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Abstract— We present an energy matching control strategy
model for the angular velocity stabilization of a rigid body
system that assumes that two independent controllers are avail-
able. The control strategy consists of solving a feasible matching
condition in order to derive a feedback controller which forces
the closed-loop system to be globally asymptotically stable.
Keywords: Control of rigid body system, Nonlinear Control,
Lyapunov Stability.

I. INTRODUCTION

The problem of the stabilization of the angular velocity of
a rigid body system has long attracted the attention of many
control researchers. This problem has a great number of
applications in several engineering fields, such as the control
of spacecrafts and satellite systems [10]. When the rigid body
system is only controlled by one or two torques we have
an under-actuated mechanical system, because it has fewer
actuators than degrees-of-freedom [12]. As a result many
control strategies used for controlling fully-actuated systems
cannot be directly applied to control this mechanical device.
Also, this system cannot be input-output linearized by means
of static feedback and it is not locally controllable around the
origin [22], [3]. This fact makes it especially difficult to carry
out some controlled maneuvers like regulation at one point
or tracking a trajectory [22]. On the other hand, a complete
solution for the angular velocity stabilization and the tracking
problem exists when the rigid body has three independent
controllers. Sira et al. [21] proposed a redundant dynamical
sliding mode control scheme for controlling a rigid body
system, with the advantage of being robust with respect to
external perturbations. In [24] and [13] the regulation prob-
lem is solved by means of a PD-like control law, whereas
in [6] the Energy-Casimir method is used to solve the
stabilization around the origin. Brockett in [9] and Aeyels in
[1] showed that the asymptotical stabilization of the angular
velocity could be achieved by two independent controllers.
A similar problem was addressed by [23] and [2], where the
stabilization problem for a single torque is handled. In [16]
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75476, México, D.F. 07700, México, Phone: (52-5) 729-6000 ext. 56568,
FAX: (52-5) 586-2936 caguilar@cic.ipn.mx.
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the authors proposed time-varying feedback controllers to
regulate the altitude of a rigid spacecraft with two inputs. In
[4], the authors present a robust control strategy in order
to attenuate the effect of external disturbances, with two
independent torques. Reference [14] was devoted to the
stabilization of the angular velocity of a Euler’s system
via variable structure based controllers. In [18], the author
presents a control strategy for the stabilization of the angular
velocity with two torques. The proposed strategy consists of
transforming the original system into a discontinuous one by
applying a discontinuous coordinate transformation, which
achieves asymptotic stability with exponential convergence
rates. While a survey of this topic is beyond the scope of
this paper, we refer the reader to [20] and [19], for a detailed
treatment of it.

In this paper we present a solution for the stabilization of
the angular velocity of a rigid body system, that is controlled
by two independent actuators. Our control strategy, inspired
in the previous works [5], [17], [11], [8], consists of solving a
feasible energy matching condition that allows us to build the
total energy of the desired closed-loop system, such that, it is
globally asymptotically stable at the origin. Having satisfied
this condition, we derive the state feedback control laws that
asymptotically stabilize the rigid body system at the origin.
The main contribution of this paper is to propose and solve,
in a very simple way, a suitable energy matching condition
that allows us to obtain the two stabilizing controllers that
render the system to be asymptotically stable at the origin.
We must emphasize that this control problem is of important
practical interest, since the designed state feedback laws can
stabilize the system at the origin, even when one of the
actuators of the rigid body system fails.

The remainder is organized as follows: Section 2 presents
Euler’s equations of the body system. Section 3 is devoted
to obtaining the two stabilizing controllers by solving a
convenient matching condition. Then, the convergence of
the closed-loop system is guaranteed by applying the well-
known LaSalle’s invariance theorem. In Section 4 we evalu-
ate the controllers’ performance through some computer sim-
ulations. Finally, Section 4 contains the concluding remarks.
The proof of Lemma 1 is found in the Appendix.

II. THE RIGID BODY

Consider a rigid body which is controlled by means of two
torque inputs applied to two principal axes. Let w1, w2 and
w3 be the angular velocity components with respect to the
principal axes, and denote by J1, J2 and J3 the moments of
inertia of the rigid body about the principal body axes. Let us
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assume that the two inputs are about the first two principal
axes. The Euler equations for the rigid body system are given
by [22]

J1ẇ1 = (J2 − J3)w2w3 + τ1

J2ẇ2 = (J3 − J2)w1w3 + τ1

J3ẇ3 = (J1 − J2)w2w3.
(1)

Here τ1 and τ2 are the torques that act as inputs of the
system. In order to apply a matching energy controller based
approach, we proceed to rewrite the above system as a
controlled Hamiltonian system, described by

ẇ = J−1

(
S(w)

∂V0

∂w
(w) + Bu

)
(2)

where w = (w1, w2, w3)T is the state, uT =(τ1,τ2) is the
controller, J =diag(J1,J2, J3) the inertia matrix, S and B
are the internal and external interconnection matrices, given
by

S(w) =




0 w3 −w2

−w3 0 w1

w2 −w1 0


 , B =




1 0
0 1
0 0


 .

and V0 is the total energy of the rigid body system, defined
by

V0(w) =
1
2
wT Jw.

Notice that matrix S is a skew-symmetric matrix, that is,
xT S(w)x = 0, for all x ∈ R3.
The control objective is to find smooth feedback controllers
τ1 and τ2, that bring all the angular velocities to the rest
equilibrium point. That is, we force the closed-loop system
to be asymptotically stable at the origin from any initial
conditions.

We must emphasize that the linearization of system (1)
about the origin has one uncontrollable eigenvalue at the
origin. Hence the resulting linearized system is not stabiliz-
able and can not be exponentially stabilized by a smooth
feedback at the origin (see [25]).

III. CONTROL STRATEGY

System (2) suggests the use of the matching control energy
approach for the design of the stabilizing feedback control
laws, which force the motion, starting from any arbitrary
initial conditions w(0), towards the desired resting equilib-
rium point w = 0. Intuitively, this control strategy consists
of finding a suitable control u, such that the closed-loop
system can be rewritten as a new asymptotic Hamiltonian
system; see the previous works of [11], [17], [5], [8]. To
this end, we first introduce the definition of matching energy
condition, then, we obtain the necessary matching condition,
which allows us to explicitly obtain the convenient candidate
Lyapunov function and the desired control.
Now, consider a second, autonomous Hamiltonian system,
described by

ẇ = (Sd(w)−D)
∂Vd

∂w
(w), (3)

where D is a constant positive diagonal matrix, Sd(w) is
a skew-symmetric matrix, and Vd(w) is the desired energy

function of the closed-loop system, selected such that Vd is
strictly positive with a global minimum at the origin. That
is, Vd(w) > 0 for all w ∈ R3, with w 6= 0 and, Vd(w) = 0
if and only if w = 0. System (3) is the desired closed-loop
system or target system. We chose system (3) as the target
system because it is asymptotically stable, as we demonstrate
in the next section.

Now, from [17], [5], we introduce a useful definition: we
say that systems (2) and (3) are matched for some convenient
control law u(w), if the solutions of both systems are the
same.1 That is, (w(t),u(w(t))) is a solution of (2), if and
only if , w(t) is a solution of (3), for all t ≥ 0. 2

Therefore, systems (2) and (3) are matched, if and only if
the dynamics of both system are equal among them. Thus,
equating the left-hand sides of (2) and (3) we have the
following equality

Bu = J (Sd(w)−D)
∂Vd

∂w
(w)− S(w)

∂V0

∂w
(w). (4)

From the above we have the following set of partial differ-
ential constraint equations, which have to be fulfilled for any
control law (see [21] and [11]):

B⊥
[
S(w)

∂V0

∂w
(w)− J (Sd(w)−D)

∂Vd

∂w
(w)

]
= 0, (5)

where B⊥ is the left annihilator of B. That is B⊥B = 0.
Therefore, if variables Sd, D and Vd are known, then control
u(w) can be directly computed as

u = −(BT B)−1BT

[
J (Sd(w)−D)

∂Vd

∂w
(w)− S(w)Jw

]
.

(6)
We summarize the control strategy as follows: we first need
to solve the matching energy condition (5), which is directly
related to the total energy of target system (3). Afterwards,
control u is obtained via (6).
Remark 1: The above energy matching condition allows us
to characterize all the energy functions that can be assigned
to the target system by fixing the structure of the desired
interconnection matrices Sd and D3. That is, matrices Sd

and D can be seen as free parameters, used to achieve the
mentioned energy matching condition. In general, this is not
an easy task because we need to solve a non-linear partial
differential equation (PDE). Therefore, there is no one single
method to obtain Vd and the solution is not unique. Besides,
the solution could not be feasible, that is, the obtained Vd

could not be strictly positive or not well defined for all w ∈
R3. However, for this particular case it is relatively easy to
assure the desired energy matching condition, as we show in
next the section.

Comments: We want to emphasize that there are not explicit
conditions for the existence of the solution of the PDErelated

1V0 and Vd refer the original and the desired energies, respectively.
2It is important to emphasize that the initial conditions of both systems,

the target (3) and the open-loop (2), are the same. That is because we are
forcing the dynamics of both systems to be the same.

3Recall that V0 is given a priori.
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to the energy matching condition, as pointed out in [7].
However, in many applications it is possible to assure these
conditions by adequately selecting the needful interconnec-
tion matrices Sd and D. Examples of these applications, like
the inverted pendulum, the inertia wheel pendulum and the
spherical inverted pendulum, can be found in [11] and [17].
Solving the matching condition: The following lemma
allows us to shape the stored energy function of the target
system:
Lemma 1: Let D=diag{d1, d2, 1}, with d1 and d2 strictly
positive constants, and let Sd be a skew-symmetric matrix
defined by

Sd(w) =




0 k −k2 − δw2

−k 0 −2k3w3

k2 + δw2 2k3w3 0


 , (7)

where δ = (J1−J2)/J3, and k is an arbitrary constant, and
the constants k1, k2 and k3 are selected according to

δk2(δk2 + k1k3) < 0 with k1 > 0. (8)

Then, the energy matching condition (5) is satisfied, for the
following

Vd(w) =
1
2
(w1 + k2w3)2 + f(w2, w3) (9)

where

f(w2, w3) = 1
4δk2w

2
3(2w2 + k3w

2
3) + 1

4k1(w2 + k3w
2
3)

2.
(10)

Furthermore, Vd(w) is strictly positive with a global
minimum at the origin. Proof is given in the Appendix.

Observe that for any structural parameter δ we can always
find k1, k2 and k3 satisfying (8).

Closed-loop stability analysis: From the definition of the
energy matching condition, already discussed in the previous
section, it follows that the stability of system (2) in closed-
loop with (6) is equivalent to the stability of the desired
closed-loop system (3). Therefore, the stability analysis can
be carried out using the target system.

Under condition of Lemma 1, let us take Vd(w) as a
candidate Lyapunov function for the target system. Now,
computing the time derivative of Vd(w) around the trajec-
tories of system (3), leads to

V̇d(w) =
(

∂Vd

∂w

)T
(Sd(w)−D) ∂Vd

∂w ,

= − (
∂Vd

∂w

)T
D ∂Vd

∂w ≤ 0.
(11)

Therefore, the positive function V is a non increasing
function since V̇d ≤ 0.4 Consequently, w1, w2 and w3 are
bounded in the Lyapunov sense. To complete the proof, we

4It is possible to conclude asymptotic stability by using a simple
Lyapunov method. That is because the term

(
∂Vd
∂w

)T
D

∂Vd
∂w

is strictly
positive definitive. Consequently, Vd and−V̇d are strictly positive definitive.
Therefore, from the Lyapunov theorem the origin of the closed-loop system
is globally asymptotically stable.

invoke LaSalle’s invariance theorem [15].
We define the invariant set:

Ω =
{

w ∈ R3 : V̇d(w) = 0
}

,

Ω =
{

w ∈ R3 : −∑3
i=1 di

(
∂V
∂wi

)2

= 0
}

.

Let us compute the largest invariant set contained inside
the set Ω. On the set Ω, we have

∂
∂wi

Vd(w) = 0; i = {1, 2, 3}. (12)

Consequently, the single point w ∈ R3 that satisfies (12) is
given by w = 0, since V is a smooth and strictly definite
positive function with a global minimum w = 0. So, the
largest invariant set contained inside Ω is given by the single
equilibrium point w = 0.5 According to LaSalle’s theorem,
the closed-loop system is globally asymptotically stable at
the origin.

Summarizing the above discussion, we present the main
proposition of this paper:
Proposition 1 Consider the non-linear system (2) in closed-
loop with (6), under conditions of Lemma 1. Then, the origin
of the closed-loop system is globally asymptotically stable.

IV. NUMERICAL SIMULATIONS

A simulation was performed for system (1) in closed-loop
with (6). The physical parameters of the rigid body were
selected as if it were a real satellite: J1 = 27 kg m2, J2 = 17
kg m2 and J3 = 25 kg m2. The initial conditions of the
system were fixed as w1 = −3, w2 = 20 and w3 = 4.

In the experiment, we have fixed the gains of the controller
as d1 = 35, d2 = 25, k1 = 1, k2 = 3, k3 = −3.5 and
k = −2. Figure 1 depicts the state response of the closed-
loop system, with its respective controllers τ1 and τ2. It can
be observed in Figure 1 how the states converge to zero:
w1 does it almost instantly and it is followed by w2 and
w3 in that order. Also, it can be seen that initially the rate
convergence is fast, but after t >= 5 it becomes very slow,
and as t is increased, little by little, all the states are closer
and closer to zero. This happens because the closed-loop
system is asymptotically stable but not locally exponentially
stable. That is, we expect that as time goes to infinity,
eventually all the states are closer to the origin. This is a
disadvantage of the resulting asymptotic convergence of the
closed-loop system, in comparison with other methods like
discontinuous control law ([18]) where exponential stability
is guarantied except at the origin.

V. CONCLUSIONS

A control strategy for the stabilization of a rigid body
system, controlled by two independent controllers, and de-
signed based in the IDA-PBC approach (see [17], [5]), has
been presented in this paper. The control strategy is based on

5LaSalle’s theorem ensures that every solution starting in Ω approaches
the largest invariant set contained in Ω as t →∞.
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Fig. 1. Closed-loop response of all states of the rigid body system.

solving a feasible energy matching model, which is directly
related to the candidate Lyapunov function of the desired
target system. The idea behind it consists of forcing the
desired closed-loop system to behave as an asymptotic stable
Hamiltonian system (3). To assure the matching condition, it
is necessary to solve a single third order partial differential
equation. Fortunately, the matching condition can be easily
solved, as we showed in Lemma 1. The stability analysis
of the closed-loop system has been tested by LaSalle’s
Theorem. The closed-loop performance of the controlled
system is seen to be quite satisfactory, as assessed from the
numerical simulations.

It is worth mentioning that the presented control strategy
can be used to control similar systems like a spinning body
or a gyrostat.

VI. APPENDIX

In this appendix section we show how the matrices D and Sd

can be proposed in order to satisfy the matching condition
(5). By definition of the desired closed-loop system (3),
matrices D and Sd are given respectively, as:

D =




d1 0 0
0 d2 0
0 0 d3


 , Sd(w) =




0 X3 −X2

−X3 0 X1

X2 −X1 0


 ,

(13)
where di > 0 for i = {1, 2, 3}. For simplicity we let d3 = 1.
After substituting the above matrices D and Sd(w) and the
values of S(w), J and B⊥, defined previously in (3), into
the matching condition (5), we have6

0 = δw1w2 +
∂V

∂w3
+ X1

∂V

∂w2
−X2

∂V

∂w1
. (14)

To solve the above partial differential equation, we shape the
desired positive function V , as we stated previously in (9).
This trick was introduced in order to change from three to

6Recall that δ = (J1 − J2)/J3 and the variables X1 and X2 can be
selected, as desired.

two the number of variables of the above partial differential
equation. Then, substituting V , defined in (9), into relation
(14), we obtain the following partial differential equation:

0 = w1(k2 + δw2 −X2) + w3

(
k2
2 − k2X2

)
+

X1
∂

∂w2
f(w2, w3) + ∂

∂w3
f(w2, w3).

From the above, we must note that it is convenient to
eliminate the coefficient of w1 in order to obtain a feasible
f(w2, w3). Thus, variable X2 can be selected as X2 = k2 +
δw2. Also, variable X1 can be selected as desired. However,
in order to get a simple solution, we let X1 = −2k3w3. So
that, the above relation turns out to be:

0 = −δk2w2w3 − 2k3w3
∂

∂w2
f(w2, w3) +

∂

∂w3
f(w2, w3),

(15)
the solution of which has been given previously in the
Lemma (see 10). That is, the obtained matrices D and Sd,
and the proposed V , previously defined in the Lemma, satisfy
the matching condition (5).

Finally, we need to guarantee the positiveness of the
obtained function V . Indeed, the function f (10) can be
expressed, as a quadratic form given by zT Qz, where z =
(w2,w2

3) and

Q =
[

k1 δk2 + k1k3

δk2 + k1k3 δk2k3 + k1k
2
3

]
.

Selecting k1 > 0 and −δk2(δk2 + k1k3) > 0, we have that
Q > 0. On the other hand, the first term of equation (9) that
depends on variables w1 and w3, is strictly positive, hence,
we can assure that the defined V is strictly positive. That
is, we most chose the set of constants {k1, k2, k3} such that
inequality (8) is satisfied.
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