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Abstract— A constructive control strategy is presented for
the stabilization of the inverted pendulum system. Under the
assumption that the pendulum is initialized above the upper
half plane. To carried out, a suitable procedure is presented
in order to find a candidate Lyapunov function, for the whole
system. Then the control is proposed directly from the obtained
Lyapunov, in such a way, that its time derivative be semi-definite
negative with respect to a convenient manifold. Finally, the
asymptotically stability of the closed-loop system is concluded
by LaSalle theorem.
Keywords: Underactuated mechanical system, Non-linear Sys-
tem, Lyapunov approach.

I. INTRODUCTION

Controlling the inverted pendulum on a cart (IPC) has
attracted the attention of many researchers as a challenging
benchmark to test advanced control strategies (see [1], [2]
and references therein). This mechanical device consists of
a free vertical rotating pendulum with a pivot point mounted
on a cart. The cart can be moved horizontally by means of a
horizontal force, which acts as the input of the system. Since
the angular acceleration of the vertical pendulum cannot be
directly controlled, the IPC is an interesting example of an
under-actuated mechanical system. Therefore, many control
techniques developed for fully-actuated systems cannot be
used directly to stabilize this system. For instance, it is well
known that the IPC is not input-output linearized by means
of static feedback [3]. Besides, the system loses controllabil-
ity and other geometric properties while the pendulum moves
through the horizontal plane [4] and [5]. Nevertheless, the
IPC is locally controllable around the unstable equilibrium
point, hence the stabilization problem can be solved locally
by a direct pole placement procedure [8].

Loosely speaking, there are two important problems re-
lated to the stabilization of this device. The first problem con-
sist in swinging up the pendulum from the hanging position
to the upright vertical position. An energy control strategy
is usually applied for this purpose. Once the system is close
to the desired upright position with enough low speed, by
means of a simple change in the controller, from the non-
linear to the linear controller, allows to keep the pendulum at
the desired equilibrium (see [7],[6], [9], [10],[12], [13], [11]).
The second problem consists in stabilizing the IPC around
its unstable equilibrium point, assuming that the pendulum
is initially above the horizontal plane, or lies inside an open
vicinity of zero. This vicinity defines a stability domain
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for the close-loop system. We mention some of the most
important works related to the second problem. In [15] a non-
linear controller based on the backstepping procedure is used
to solve the stabilization problem in its unstable equilibrium
point. Authors build an interconnected system by applying
some non-linear transformations, and then, by a recursively
backstepping procedure, they derive a stabilizing controller
that converges the angle position and the position of the cart
to zero. In [14] a non-linear controller forcing the angle of
the pendulum to zero is presented, however, this procedure
does not guarantee convergence to zero of the cart. This
controller was based on nested saturation functions. In [7]
the authors propose a stabilization technique using switching
and saturation functions, in addition to the Lyapunov method.
The resulting closed-loop system possesses a very large
region of attraction (for almost all initial conditions). In
[16] the authors present a control strategy based on the
method of controlled Lagrangians, in conjunction with some
symmetry properties satisfied by the IPC. This strategy also
assures asymptotic stability of the origin for a very large
domain of attraction. A similar work with similar tools was
presented in [17]. In [18] a semi-global stabilization for
the IPC by means of a fixed point controller is introduced
assuming that the angle is initialized above the upper half
plane. This technique consists in finding a cascade form, and
then fixed point equations for the control force is obtained
by applying the backstepping procedure to develop a control
strategy allowing the stabilization of the pendulum around
the upper position, starting from any initial position. The
proposed scheme is based on the use of saturation functions.
The resulting closed-loop system is asymptotically stable
without switching to a stabilizing local controller. A similar
work, using nested saturation function approach, is presented
in [19]. The authors first write an approximate model of
the IPC model as a chain of integrators, by using of a
convenient transformation. And then, they apply a nested
saturation control technique to control it. There are several
strategies related to the second problem. However, most of
these approaches manage the physical model by introducing
some non-linear approximations or reducing the order of the
system (see [10], [6], [8] and references therein). Finally,
we recommend the work presented in [20] to have a better
knowledge in this topic.

A constructive nonlinear control law, developed for con-
trolling the IPC, is presented in this paper. The control’s
goal is to make the system to be locally asymptotically
stable around the unstable upright position, for a very large
attraction domain. It is worth to mention that the main merit
of this approach is the construction of a convenient Lyapunov

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrC12.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 5145



function, which allow us to derive the controller and compute
the stability domain, in straightforward manner..

The rest of this paper is organized as follows. Section
1 presents the dynamical model of the IPC. In section 2
we get a stabilizing nonlinear controller for the IPC. The
corresponding stability and convergence analysis is carried
out in the same section. Section 3 presents some computer
simulations. Finally, the conclusions are given in section 4.

II. THE INVERTED PENDULUM CART SYSTEM

Consider the inverted pendulum mounted on a cart (IPS).
The dynamics of this system, is given by [8]

mL cos θẍ + mL2θ̈ − gmL sin θ = 0;
(M + m)ẍ + Lm cos θθ̈ −mLθ̇2 sin θ = f,

where x is the cart displacement, θ is the angle that the
pendulum forms with the vertical, f is the force applied to
the cart, acting as the control input. M and m stands for the
cart mass and the pendulum mass concentrated in the bob,
L is the pendulum length.

To simplify the algebraic manipulation in the forthcoming
developments, we normalize the above equations by intro-
ducing the following scaling transformations,

q = x/L, u = f/(mg), dτ = dt
√

g/L, δ = M/m.

This normalization leads to a simpler system,

cos θq̈ + θ̈ − sin θ = 0,

(1 + δ)q̈ + cos θθ̈ − θ̇2 sin θ = u,

where, with an abuse of notation ”.” stands for differentiation
with respect to the dimensionless time τ . Then, a convenient
partial feedback linearization input is given (see [7], [13]),

u = cos θ sin θ − θ̇2 sin θ + v(2 + sin2 θ + δ)

which produces the feedback equivalent system:

θ̈ = sin θ − cos θv,
q̈ = v.

(1)

Notice that for the new input v = 0 and θ ∈ [0, 2π]
the last system has two equilibrium points, one being an
unstable equilibrium point (θ, θ̇, q, q̇) = (0, 0, 0, 0) and the
other a stable equilibrium point (θ, θ̇, q, q̇) = (π, 0, 0, 0). In
the sequence , the symbol x stands for x = (θ, θ̇, q, q̇).

III. A STABILIZATION CONTROL LAW

In this section we establish the framework for the sta-
bilization of the IPS around its upright position, under
the assumption that the pendulum is initialized over the
horizontal plane. That is, the pendulum is brought to the
unstable top position, with zero displacement of the cart,
assuming that the initial angle position of the pendulum
satisfies |θ(0)| < π/2. For this, first a suitable candidate
Lyapunov function is shaped by means of the technique of
added integration, as presented in [7]. Secondly, a control law
is obtained with its respective domain of attraction. Finally
the stability analysis is carried out by means of the LaSalle’s
invariance theorem.

Construction of the candidate Lyapunov function
Lyapunov function for the two dimensional subsystem:

We begin to stabilize the variables θ and θ̇. For this, we
introduce a function E0, as

E0(θ, θ̇) =
1
2

(
k1 cos2 θ − 1

)
θ̇2 + (1− cos θ), (2)

where the constant k1 > 1. As we can see, the proposed
E0(θ, θ̇) is positive definite, for all |θ| < θ̃, where

θ̃ = cos−1(
√

1/k1). (3)

Then the time derivative of E0 along the trajectories of the
system (1), is then given by

Ė0(θ, θ̇) = θ̇ cos θ
(
vα(θ) + k1β(θ, θ̇)

)
, (4)

where

α(θ) = 1− k1 cos2 θ , β(θ, θ̇) = (−θ̇2 + cos θ) sin θ.
(5)

Thus, the following controller, given by

v0 = − 1
α(θ)

(
θ̇ cos θ + k1β(θ, θ̇)

)
, (6)

makes variables θ and θ̇, to converge asymptotically to zero,
because v0 produces

Ė0(θ, θ̇) = −θ̇2 cos2 θ. (7)

Of course, the previous positive function E0 is very suitable
just for the asymptotically stabilization of the pendulum’s
variables. But, this function shows how to shape a conve-
nient Lyapunov function for controlling also the cart velocity
q̇. For that purpose, one quadratic term is added to the
mentioned positive function, in where, the time derivative
of the additional term has,somehow , the structure of the
relation (4). This idea is inspired by the work presented by
Jurdjevic and Quinn [21].
Lyapunov function for the three dimensional subsystem:

Let us propose the unknown variable Z=z(θ, θ̇, q̇) pro-
vided that,

ż(θ, θ̇, q̇)θ̇ cos θ = Ė0(θ, θ̇). (8)

So that the variable Z must satisfy

Ż = θ̇
∂Z

∂θ
+ sin θ

∂Z

∂θ̇
+

(
∂Z

∂q̇
− cos θ

∂Z

∂θ̇

)
v. (9)

Combining the relations (9), (8) and (4), we obtain after
some manipulation, two important relations

θ̇
∂Z

∂θ
+ sin θ

∂Z

∂θ̇
= k1(θ̇2 − cos θ)

and
∂Z

∂q̇
− cos θ

∂Z

∂θ̇
= (1− k1 cos2 θ).

It turns out to be that one solution is given by,

Z = q̇ + k1θ̇ cos θ. (10)
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From relations (4), (8) and (10), a convenient positive
function may be defined , as

E1(θ, θ̇, q̇) =
1
2
(q̇ + k1θ̇ cos θ)2 + kdE0(θ̇, θ), (11)

where kd is a positive constant. Clearly, the proposed positive
function E1 is also locally positive definite for all |θ| < θ̃.
Now, differentiating the above E1 along of the trajectories of
system (1). This yields, after using relation (4), the following

Ė1(θ, θ̇, q̇) = ẇ(θ, θ̇, q̇)
(
vα(θ) + k1β(θ, θ̇)

)
. (12)

where
ẇ(θ, θ̇, q̇) = q̇ + (k1 + kd)θ̇ cos θ (13)

So that control v2 can be chosen as

v1 = − 1
α(θ)

(
ẇ(θ, θ̇, q̇) + k1β(θ, θ̇)

)
.

Since v1 makes semi-definite negative the time derivative of
E1, then ,

Ė1(θ, θ̇, q̇) = −ẇ2(θ, θ̇, q̇).

It is very easy to show that v1 is able to stabilize asymptoti-
cally the states θ, θ̇ and q̇. But, the proof of this fact will be
omitted, for it is very similar to the stability analysis, which
will be presented below.
Lyapunov function for the whole system:

In the same way , the construction of the candidate
Laypunov function for all states, is carried out by adding
one quadratic term to the aforementioned positive function
E1. Then, a simple integration of the variable ẇ leads to,

w(θ, q) = q + (k1 + kd) sin θ. (14)

Therefore, a convenient Lyapunov function can be intro-
duced, as

E2(x) = E1(θ, θ̇, q̇) +
kp

2
w2(θ, q). (15)

We can show that the above function E2(x) is locally definite
positive, for all for all |θ| < θ̃. Finally, the time derivative
of E2 along the trajectories of the system (1), is then given
by using the relation (12) and the definition of the variables
w and ẇ (see (13) and (14)), as

Ė2(x) = kpw(θ, q)ẇ(θ, θ̇, q̇)+
(
vα(θ) + k1β(θ, θ̇)

)
ẇ(θ, θ̇, q̇).

(16)
Notice that the time derivative of the above function E2

has the same structure of the previous time derivative E1.
This is the main trick to construct the candidate Lyapunov
function(15), for all the states.
A nonlinear feedback controller for the whole system

Consider the proposed Lyapunov function E2 with its time
derivative Ė2, given in (15) and (16), respectively. Then, a
suitable control law is presented, as

v =
−kiẇ(θ, θ̇, q̇)− kpw(θ, q)− k1β(θ, θ̇)

α(θ)
. (17)

with ki > 0. Note that this controller v produces

Ė2(x) = −kiẇ
2(θ, θ̇, q̇). (18)

Remark : The proposed controller is well-defined for
all |θ| < θ̃. To avoid these singularity θ = ±θ̃ (or
α(θ) = 0), it is sufficient that the initial conditions x0 =
(θ(0), θ̇(0), q(0), q̇(0)); with the assumption that |θ(0)| < θ̃,
belonging to a neighborhood of the origin, such that

E2(x0) < K̃ =
kp

2
(k1 + kd)2 sin2 θ̃ + 1− cos θ̃ (19)

where θ̃ is given in (3). This is a consequence of the fact
that E2(x) is a non-increasing function (18).

Therefore the inequality (19) defines a stability region
for the closed-loop system (see (1) and (17)). That is, for all
initial conditions x0, such that E2(x0) < K̃; with |θ0| < θ̃,
we guarantee that E2(x(t)) < K̃, and also, |θ(t)| < θ̃. This
fact allows to define a compact set Ω, as

Ω = {x = (θ, θ̇, q, q̇), |θ| < θ̃ : E2(x) < K̃}. (20)

The set Ω has the particularity that all the solutions of the
closed-loop system, that starts in Ω remain in Ω for ever.
Stability Analysis

Since E2(x) is positive definite for all x ∈Ω, and Ė2(x)
is only a semi-definite negative, for all x ∈R4. Obviously ,
we have stability in the sense of Lyapunov. To complete
the proof, we must apply LaSalle’s theorem to test the
asymptotic stability of the equilibrium point x = 0.

Let us first define the set

S = {x ∈ Ω :
(
q̇ + (k1 + kd)θ̇ cos θ

)2

= ẇ2 = 0}, (21)

and let M be the largest invariant set in S. LaSalle’s theorem
guarantee that every solutions starting in a compact set Ω
approaches M as t →∞ (see [?]).

Let us then compute the largest invariant set M in S.
Clearly, on the set S, it follows that the auxiliary variable w,
given by w = q +(k1 + kd) sin θ , is a fixed constant on the
set S. From the time derivative of E2(16), it is clear that
the controller was selected, so that

kpw(θ, q) + vα(θ) + k1β(θ, θ̇) = −kiẇ(θ, q, q̇).

Then, on the set S the above relations leads to

kpw(θ, q) + vα(θ) + k1β(θ, θ̇) = 0. (22)

Computing the time derivative of the variable ẇ defined in
(13), we have

kdẅ = v(α(θ)− 1) + (k1 + kd)β(θ, θ̇). (23)

Evidently on the set S, the variable ẅ = 0. In such case
equation (23) yields the following equality

β(θ, θ̇) =
v(1− α(θ))
(k1 + kd)

. (24)

Substituting equality (24) in relation (22), we have

kpw(θ, q) + v

(
α(θ) + k1

k1 + kd

)
= 0. (25)
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But, on the set S, control v is necessarily a fixed constant,
given by the quantity v = v.1 Indeed, it follows from this that
w(θ, q) is a fixed constant , on the set S. Besides, α(θ)+k1 >
0, for all θ ∈ R (see the definition in (5)). Therefore, on
the set S, system (1) is equivalent to

θ̈ = sin θ − cos θv ; q̈ = v . (26)

We must analyze the possible cases arising from the above
equations:

First, if the constant v 6= 0 then q̇ (t) is not bounded on
the set S. This fact is a contradiction, for the vector stat x(t)
is bounded, on the set S. Hence, we have v = 0. This means
that q̇(t) being constant, on the set S, , q(t) is not bounded
on S. And also we have a contradiction, so that q̇ = 0, on
the set S. In addition , we have

q + (k1 + kd) sin θ = 0. (27)

It follows directly from definition (14). Therefore, on the set
S, the variables q and θ are constants, defined by q =q and
θ =θ , respectively. On the other hand, from left-side relation
of (26), we have sinθ= 0, on the set S. But, by assuming
that |θ| < θ̃ < π/2, we conclude that θ= 0, on the set S.
Finally, from (27), it follows that q = 0, on the set S. That
is to say, the largest invariant set M contained in the set S
is the single unstable equilibrium point x = 0. According to
La Salle’s Theorem all the closed-loop solutions starting in
Ω asymptotically converge towards the largest invariant set
M, which is the equilibrium point x = 0.

Summarizing the above discussion, we have:
Proposition 1: Consider the partial linearized system of the
IPS (1), in the closed-loop with (17), where kp, kd, ki and k1

are strictly positive constants. Under the assumption that the
initial conditions belongs to the compact set Ω (20). Then,
the origin of the closed-loop system is locally asymptotically
stable and the domain of attraction is the region defined by
the inequality (19).

IV. NUMERICAL SIMULATIONS

Simulations were carried out to estimate the performance
of the proposed nonlinear controller (17), when applied to
the normalized system (1). The simulation was performed in
Matlab by simple Runge-Kutta algorithm.
To stress the influence of control parameters kp on the
transient behavior, we put together two plots of each state.
To do this, we have fixed parameters kd = 2.5 and k1

= 4 whereas parameter kp was changed from 2 to 0.5. The
set of initial conditions was set as θ0 = 1.1, θ̇0 = 0.1,
q0 = 0 and q̇0 = 0. Figure 1, shows the transient behavior
of the variables θ and q, while figure 2, shows the transient
behavior of the velocities θ̇ and q̇. As we can notice, large
values of kp produce more oscillations and make all the states
converge slowly to the desired equilibrium point. Intuitively,
the controller injects more potential energy to the system, so
that, the system must dissipate all initial potential energy by
means of oscillatory movements.

1Hereafter, we use the symbol X to denote that the variable X is a fix
constant, on the set S.

To evaluate the robustness of the closed-loop system re-
spectively to a dissipative force in the not-actuated coordinate
θ. A damping term “ − 0.1θ̇” is added into the right side
of the first differential equation of (1). For this simulation,
we considered the set of parameters kd = 3, k1 = 3 and
kp = 1, and the set of initial conditions as θ0 = 0.8, θ̇0 = 0,
q0 = 1.2 and q̇0 = 0. Figure 3, shows the closed-loop
response of the system when damping is considered. Notice
that proposed feedback controller has a good performance,
even when damping can destabilize the system.

V. CONCLUSIONS

A control strategy for the stabilization of the IPS around
its unstable equilibrium was examined in this paper. Assum-
ing that the pendulum is initialized above the horizontal
plane. The control strategy has been based, on a partial
feedback linearization of the IPC, following by Lyapunov’s
approach. First, a constructive procedure for the construc-
tion of a convenient candidate Lyapunov function has been
presented. Second, a stabilizing control law was obtained
directly from the proposed Lyapunov function. Third, the
closed-loop stability analysis was carried out by applying
LaSalles’ invariance Theorem. Besides, the domain of at-
traction of the closed-loop system can be enlarged, as we
desired, for almost the upper half plane.
Finally, the construction of the proposed Lyapunov func-
tion, in conjunction with the closed-loop stability analysis,
presented in this paper, turned out to be quite simple in
contrasted with another works reported in ([14],[17],[19] and
[18] ). This is because, we only use the simple Lyapunov
methodology.
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Fig. 1. Closed loop responses of the variables θ and q, for kp = 0.5 and
kp = 2.

Fig. 2. Closed loop responses of the velocities θ̇ and q̇, for kp = 0.5 and
kp = 2.

Fig. 3. Feedback controller performance when damping is considering in
the direction of θ.
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