃, q̇, ̺, Ib, ϑ, θ̃) = ν1(q̃, q̇) + ν2(ϑ, θ̃) + ν3(̺, Ib)

ν1(q̃, q̇) =
1

2
q̇T M(q)q̇ − U(qd) − q̃T g(qd)

+(
1

ε1
+

1

ε2
) q̃T KP q̃ + εq̃T M(q)q̇ + U(q)

ν2(ϑ, θ̃) =
1

2
ϑT KDB−1ϑ +

1

2
θ̃T Γ−1θ̃

ν3(̺, Ib) =
1

2
̺T La̺ +

1

2
IT
b LbIb

where KP and KD are defined as in (34), (35) and conditions

(7), (8), (9) given in [15] are satisfied, to find that:

ν̇ ≤ −





‖q̇‖
‖ϑ‖
‖̺‖
‖Ib‖





T

E





‖q̇‖
‖ϑ‖
‖̺‖
‖Ib‖



 − ε




‖ϑ‖
‖q̃‖
‖̺‖




T

Ā




‖ϑ‖
‖q̃‖
‖̺‖





where:

E11 = λmin(F ) − ε0(kc + 2λmax(M(q)))

E22 =
1

2
λmin(KDB−1A), E31 = E13

E33 =
1

2
λmin(R), E12 = E21 = E14 = E41 = 0

E44 = λmin(Rb), E42 = E24 = E34 = E43 = 0

E13 = −1

2
[λmax(LaK−1

T2 KP ) + λmax(LaK−1
T2 KDB)]

E32 = E23 = −1

2
[λmax(LaK−1

T2 KDA)]

Ā11 =
1

2ε0
λmin(KDB−1A), Ā13 = Ā31 = 0

Ā22 = λmin(KP ) − kg, Ā33 =
1

2ε0
λmin(R)

Ā23 = Ā32 = −1

2
λmax(KT2), Ā12 = −1

2
λmax(KD)

and Ā21 = Ā12. Matrices E and Ā are positive definite if:

E11 > 0, E22 > 0, E33 > 0, E44 > 0 (59)

E11E22E33 − E13E22E31 − E23E11E32 > 0

Ā11 > 0, σ = Ā11Ā22 − Ā21Ā12 > 0

σĀ33 − Ā23Ā11Ā32 > 0

According to (34), (35) given any R it is always possible to

adjust KP and KD to maintain the desired values of both

KP and KD. Hence, only E33 and Ā33 grow as R grows.

Thus, all of the previous inequalities can always be satisfied

by using suitable matrices KP , KD, B, A, a small ε0 > 0
and a large R, i.e. a large ra. Thus, ν̇ can always be rendered

globally negative semidefinite. This, together with the global

positive definiteness and radial unboundedness of ν ensure

stability of (q̃, q̇, ϑ, ̺, Ib, θ̃) = (0, 0, 0, 0, 0, 0), i.e. the whole

state is bounded. Convergence q(t) → qd as t → ∞ follows

using standard adaptive control arguments. From expression

for ν̇ we can show that q̃ is square integrable. Recall that

q̇, the time derivative of q̃, is also bounded. Note that these

properties hold globally. Thus, global convergence q(t) → qd

as t → ∞ is ensured. This completes the proof of proposition

2. Conditions ensuring result in proposition 2 are given by

(7), (8), (9) in [15] and conditions (59) in the present note.

It is important to say that this result as well as result in

proposition 1 are possible thanks to the realistic assumption

on viscous friction at robot joints: even if a small viscous

friction, F , is present it is enough to choose a small ε0 > 0.

Finally, we stress that proposition 2 is valid for any values

of La and Lb, i.e. contrary to the common assumption we

do not require inductance to be small.
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Remark. 2: It is important to say that the adaptive part of

the controller, i.e. Vb in (54), has no effect on the final value

of q̃. This can be seen from the fact that (q̃, q̇, ϑ, ̺, Ib, θ̃) =
(0, 0, 0, 0, 0, θ0) for any constant θ0 ∈ R2n qualifies as an

equilibrium point of the closed loop dynamics. As a matter of

fact Lbİb = −RbIb +NpLaQ̇ρ+NpLaQ̇K−1
T2 δ̄∗a−Q̇∆̄aθ̃1−

εQ̃IAθ̃2 − Q̇∆̄aθ∗1 − εQ̃IAθ∗2 , where δ̄∗a = KT2R
−1δ̄a,

is the only closed loop equation which is affected by the

estimation error θ̃. On the other hand, note that the adaptive

gain matrix Γ is any arbitrary positive definite diagonal

matrix. Also note that the global character of controller in

proposition 2 allows us to choose any finite initial values

for the estimated parameters. Thus, we can always choose

θ̂1(0) = 0, θ̂2(0) = 0 and Γ as a diagonal matrix whose

diagonal entries are arbitrarily close to zero. This ensures

that Vb, in (54), can always be kept as close to zero as desired

to render negligible its effect. This implies robustness with

respect to numerical errors and noise amplification as well

as avoidance of undesired input voltage saturations which, as

pointed out in [5] pp. 257, 395, 403, can be produced when

computing the complex high order terms appearing in the

adaptive part of the controller, i.e. Vb in (54). Moreover, this

also means that virtually only the PD controller plus linear

current feedback, given in (53), is applied. This fact, together

with the following remark, means that theoretical evidence

has been found, for the first time, suggesting that a linear

PD implemented by means of the common practice known

as torque control [8], [7], suffices to control globally robots

equipped with BLDC motors.

Remark. 3: In industrial practice it is common to consider

that the torque applied by BLDC motors to robot joints is

proportional to current. Further, the drives for those motors

include some current controllers ensuring the generation

of the desired torque. This is known as torque control or

current control [8]. In the following we recall the procedure

presented in [7] to implement this strategy for controlling

BLDC motors under the assumption that La = Lb. In such

a case torque applied by motors to robot joints is given as

τ = KT2Ia and torque control can be written as:

Va = Kd(I
∗

a − Ia) (60)

where Kd is a diagonal positive definite matrix and I∗a
represents the value of the electric current Ia necessary to

generate the desired torque τ∗, i.e.:

I∗a = K−1
T2 τ∗ (61)

Additionally, Vb = 0 is assumed. Suppose that a PD control

law is used as the desired torque:

τ∗ = −κp q̃ − κd ϑ + g(qd) (62)

We stress that, in practice [7], it is always chosen ra ≫
Ra and, hence R ≈ ra. Thus, Va given in (53) is retrieved

from (60), (61), (62) by setting ra = Kd, KP = KdK
−1
T2 κp,

KD = KdK
−1
T2 κd and KdK

−1
T2 g(qd) ≈ RK−1

T2 g(qd). This

relaxes the requirement on the exact knowledge of Ra. Aside

from these facts, it is important to stress that our result is

valid even if La 6= Lb.

V. CONCLUSIONS

We have presented a stability analysis for rigid robots

actuated by BLDC motors when the electric dynamics of

these actuators is taken into account. We have found, for

the first time, theoretical evidence indicating that a linear

PD controller suffices to globally regulate position under

these conditions. Contrary to the common assumption, our

controller does not require inductance to be small. We

have presented for the first time a formal stability analysis

for torque control. The proposed Lyapunov functions are

partitioned into one Lyapunov function for each closed loop

dynamical equation. Results in proposition 2 have been

recently extended by the authors to design an adaptive

PID controller achieving global convergence to the desired

positions. This means that the exact knowledge of any robot

or actuator parameter is not required. Such a result has been

submitted for publication some where else.
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